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Longshore Currents Generated by ObliqUely Incident Sea Waves, 1 

M. S. LONGUET-HIGGIN$ -• 

Oregon State University, Corvallis 97331 

By using known results on the radiation stress associated with gravity waves, the total 
lateral thrust exerted by incoming waves on the beach and in the nearshore zone is rigorously 
shown to equal (Eo/4) sin 200 per unit distance parallel to the coastline, where Eo denotes the 
energy density of the waves in deep water and 00 denotes the waves' angle of incidence. The 
local stress exerted on the surf zone in steady conditions is shown to be given by (D/c) sin 0 
per unit area, where D is the local rate of energy dissipation and c is fhe phase velocity. 
These relations are independent of the manner of the energy dissipati. on, but, because breaker 
height is related to local depth in shallow water, it is argued that ordinarily most of the 
dissipation is due to wave breaking, not to bottom friction. Under these conditions the local 
mean longshore stress in the surf zone will be given by (5/4)pUmax •' S sin 0, where p is the 
density, Umax is the maximum orbital velocity in the waves, s is the local beach slope, and 0 
is the angle of incidence. It is further shown that, if the fricti. on coefficient C on the bottom 
is assumed constant and if horizontal mixing is neglected, the mean longshore component of 
velocity is given by (5•r/8)(s/C) Um,x sin 0. This value is proportional to the longshore com- 
ponent of the oi•bital velocity. When the horizontal mixing is taken into account, the longshore 
currents observed in field observations and laboratory experiments are consistent with a fric- 
tion coefficient of about 0.010. 

1. INTRODUCTION 

It is well known [Wiegel, 1963; Inman and 
Baghold, 1963] that when sea waves or swell 
approach a straight coastline at an oblique angle 
(Figure 1) a mean current tends to be set up 
parallel to the coastlinb. Such longshore cur- 
rents and the associated longshore transport of 
sand or other sedimentary material are of 
prime importance for both the coastal engineer 
and the submarine geologist. 

Many hypotheses, of a very rough kind, have 
been advanced to account for this phenomenon. 
However, a recent review of the subject by 
Galvin [1967] arrives at the justifiable con- 
clusion that, 'A proven prediction of longshore 
current velocity is not available, and reliable 
data on longshore currents are lacking over a 
significant range of possible flows.' 

It has often been suggested [e.g., Putnam 
et al., [1949] that the magnitude of the long- 
shore current is related in some way to the 
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ener•o•y or the momentum of the incoming waves. 
Of these two approaches, that employing mo- 
mentum is the more promising since momentum 
is conserved, whereas energy can be dissipated 
by breaking and other processes not immedi- 
ately associated with sediment transport. 

It goes without. saying that any momentum 
theory must be correctly formulated. The esti- 
mate of the momentum made by Putnam et al. 
[1949] has been already criticized on theoretical 
grounds by Galvin [1967]. Moreover, Inman 
and Quinn [1952] showed that, in order to 
make the theory fit. the observations, the fric- 
tion coefficient C would have to be assumed to 

vary over a wide range of 3•/• orders of mag- 
nitude. A version of the theory of Putnam 
et al. modified by Galvin and Eagleson [1965] 
also requires a large variation in C. 

The aim of this paper is to introduce a more 
satisfactory estimate of the momentum of the 
incoming waves, which is based on the concept 
of the radiation stress as developed by Longuet- 
Higgins and Stewart [1960, 1961, 1962, 1963, 
1964]. This estimate of the excess transfer of 
momentum due to the waves has already proved 
remarkably successful in the prediction of 
several wave phenomena, particularly the 
setup, or change in mean level of the sea sur- 
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SURF 
ZONE 

Fig. 1. Definition diagram for waves approaching 
a straight shoreline at an oblique angle. 

horizontal mixing generally reduces the current, 
although not drastically. 

A comparison with the available data (sec- 
tion 7) shows that even without the assump- 
tion of mixing there is already an order- of- 
magnitude agreement between the observed and 
the theoretical current if one takes an a priori 
estimate of the friction coefficient (about 0.010) 
based on experiments with flow in rough pipes 
[Prandtl, 1952]. The comparison indicates also 
that horizontal mixing is significant, though not 
dominant, in most circumstances. 

