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Longshore Currents Generated by Obliquely Incident Sea Waves, 2 

M. S. LONGUET-HIGGINS 1 

Oregon State University, Corvallis, Oregon 97331 

The profile of the longshore current, as a function of distance from the swash line, is calculated 
by using the concept of radiation stress (introduced in an earlier paper) together with a horizontal 
eddy viscosity •e of the form •e = pNx(gh)•/•', where p is the density, x is the distance offshore, 
g is gravity, h is the local mean depth, and N is a numerical constant. This assumption gives rise 
to a family of current profiles whose form depends only on the nondimensional parameter P = 
(•r/.2)(sN/aC), where s denotes the bottom slope, a is a constant characteristic of breaking waves 
(e• .-'- 0.41 ), and C is the drag coefficient on the bottom. The current profiles are of simple analytic 
form, having a maximum in the surf zone and tending to zero at the swash line. Comparison 
with the laboratory experiments of Galvin and Eagleson (1965)shows remarkably good agreement 
if the drag coefficient C is taken as 0.010. The theoretical profiles are insensitive to the exact 
value of P, but the experimental results suggest that P never exceeds a critical value of 2/5. 

1. INTRODUCTION 

in the companion paper (hereafter referred 
to as paper 1) a new theory for the generation 
of longshore currents by sea waves was devel- 
oped; it is based on the concept of the radiation 
stresses associated with the incoming waves. The 
theory was found to be consistent with observed 
currents at the breaker line, in both model 
experiments and field observations, provided 
that the friction coefficient on the bottom was 

of order 0.010 and that the horizontal mixing 
length was of the same order, but. less than, the 
distance between breaker line and shoreline. 

To make further progress in predicting the 
longshore current, one must make some further 
detailed assumption about the horizontal mix- 
ing in the surf zone. This we propose to do by 
adopting a certain form for the coefficient/•, of 
the horizontal eddy viscosity, as a function of 
distance from the shoreline. 

It is fairly clear that/•, must tend to zero as 
the shoreline is approached, since the dimensions 
of the turbulent eddies responsible for horizontal 
mixing can hardly be greater than the distance 
to the shoreline. For comparison, one can con- 
sider the analogous situation of turbulent flow 
over a rough plate, in which •, is proportional 
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to height above the plate [e.g., Prandtl, 1952]. 
However, the present flow differs from flow over 
a plate in that horizontal driving forces (in the 
form of the gradient of the radiation stresses) 
are also present throughout the surf zone. Thus, 
although •, should tend to zero, it does not 
necessarily do so linearly. 

In fact, we assume in the following that •e is 
proportional to the offshore distance x multi- 
plied by a typical velocity (gh) •/2, where h 
denotes the local depth. When the bottom slope 
s is uniform, this particular form for the eddy 
viscosity •, yields a very simple analytical form 
for the longshore current profile, which is found 
to be in remarkably good quantitative agree- 
ment with the detailed laboratory measurements 
by Galvin and Eagleson [1957]. in particular, 
the position and magnitude of the maximum 
current appear to be correctly predicted. 

While this paper was in preparation, the 
author's attention was drawn to a then unpub- 
lished paper by Bowen [1969] in which the 
concept of radiation stress was also applied to 
the same problem. Bowen also takes into account 
both bottom friction and horizontal mixing, 
though in a somewhat different way. Although 
in general agreement with Bowen's approach we 
should like to point. out two primary differences. 
The first is that he has assumed a bottom fric- 

tion proportional to the longshore current v, 
whereas it was shown in section 5 of paper 1 
that the bottom friction is proportional to uv, 
where u is the amplitude of the local orbital 
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velocity (normal to the coastline). This is the 
form adopted in the present paper. Second, in 
Bowen's model the coefficient of horizontal eddy 
viscosity/•e is taken to be a constant, not tend- 
ing to zero at the shoreline. This apparently 
simpler assumption leads in fact to a more com- 
plicated analytical form for the velocity profile, 
which is at variance in some respects with the 
velocity profiles as measured by Galvin and 
Eagleson [1957]. It appears then that the pres- 
ent formulation of the theory is both more 
plausible on physical grounds and better in 
agreement with the observations now available. 