Note added in prcessing. Since this paper 
was prepared, a somewhat similar approach to 
the theory of longshore currents has been pub- 
lished by Bowen [1969]. Besides containing new 
results, the present treatment differs both in 
the derivation of equation 34 (since Bowen 
takes •9 to be. constant during differentiation) 
and in the assumed form of the bottom fric- 

tion. For further comparisons see the companion 
paper. 

face in the breaker zone [Longuet-Higgi•s a•d 
Stewart, 1963, 1964; Bowen, 1967]. 

In the present paper it is pointed out, first, 
that there exists a simple and precise relation- 
ship between the total longshore thrust exerted 
by the incoming waves on the one hand and 
iheir direction and amplitude in deep water on 
the other (see equation 10). This result can be 
derived either from the concept of the radia- 
tion stress mentioned earlier, or by a direct 
evaluation of the momentum flux due to the 

waves. 

Next it is shown that the local longshore stress 
due to the waves is very simply related to the 
local rate of dissipation of wave energy, regard- 
less of whether the dissipation is due to wave 
breaking or to bottom friction. Hence, using 
the known relation of breaker height to local 
depth in the surf zone, one can estimate accu- 
rately the local longshore stress due to the 
waves (section 4). 

When the local longshore wave stress is 
known, it. is possible to write an equation of 
motion for the longshore current that involves 
in general both the bottom friction and the 
horizontal mixing by turbulent eddies. if the 
horizontal mixing is negligible, the momentum 
balance gives an exceedingly simple expression 
for the longshore current (v>. The addition of 

2. WavEs APPROACHING COASTLINE 

Imagine a straight coastline, as in Figure 1, 
in which the local still water depth h is some 
function of the coordinate x normal to the 

shoreline and is independent of the distance y 
along the shore. The shoreline itself is at x = 0. 
A train of two-dimensional waves of amplitude 
a is advancing from deep water toward the 
coast, the local direction of propagation being 
inclined at an angle of incidence 0 to the nor- 
mal, as shown. 

Both 0 and a will vary with the distance 
Ixl from the shoreline. If ½r denotes the fre- 
quency of the waves and ]c denotes the local 
wave number, Snell's law, which expresses the 
constancy of the wave number in the direction 
parallel to the shoreline, can be written as 

k sin 0 = constant (1) 

or equivalently 

(sin O)/c: constant (2) 

where c = ½r/k denotes the local phase velocity. 
If the bottom slope is gradual, so that the 
proportional change in depth over one wave- 
length is small, it is reasonable to assume that 
½r and k are related to the local depth h(x) by 
the Stokes relation for waves of small ampli- 
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rude' 

2 

(r = gk tanh kh (3) 

The phase velocity c is then given by 

c - a/k = [(g/k) tanh kh] 1/2 (4) 
and the group velocity, or velocity of energy 
propagation, is given by 

d(r (r ( 2kh • ca = dk - 2k I + sin-•k h/ (5) 
With the local energy density per unit horizontal 
area being given by 

E = •p•a • (6) 
eorree• t• second order, the flux of energy 
toward •he coast, per uhit distance parallel to 
the shoreline, is given by 

F, = Ec• cos 0 (7) 

If the waves are losing no energy by breaking, 
Sottom friction, or otherwise, we have 

F• = constant (8) 

independently of x, from which one can deduce 
•he law of variation of the wave amplitude a 
with distance offshore [Burnside, 1915; Lon- 
guet-Higgins, 1956]. Inside •he breaker zone, 
however, some energy will b• lost, and hence a 
will diminish •oward the shoreline and 5eeome 

zero at or near x -- 0. If D denotes the rate 

of dissipation of wave energy, either by break- 
ing or friction, we have identieMly 

o,/Ox = - D 

3. RADiATiON STgESSE• 

So much is well accepted. We propose now 
to calculate the force exerted on the nearshore 

region 5y the incoming waves, 5y using the 
notion of the radiation stress, as introduced by 
Longuet-Higgi• and Stewart [1960, 1961, 1962, 
1963, 1964 ]. 

It can be shown •Lo•guet-Hi6gi•s and 
Stewart, 1960] that the presence of a wave •rain 
of amplitude a in water of depth h increases the 
flux of momentum parallel to the direction of 
propagation across any plane normal to that 
direction by an amount 

(10 Sl=S 
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Similarly the flux of momentum normal to the 
direction of wave propagation across a plane 
parallel to the direction of propagation is in- 
creased by an amount 

S22 = E(kh/sinh 2kh) (11) 

where E = X/•pga •. In general the momentum 
flux tensor, referred to coordinates (•, •) paral- 
lel and perpendicular to the direction of wave 
propagation, is given by 

E -]- sinh 2k•/ 0 

Sii = l kh 0 E sinh 2kh 
(12) 

the off-diagonal elements being zero. 
Now let us calculate the flux of y momentum 

parallel to the shoreline across a plane x = 
constant, parallel to the shoreline. Since the 
axes (x, y) are inclined at an angle 0 to the 
principal axes (/j•,/j.•) of the waves, we have 

SXY •i Ox Oy ß . 

= Sll sin 0 cos 0 -]- S2• cos 0(--sin 0) 

= E -]- sin-• 2k cos 0 sin 0 

= E(ca/c) cos 0 sin 0 (13) 

By (7) this relation can be written as 

$• = Fx(sin 0)/c (14) 

or, if we make use of Snell's law in the form of 
(2), we then have 

Sx• = F•(sin 0o)/Co (!5) 

where 0o and Co refer to the (constant) values 
of 0 and c in deep water. 

This very simple and exact relation states 
that the flux of y momentum across the plane 
x = constant is proportional, by a fixed, known 
constant, to the energy flux across the same 
plane. 

Because of the simplicity and fundamental 
importance of relation 15 we give here an alter- 
native proof. 

The flux of y momentum across any vertical 
plane x = constant is simply equal to puv, 
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where u and v are the components of velocity 
in the z and !/ directions. On integrating this 
with respect to the vertical coordinate z we find 

S:y = puv dz (16) 

The angle brackets denote the mean value with 
respect to time. Now for waves traveling at an 
angle • to the x axis w.e have 

u = UlCOS• v = ulsin• (!7) 

where • denotes the horizontal component of 
the orbital velocity in the direction of wave 
propagation. Also in (16) the upper limit of in- 
tegration can be replaced by the mean value z 
= 0, since the difference yo•pUV dz is only of the 
third order at most in the wave amplitude. (The 
mean value is actually of fourth order.) We 
have then, correct to second order, 

S•y = p(u•) dz cos 0 sin • (18) 
h 

Now the flux of energy in the direction of 
wave propagation is given by 

1 2 2 = + + 0) 

So to the same order of approxirnation 
o 

= f_ 
From the ]inearized equation of horizontal mo- 
mentum, however, we have 

OU 1 __ --1 Op _ 1 Op (21) 
Ot p 0•1 pC Ot 

since in progressive wave motion O/Or ~ c 
0/O•. Then on integration with respect to time 
we have 

u I = (p/pc) + constant (22) 

On substituting in (18) and noting that for 
irrotational waves (u•) = 0 correct to second 
order we obtain from (18) and (20) 

S•,, = (l/c) F cos 0 sin 0 (23) 

The energy flux Fx being equal to F cos 0, we 
obtain (14) and hence (15) as before. 

From (15) we can at once calculate the total 
longshore thrust of the waves, as follows. 
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Outside the breaker line (or the line at which 
energy losses become significant) we have 

F•: constant: Eo(«Co) cos 0o (24) 

Co being the phase velocity in deep water, where 
the group velocity c• = X/•Co, and Eo being the 
energy density in deep water. Therefore from 
(15) 

= •Eo cos 0o sin 0o (25) 
On the other hand, at the shoreline x -- $ > 

0 (just beyond the reach of the waves) we have 

x= (26) 

Therefore, by considering the balance of momen- 
tum of the water between the breaker line and 

the shoreline, we see that the total external 
force G• parallel to the shoreline ac•ing on the 
water and sediment inside •he breaker zone is 

given by 

(S•)• + G• = 0 (27) 
In the absence of wind or other surface stresses 

the only external force must come from bottom 
friction. Hence the total lateral littoral force 

exerted by the waves on the bottom is given by 
H• = - G•, that is to say 

H• = •Eo sin 200 (28) 

!t is interesting that the force is a maximum, 
for a given wave amplitude at infinity, when 
sin 20o= lor0o = 45 ø . 