scale and U is a typical velocity. Following the 
reasoning outlined in the introduction we take 
L c• x and U • (gh) •/•, where h is the local 
depth. As the simplest possible assumption, we 
take 

lae-- Npx(gh) 1/2 (4) 
where N is a dimensionless constant. Since L 

is not likely to exceed Kx, where K is yon K•r- 
man's constant, 0.40, and since the turbulent 
velocities are not likely to exceed 0.1Umax at 
most, where Umax -- a(gh)V•, the probable limits 
of N can be set as 

2. EQUATIONS OF MOTION 

We take axes 0x, 0y normal and parallel to 
the coastline, with the origin 0 at the coastline 
(which may differ from the still-water line 
because of wave setup). The local mean depth 
h(x) will be taken as including the change in 
level due to wave setup, or 'set down,' so that 
h (0) -- 0 exactly. 

If the longshore current v is steady and in- 
dependent of y, then, as was shown in section 
6 of paper 1, the momentum balance in the y 
direction can be expressed by the equation 

0 = + - 
in which T• denotes the driving force due to the 
radiation stresses, which is given in shallow 
water by 

•-y •o•2p(gh)a/2s(SinO) = ' or 0 (2) 

as x X x•, the breaker distance (see section 4 
of paper 1). In (2) a is a constant, about 0.41, 
p denotes the density, g is the acceleration of 
gravity, s = dh/dx is the local depth gradient, 
0 is the local angle. of incidence (02 << 1), and 
c is the local velocity of shallow-water waves 
where c = (gh) TM. By Snell's law (sin O)/c is 
a constant independent of x. Also in (1) the 
mean stress {By> on the bottom is given by 

2 o•CD(gh)l/212 (3) 

where C is the drag coefficient on the bottom. 
The middle term on the right of (1) represents 
the effect of horizontal mixing. Now • has the 
dimensions of pLU, where L is a typical length 

0 < N < 0.016 (5) 

(for Npx(gh) TM = ge = pLU _< p(Kx) 0.1 

We are particularly interested in a constant 
(or almost constant) beach gradient. We shall 
therefore suppose that 

= sx (6) 

where s = dh/dx is a constant that is nearly 
but not exactly equal to the bottom gradient m. 
Then (1) can be written in the form 

P •xx x5/2 -- qx•/2v 

= {:rx •/2 0 < x < xs x•<x< ,• 

(7) 

where p, q, and r are constants, independent of 
x, given by 

p = Npg•/2sa/2 

2 /2 q - - a Cpg•/281 (8) 

5 • a/25/2 sin O• 
r = •o• pg s -•-¾72 

(ghs) 

In the expression for r the quantities O• and h• 
signify •he values of 0 and h at the breaker 
line, but the values at any other particular 
location might also be chosen. 

Now let us introduce the nondimensional 
variables 

X = x/xs V = V/Vo (9) 

where Vo is the velocity defined by equation 55 
of paper 1: 
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571' Ot 1/28 Vo - 8 C (ghs) sin 0s (10) 
Then, noting that hB = sxs, we find that (7) 
reduces to the simple form 

I<X< m 

where 

P = Or/2)(sN/aC) (12) 

Thus P is a nondimensional parameter repre- 
senting the relative importance of the horizontal 
mixing. 

If there is no horizontal mixing, P - 0 and 
we obtain the simple solution 

V = {X 0 < X < 1 (13) 0 i<X< co 

noted in section t3 of paper 1. That is to say, 
the current increases linearly from the shore- 
line to the breaker line, Beyond the breaker 
line it is zero. At. the breaker line itsel• the 

current velocity is discontinuous. 
For general values of P equations 11 are to be 

solved subject to the boundary conditions that 
V is bounded when 0 < X < co and that at 

the breaker line X = 1 both V and 8V/OX are 
to be continuous. (It is not necessary for V to 
vanish at X = 0, but we shall see that in fact 
it does.) 

A particular integral of equations (11) in the 
region 0 < X < 1 is given by 

V = AX 0 < X < i (14) 

where 

A = 1/(1 --•P) P N -• (15) 

To this we must add a complementary function 
satisfying, in both regions, the homogeneous 
equation 

P O-• (X'/' O V) -- X •/" •-• V = 0 (16) 
The above equation has a solution of the form 

V = BX" (17) 

where B is a constant, provided that 

P(p q- 3/2)p -- i = 0 (18) 

In other words p must be a root of the quad- 
ratic equation 

p2 q_ 3/2p-- lIP = 0 (19) 
Denoting these roots by p• and p2, we have 

= + + 
(20) 

p, = -i - + 
Clearly p• > 0 and p, < 0. Hence the complete 
solution to (11) is of the form 

o<x<l (21) B=X TM 1 < X < m 
The boundary conditions at X = 1 are then 
satisfied by taking 

B• = p= -- 1 A B= = p• -- 1 A (22) 
p• -- p• P• -- p= 

It is useful to note that from (19) 

Pl -[- P,• = -- 3/2 PlP:• --' -- 1//p (23) 
and so 

(Pl -- 1)(p, -- 1) = p•p= -- (p• -Jr-P=) -Jr' 1 

5 1 --1 
-- (•4) 

2 P AP 

Then we have also 

S 1 -- lB(1 -- p•)(p• -- p=)]-i 
(25) 

B= = [P(1 -- p=)(pl -- p=)]-i 

Equation 21, together with (22) or (25), repre- 
sents the solution to the problem, for general 
values of P. 

For P = 2/5 the particular integral (14) no 
longer applies. Instead we have a different par- 
ticular integral 

V = --{X In X 0 <• X <• I (26) 
Since p• -- 1 and p= - -5/2 for P - 2/5, we 
obtain, as before, 

V = I {-•X--'•XlnX 0 < X < 1 (27) 
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The constants multiplying X and X -5/•' are 
chosen to satisfy the continuity of V and OV/ 
0X at X -- 1. Equation 27 also represents the 
limit of the solution (21) when P .--• 2/5. 

3. D•scuss•oN 

The current profiles given by equation 20 
have been calculated and plotted in Figure 1 
for various values of the horizontal mixing pa- 
rameter P. These current profiles have the 
following properties. 

1. Velocity near the breaker line. As P -• 
0, the profile tends to the triangular form (13) 
appropriate to zero mixing. There is a single 
maximum velocity Vmax --• I just tO the left of 
the breaker line. To the right of the breaker 
line we, have V -• 0. 

2. Velocity at the breaker line. When X -- 
I we have from (21) and (25) 

rs - lB(1 -- P2)(pl -- p2)]-I (28) 
On using the values of p• and p• given by (20) 
we find that in the limit, as P --) 0, VB -• 0.5. 
In other Words, the velocity at the breaker line 
is the mean of the limiting velocities on either 
side. This was foreshadowed in paper 1, section 
6. Now as P increases from zero to infinity, VB 
decreases monotonically from 0.5 to 0. At large 
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values of P we find that asymptotically 

Vs•4/15P as P--• co (29) 

Values of Vr for some representative values of 
P are given in Table 1. Also, when P -- 2/5, we 
have 

Vs = 10/49 = 0.2041 (30) 

3. Maximum velocity. The velocity profile 
generally has a single maximum value Vmax 
lying within the surf zone (0 < X < 1). To 
find the position X,• of this maximum, we dif- 
ferentiate (21) and obtain 

0-- SlPlXmPl-l + A (31) 
Therefore from (22) 

XmlPl--p211/(pI-1) = ( ), p• 1 p• 

From (21) and (31) the corresponding velocity 
is given by 

Vmax-' (1- B•i) AXm (33) 
Using the values of p• and p• given by (20), we 
can show that, as P --) 0, X,• --) I and Vmax 
1, and, as P --) •, both Xm and Vm•x tend to 

i.o• P•O 
m •o.o,ol I 

V /.• 

0.,.• ///// 

///// 
o•. 

0.0 • [ t [ 
0.0 0.5 1.0 1.5 2.0 

x 

Fig. 1. The form of the current profiles as given by (21) for • sequence of values of the 
mixing parameter P. 
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TABLE 1. 