4. LOCA• WAW S,a•ss 

Inside the breaker zone F• gradually dimin- 
ishes toward the shoreline. A consideration of 

the momentum balance between two planes x = 
x• and x• + dx parallel to the shoreline and 
separated by a distance dx shows at once that 
the net stress r• per unit area exerted by the 
waves on the water in the surf zone is given by 

= (29) 

and by (15) this equation becomes 

O F, (sin 0•) = D(sin 0o) (30) ru = • O X X Co X C ø'-/ 
where D denotes the local rate of energy dissipa- 
tion. !n other words, the local stress exerted by 
the waves is directly proportional to the local 
rate of dissipation of wave energy. Outside the 
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breaker zone the mean bottom stress vanishes. 

In some situations the loss of wave energy 
can be attributed to bottom friction (due mainly 
to the orbital velocity of the waves). However, 
the observation by M'unk [1949] that in the 
surf zone the breaker height is proportional to 
the mean depth suggests that under normal cir- 
cumstances most of the loss of wave energy is 
due to wave breaking, not to bottom friction. 

It is found that the rule 

M. S. L@NGUET-HIGGINS 

by unity, we have from (7), (31), and (32) 

Fx «pga 2 x 2 = co -- •ot pg (33) 
and so from (30) 

a = c•h (31) 

where a is a constant between 0.3 and 0.6 is in 

agreement both with direct observations (see 
Table 1 below) and with laboratory measure- 
ments of wave setup [Longuet-Higgins and 
Stewart, i963, 1964; Bowen, 1967] the approxi- 
mate linear shallow-water theory is used. On 
the basis of this theory we have from section 2, 
when kh << !, 

c = (gZ,) = co (02) 
If it is assumed that in the breaker zone 0 

is small enough that cos 0 can be approximated 

• •. f ,,3/• dh sin_ 0 
r• =-- xa pkgn) dx c 

5 2 
= xa pgh(s sin 0) (34) 

where s -- --dh/dx denotes the local bottom 
slope. 

Some values of a as determined by various 
authors are shown in Table 1. Though the later 
determinations of a tend to be higher than the 
earlier ones, no determination departs by more 
than 50% from the theoretical value of 0.41 
calculated by Davies and Long for the solitary 
wave. 

Using (31) and the linear shallow-water 
theory, we can also express (34) in terms of 
the maximum horizontal orbital velocity given 
by 

Uma x -- (arr)/(kh) = a(a/k) = a(gh) '/•(as) 
Then we have simply 

TABLE 1. Observed and Theoretical Values of a 

Investigator 

Observed Values 

Putnam e! a/.[1949] 

Iverson [1952] 

Larras [1952] 

0 066 
0 098 
0 100 
0 139 
0 143 
0 144 

0 241 

0 260 

o. 020 

o. 033 
o. 050 
o. 100 

O.OlO 

o. 020 
0.091 

0 37 
0 36 
0 33 
0 32 

0 37 
0 32 
0 35 
0 36 

0.41 l 0.38 

0.42 I 0 52 

0'34 t 0 37 
0 43 

0.35 

o. 44 

0.39 

Ippen and Kulin [1955] 0. 023 0.60 0.60 
Eagleson [1956] 0.067 0.56 0.56 
Galvin and Eagleson 

[1965] 0. 104 0.59 0.59 
Bowen [1968] 0.082 0.45-0.62 0.56 
Values Determined from Solitary Wave Theory 
McCowan [ 1894] 0. 000 0.39 
Davies [1952] 0.000 0.41 
Long [ 1956] 0. 000 0. 406 

Ty ---- •-pUmax2(8 sin 0) (36) 

where s denotes the bottom slope and 0 denotes 
the local angle of incidence. 

We note that in this simple relation there are 
no adjustable parameters. 

Beyond the breaker line, i.e. where the energy 
dissipation is negligibly small, D vanishes, and 
so by (31) 

= 0 (07) 

5. BOTTOM FRICTION 

The tangential stress B excited by the water 
on the bottom will be assumed to be given 
adequately by a relation of the form 

s = co (as) 

where u is the instantaneous velocity vector 
near the bottom and C is a constant coefficient. 

If there were no longshore velocity, and if 
the amplitude of the motion were small and the 
bottom impermeable, the horizontal orbital 
velocity would be expected to be to-and-fro in 
the same straight line, making an angle 0 with 
the normal to the shoreline (see Figure 23). 
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the bottom stress is changed by a small angie 
<V>/]Uorbl approximately. Hence there is an 
additional stress in the y direction given by 

B• = C•, I,•o•1 • (½>/I,•o•1) = c•, I,•o• I <,•> 
(40) 

Physically, when the orbital velocity is onshore, 
the direction of the bottom stress is inclined 

more toward the positive y direction (if (v) is 
positive); when the orbital velocity is offshore, 
the bottom stress, now almost in the opposite 
direction, is again more toward the positive y 
direction. Taking mean values in (40), we have 
the relation 

(a) (b) 

Fig. 2. Schematic representation of particle 
orbits (a) with zero mean littoral velocity and 
(b) with positive littoral velocity (v). 