M. S. LONGUET-HIGGINS 

Parameters of the Velocity Profile (21) for Various Values of P 

log10P VB (V) Vma.• Xm Q• Q2 

- •o o. 5000 o. 5000 
-3.0 0.4735 0.4847 
-2.5 0.4544 0.4733 
-2.0 0.4233 0.4542 
- 1.5 o. 3754 o. 4230 
- 1.0 o. 3077 0.3736 
-0.5 0.2226 0.2992 

0.0 0.1333 0.2000 
o. 5 o. 0628 o. 1024 
1.0 0.0240 0.0408 
1.5 0.0081 0.0141 
2.0 0.0026 0.0046 

I 0000 

0 8835 
0 8254 

0 7456 
0 6422 
0 5173 
0 3786 
0 2400 
0 1246 
0.0524 
0.0191 
0.0064 

I 0000 

0 9108 
0 8699 
0 8148 
0 7422 
0 6466 

0 5198 

0 3600 
0 1984 
0.0861 
0.0316 
0.0107 

1.0000 
0.9542 
0.9208 
0 8654 

0 7780 
0 6496 

0 4803 
0.2933 
0 1399 
0 O537 
0 0183 
0 0059 

0.0000 1.0000 
0.0467 1.0000 
0.0824 1.0032 
0.1447 1.0101 
0.2546 1.0327 
0.4615 1.1111 
0.9822 1.4625 

0 in such a way that 

Vmax r• •'.X' m (34) 

Thus Xm covers the entire range of X values 
between 0 and 1. For P = 2/5 we find from 
(27) 

Xm = e -•/7 = 0.4895 
(35) 

Vmax 3 5 = •--•Xm • 0.3496 

The values of Vmax and Xm corresponding to 
some representative values of P are shown in 
Table 1. It appears that, as P increases from 0 
to oo, both Vmax and X• decrease steadily from 
1 toO. 

Interpreting this result physically, we can say 
that the effect of increasing the horizontal mix- 
ing is to redistribute the momentum so that the 
fluid near the .shoreline is dragged along at a 
faster speed by the fluid farther offshore, but 
farther offshore the fluid is slowed down by the 
mass beyond the breaker line. 

4. Gradient of velocity profle at the shore- 
line. As X -• 0, we see from (21) that 

0 V,/aX • B•pxX •-• + A (36) 

So long as p• > 1, the horizontal velocity gra- 
dient remains finite and equal to A. However, 
when p• < 1 the gradient at X = 0 becomes 
infinite. The critical case p• = I corresponds to 
P = 2/5 = 0.4. Thus we have 

O V {1:(1- •-P) O< P • 2/5 (37) lira •-• = -- 
x-•o 2/5 _• P < c• 

5. Total transport. In the longshore direc- 
tion the total transport can easily be found by 
integration of vh with respect to the offshore 
distance x. Without ho, rizontal mixing the total 
transport Qo was shown in paper 1, section 6 to 
be given by 

Qo = «vohsxs (38) 

where vo is given by (10). This follows from 
the fact that vh is proportional to x •. When P 
> 0, the transport within the surf zone is given 
by 

Qx = vxhsxr fo • VX dX 

3B-----1--• -1- A)Qo 2+px 

(39) 

On the other hand, the transport beyond the 
surf zone is given by 

Q• = vohsxs VX dX 

2•o_]_ Pe Qo pe ( -2 = (40) 
p• __> --2 

For p• < --2, which corresponds to P ( 1, 
the total transport Q, which equals (Q• q- Q•), 
is given by 

( 3B1 3B• q-A)Qo (41) Q = 2 q-p• 2 -- p• 
which after some reduction becomes simply 

Q = Qo/(1 - P) (42) 
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When P _> 1, the transport outside the surf 
zone (and hence the total transport) becomes 
infinite. This must mean that a steady state 
cannot be established in a finite time, over the 
whole field. However, the flow within any finite 
distance of the shoreline can still be established 

effectively within a finite time. 
6. Mean current (V). The mean current in 

the surf zone, given by 

(V) = fo 1 VdX 

B• A = (43) 
[55/196 P = • 

is plotted in Figure 2 with V• and V• as func- 
tions of the mixing parameter P. Each is a 
monotonically decreasing function of P. The 
corresponding ratios V•,/(V), V•,/V•,,, and 
(V)/ V•,• (Figure 3) can be seen to vary be- 
tween somewhat narrower limits. In particular, 
V•,/V•,, lies always between 0.4 and 0.6. 

The most remarkable feature of Figure 1 is 
that, even when the mixing parameter P varies 
by a factor of three orders of magnitude (from 
0.001 to 1.0), the corresponding value of the 
velocity Vmax changes by a factor of less than 
4. This is in striking contrast to the dependence 

of the velocity on the drag coefficient C on the 
bottom. Since Vo is inversely proportional to C 
(but P depends also on C), we see that v itself 
is nearly inversely proportional to C. 

4. COMPARISON WITI-I OBSERVATION 

The most careful laboratory studies of long- 
shore currents along a plane beach appear to 
be those of Galvin and Eagleson [1965]. Their 
model beach was 22 feet wide and had a gradient 
of about 0.11. Some care must be taken, even 
with these experiments, in comparing theory 
and observation since, as the authors themselves 
emphasize, the measured currents were not uni- 
form along the beach but were being accelerated 
downstream from one end of the beach. This 

effect is probably present, but unrecognized, in 
many other laboratory measurements. One re- 
sult of the acceleration must be to entrain fluid 

from beyond the surf zone into the surf zone 
itself, which may have an effect similar to a 
horizontal exchange of momentum by eddy 
viscosity. 

The parameters for Galvin and Eagleson's ex- 
periments are summarized in Table 2. Their 
measurements for which the angle of incidence 
differed from zero were in series II, III, add IV, 
the deep-water angles of incidence for these 
series being 10 ø , 20 ø , and 51 ø , respectively. In 

1.0 

0.75 

0.5 

0.25 

0.005 -2 -I 0 iOg•o p 2 3 
Fig. 2. The theoretical values of VB (the velocity at the breaker line), Vmax (the maximum 

velocity) and (V) (the mean Velocity in the surf zone 0 <( X % 1) as functions of the mixing 
parameter P. 
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0.75 

0.5 

0.25 

0.00 

-5 -2 - 0 iOg•o p 2 5 

Fig. 3. The ratios VB/(V), Vr/V .... and (V)/Vmax as functions of the mixing parameter P 
(full lines). The dashed line gives the coordinate •Xm of the position of maximum velocity. 

runs 2 to 6 of each series the wave period was 
varied, and in runs 7 to 11 the period was kept 
constant and the amplitude was varied. 

The measurements thought most likely to 
represent steady unaccelerated conditions were 
those at a distance of 15 feet, or about % the 
width of the beach, from the upstream end. For 
each velocity profile we have assumed as origin 
of X (in our noiation) the mean position of the 
swash zone, taken at a distance (r - W/2) 
from the still water line. Here r, as in Galvin 
and Eagleson [1965], denotes the runup dis- 
tance and W denotes the width of the swash 

zone. No measurements being available, we have 
assumed W to be given closely enough by 
•/ssgT •, which is the distance through which a 
particle would slide down the beach under grav- 
ity in a time equal to half the wave period T. 
The distance b of the breaker line offshore is 

tabulated by Galvin and Eagleson, so that alto- 
gether we have 

X = •-•-r-- W/2 b + r -- W/2 (44) 
where/j is the horizontal distance offshore from 
the still water line (/j: Y, in the notation of 
Galvin and Eagleson). 

To normalize the measured velocity v, we 
define Vo by (10), in which hB is assumed to be 
very nearly equal to sb (if allowance is made 

for wave setup, the appropriate value of s is 
reduced by about 10%; see appendix 1); 0B 
is the measured angle of incidence at the 
breaker line (see Table 2). In series IV, how- 
ever, the present approximate theory in which 
0• • is negligible cannot very well be justified. 
Accordingly a rough correction has been made 
in Figure 4 by replacing the value of Vo in Table 
2 by Vo cos 0o, where 0o is the angle of incidence 
in deep water. Though not rigorous, this cor- 
rection factor can be justified on the grounds 
that the total longshore force exerted by the 
waves is equal t,o •-,,• Eo cos 0o sin 0o, where Eo 
is the wave energy density in deep water (see 
section 3 of paper 1). Since the total longshore 
thrust is proportional to cos 0o, we expect the 
longshore current v will, on average, be reduced 
by approximately this amount. 

In the experiments, the parameters r, b, and 
0• were found to fluctuate to some extent both 
with time and with distance along the shore. 
However, rather than use the local values of 
these quantities at the position of the current 
profile, we have adopted the longshore averages 
ray, bay, and (0•)a• given in Table A3 of Galvin 
and Eagleson [1965]. The purpose of doing so 
is to help reduce the statistical variability. In 
addition, we note that the longshore currents 
are, in fact, affected not only by the local values 
of h• and 0B but, also by conditions along the 
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TABLE 2. Parameters for the Model Experiments of Galvin and Eagleson [1965] 
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Run 
Os, Hs, T, ra, ba,•, W/2, Vo, 

deg feet sec feet feet feet ft/sec Vm•x log•oP 

Series II 
2 

3 
4 

5 
6 

7 
8 

9 
10 
11 

Series iII 

2 

3 
4 

5 

6 

8 
9 

11 

Series IV 

2 

3 
4 

5 
6 

7 
8 

9 

10 
11 

12 

13 

54 

51 
33 

23 

37 
26 
3.1 
3.8 
3.7 
4.0 

14.1 
12 1 

10 1 

92 
69 
66 

87 
11.2 

28 0 

21 9 
18 6 
158 

86 
13 4 
143 

19 7 
19 7 
22 6 

6.0 
20.2 

0.191 1.000 1.01 
0.167 1.125 1.06 
0.143 1.250 1.07 
0.121 1.375 1.15 
0.105 1.500 1.04 
0.050 1.250 0.62 
0.098 1.250 0.77 
0.124 1.250 1.03 
0.130 1.250 1.03 
0.156 1.250 1.08 

0.191 1.000 0.95 
0.167 1.125 1.05 
0.143 1.250 1.05 
0.121 1.375 1.05 
0.105 1.500 1.06 
0.098 1.250 0.75 
0.124 1.250 0.89 
0.156 1.250 1.10 

0.191 1.000 
0.167 1.125 
0.143 1.250 
0.121 1.375 
0.105 1.50O 
0.050 1.25O 
0.098 1.250 
0.124 1.250 
0.130 1.250 
0.156 1.250 
0.062 1.500 
0.110 1.000 

0.84 
0.88 
I 02 
I 17 
0 90 
0 59 

0 79 
0 86 
0 97 
I 12 

0 54 

0.72 

I 62 

I 53 
I 33 
I 24 

I 17 
0 62 
0 87 
I 21 

I 07 
1.44 

I 52 
I 51 
I 44 

I 13 
I 04 

0 85 
I 11 

I 55 

1.40 
1.15 
1.22 
1.32 
0.91 
0.69 
0 83 

i 19 
I 27 
I 29 
0 57 
0 88 

0.22 2.08 0.25 -0.04 
0.28 1.84 0.35 -0.40 
0.34 1.12 0.48 -0.86 
0.42 0.74 0.69 -1.72 
0.50 1.18 0.35 -0.40 
0.34 0.59 0.40 -0.58 
0.34 0.83 0.35 -0.40 
0.34 1.21 0.41 -0.62 
0.34 1.12 0.46 -0.80 
0.34 1.40 0.46 - 0.80 

0.22 
0 28 
0 34 

0 42 
0 5O 
0 34 

0 34 
0.34 

0.22 
0.28 

0.34 
0.42 
0 50 
0 34 
0 34 

0 34 
0 34 
0 34 

0 50 
0 22 

5.01 
4.30 
3.48 
2.8O 
2.04 
1.76 
2.64 
4.01 

9.29 
6.74 
5.87 
5.04 
2 37 
3 18 
3 71 
6 13 
6 34 
7 26 
I 31 

5 37 

0.39 
0.42 

0 56 
0 61 

0 70 
0 66 

0 60 

0.49 

0.37 
0.44 
0.53 
0.55 

0.55 
0.39 
0 48 

0 39 
0 47 
0 46 

0 57 
0 46 

-0 55 
-0 65 
-1 17 
-1 37 
-1 77 
-1 58 

-1.33 
-0.90 

-0.47 
-0.72 
-1.05 
-1.13 
-1.13 

-0 55 
-0 86 
-0 55 
-0 83 
--0 80 
--1 21 

--0 80 

whole length of the beach. (There was some 
uncertainty in the measurement of 0• [see Gal- 
vin and Eagleson, 1965] and hence in the ap- 
propriate values of Vo and V .... ) 

The results of the comparison are shown in 
Figure 4. Each plot in the diagram is identified 
by the number of the corresponding run in 
Table 2. It will be seen that most of the points 
lie between two of the theoretical curves derived 

in section 2, namely the curves corresponding to 
P - 0.4 and P - 0.1. Individual profiles (such 
as that numbered 11 in Figure 4a tend to follow 
quite closely the predicted profile for some par- 
ticular value of P; the maximum velocity al- 
ways lies not far from the dotted curve, which 
represents the locus of maximums in Figure 1. 

The values of Vmax corresponding to each of 

the profiles in Figure 4 are shown in Table 2. 
Also shown are the corresponding values of P 
derived from Figure 2. It can be seen that P 
varies from 0.40 to about 0.01. 

< How does P vary with other parameters: the 
wave height and period, the angle of incidence, 
and the beach slope? Before a definite answer 
can be given, further experiments covering a 
wider range of conditions are necessary. There is 
some evidence from Table 2 that P is an increas- 

ing function of the wave frequency (2v/T) and 
also of the breaker height in deep water (HD). 
The value of P can also increase with the angle 
of incidence 0•. 

It is striking that few profiles correspond to 
values of P greater than the critical value of 
0.4 (see section 3). At this value of P the gra- 
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dient of the current at X -- 0 becomes infinite. 

One is tempted to conjecture that this is in fact 
the greatest possible value of P, and that the 
presence of the shoreline controls the horizontal 
mixing so that the value of 0.40 is not exceeded. 

In support of this conjecture we can note 
that the corresponding value of V, is about 0.20, 
or one-fifth, whereas a rough argument in sec- 
tion 6 of paper 1 showed that V, should never 
be less than about one-sixth. As shown in paper 
1, both laboratory measurements and field ob- 
servations seem to point to 0.2 as being a 
common value for V,. 

Arrs•x 1. A• A•ow^•cs roa Wxw Ss?ur 

It is well known [Saville, 1961] that waves 
approaching a beach cause a change in the mean 
water level, or wave setup, in the shelving zone. 
The effect is caused by the onshore component 
of radiation stress [Longuet-Higgins and Stew- 
art, 1962, 1963]. Outside the breaker zone, the 
wave setup ?/is slightly negative, but inside the 
surf zone, the region with which we are con- 

cerned here, d?l/dx and hence ?/become appre- 
ciably positive. Thus the local depth h(x) 
should, in practice, be replaced by the effective 
depth (h q- ?/), and the bottom slope s should 
be replaced by 

s* = ___d (h q- r/) (A1) 
dx 

Now it has been shown both theoretically 
and experimentally by Bowen et al. [1968] that 
within the surf zone 

drl I dh (A2) dx - --1 q- (2/3a 2) dx 
(see equation 12 and Figure 5 of their paper, 
with y = 2a). Thus, if a is constant, the gra- 
dient of the mean surface level is simply pro- 
portional to the gradient of the beach. From 
(A2) it follows that 

dh drl i dh (A3) d-• -1'- dx - 1-•-3a•/2 dx 
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1.5 

and hence 

8 

s* = (A4) 1 + 3a2/2 
Equation 10 can therefore be modified to read 

5w •'8 

Vo - S C (gha)•/2 sin O, (AS) 
where 

a* - - (A6) s 1 + 3a2/2 
A graph of tt • as a function of a is shown in 
Figure 5. It should be noted that over much of 
the range of a the value of tt • differs little from 
its minimum value' 

(•max* = (6) -1/2 -- 0.4082 (A7) 
In fact there is little error if we take a = 0.5, 
about in the middle of the observed range. Cor- 
respondingly we have tt • = 0.36. Hence the 
appropriate value of Vo might be some 12% less 
than the value given by (10) with a = 0.41. 

APPENDIX 2. T•E STOKES VELOCITY 

In any fluctuating field of motion there is a 
systematic difference between the mean velocity 
measured by a freely floating object (the Lagran- 
gian mean velocity) and the mean velocity 
recorded by a current meter at a fixed point 
(the Eulerian mean velocity). The difference 
between the Lagrangian and the Eulerian mean 
velocities has been called the Stokes velocity 
[Longuet-Higgins, 1969] after G. G. Stokes [1847], 
who discovered it for surface waves on water of 

uniform depth. A general expression for the 
Stokes velocity lJs is given by 

tL = (f u, dt. Vu,)(B1) 
where u• denotes the first-order particle motion, 
assumed periodic witlt mean zero, and the angle 
brackets denote the mean value with ,respect to 
time. Thus lJs depends on the space gradient of 
the orbital velocity u•. 

In shallow-water wave theory, the orbital 
velocity is independent of the vertical coordinate, 
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and so likewise is Us. Nevertheless, the horizontal 
gradients of U l still give rise to a non-zero 
Stokes velocity. If Ul and Vl denote the x and y 
components of u•, the longshore component of 
Us is given by 

(f (•)1• (f (•)1• (92) Vs = Ul dt Ox/ q- Vl dt Oy/ 
Consistent with our previous use of the linear- 
ized shallow-water theory, we have 

u• = ot(gh) 1/2 cos 0 cos (lx q- my -- at) (93) 
V 1 -- a(gh) 1/•' sin 0 cos (lx + my -- at) 
where 

1 = k cos0 m = ksin 0 (94) 

k being the absolute wave. number. By Snell's 
law, the longshore wave number m is a constant, 
but the onshore wave number 1 is related to the 

frequency a and the local depth h by the rela- 

tion 

a •' -- k•'gh = (1 •' n t- m •') gh (95) 
On substituting from (93) into (92) and 

noting that Om/Ox, Om/Oy, O1/Oy, Oh/Oy, and 
O0/Oy all vanish we obtain 

Vs - «o•'(gh/a)[(1 n t- x O1/Ox) n t- m] 

ß cos 0sin 0 (96) 

If we ignore O1/Ox in comparison with //x, the 
above expression reduces to 

Vs = «a•'(gh/c)[cos 0 q- sin 0] cos 0 sin 0 

where c : a/k denotes the phase velocity. 
When 0 • is negligible, (B7) becomes simply 

1 2 ß Vs - •ot gh(sln O/c) (BS) 

The last factor is constant, by Snell's law. Hence 
the Stokes velocity increases linearly with the 
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depth h and hence linearly with distance from 
the shoreline. 

To show that O1/Ox is negligible in comparison 
with l/x, we have from (BS) 

12 = (•2/gh) -- m • 

OVOx = - o/Ox 
Therefore, if h = sx 

21 O1/Ox = (1 • -• m2)/x (B10) 
Thus O1/Ox << l/x, provided that 

1 • •- m • • 212 (Bll) 
that is to say m" << l" or tan" 0 << 1. Since 
0" has been neglected, this condition is already 
satisfied by our previous assumptions. 

Let us now compare the magnitude of the 
Stokes velocity, as given by (BS), with the scale 
velocity Vo defined by (10). At the breaker line 
the ratio of the two is given by 

V• 4 aC 
- (B12) 

Vo 5•r s 

With the values s -- 0.11, C -- 0.010, and a -- 
0.41 we have simply Vs/vo -- 0.01, which is 
negligible. 

On the other hand, with very gently sloping 
beaches, where s is much smaller than the value 
in Galvin and Eagleson's experiments, the 
Stokes velocity may very well have to be taken 
into account. 
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