The frictional stress B given by 

• - c• luo•l •'•orb (39) 

would then vanish in the mean (according to 
linear theory). 

Now suppose that a small component of 
velocity (v) in the longshore direction is added 
to the orbital velocity (Figure 2b). When 0 is 
small, this component of velocity is almost 
perpendicular to the orbital velocity. Therefore 
the magnitude of the velocity u = Uo•b 
is unchanged, to first order, but the direction of 

<s•> = c.( •o• ><•> (40 

Assuming Uor b to be sinusoidal, we have 

< llor b > "-- (2/•')Uma x (42) 
and hence 

<B•> = (2/z-)Cpum,x <v> (43) 

As a guide to the appropriate value of the 
friction coefficient we consider firs• the. values 

for a rough horizontal plate in uniform flow, as 
given for example by Prandtl [1952] and based 
on Nikuradse's experiments with roughened 
pipes. For convenience we reproduce Pra•dtl's 
[1952, p. 195] diagram as Figure 3 below. The 
friction coefficient appears to depend on just 
two parameters. The first is the Reynolds num- 
ber 

Re = U1/•, (44) 

OO07 

lO* 

IO S 

IO g 
00• 

OOOI 

Fig. 3. Values of the friction coefficient C for flow over rough plates, as deduced from 
the experiments of Nikuradse [from Prandtl, 1952]. (Figure reprinted by permission of Haff- 
her Co.) 
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where U denotes the horizontal velocity, 1 de- 
notes the length of the plate, and r is the kine- 
matic viscosity. The second parameter is the 
ratio (l/K), where K denotes a typical scale for 
a roughness element. Here we can take as an 
appropriate value of U the horizontal compon- 
ent of the orbital velocity, •t .... and for 1 the 
horizontal excursion of a water particle from 
its mean position, that is 1 -- Uma•/tr. Thus we 
have 

= = 
As typical values for field data we can take 

c• = 0.4 g = 10m/sec2 (46) 
h- 1 meter er- lrad/sec 

corresponding to 6-sec waves 0.8 meter high. 
With the approximate value. r -- 1.3 X 10 -6 
m2/sec and with a sand grain diameter of ! mm 
we obtain 

Re = 1.3 X 106 1/K = 1.3 X 10 a (47) 

and so from Figure 3 Cf •- 0.007. On the other 
hand, for laboratory data more typical values 
are 

h- 0.1meter tr = 5rad/sec (48) 

With the same values of a, g, and r, this leads to 

Re---- 2.5 X 104 1/K = 20 (49) 

if the roughness scale K is the same. In that 
case Figure 3 suggests that Cf is somewhat 
larger, about 0.010. 

Bretschneider [1954] has found that the ob- 
served damping of swell which is propagated 
over a smooth, level, impermeable sea bed is 
consistent with a friction coefficient lying be- 
tween 0.034 and 0.097. These values appear to 
agree well with Prandtl's values. On the other 
hand, Bretschneider also found that the spectral 
limitation of wave growth under the action of 
wind suggested higher values of C, between 0.01 
and 0.02. These coefficients may include .other 
significant effects such as bottom percolation. 
R. E. Mayer (personal communication) has 
found, however, that the theory of run-up of 
surf on beaches [Sheri and Meyer, 1963; Free- 
man and Le Mdhautd, 1964] can be made to 
agree fairly w. ell with the model experiments of 
Miller [1968] over a hard sloping concrete bot- 

tom by assuming that C lies between 0.01 and 
0.02. These values cannot be the result of 

bottom percolation, but might be attributable in 
part to turbulence arising from the breaking of 
the waves as they run up the slope. 

Taken together, the above data suggest that 
it is not unreasonable to expect a friction co- 
eft%tent C of the order of 0.01. 

6. EQUATIONS FOR LONGSHORE CURRENT 

To estimate the longshore current (v), let us 
assume first that the mean current is steady 
and two-dimensional, being independent of the 
time t and of the longshore coordinate y. Then 
the equation of motion in the longshore direc- 
tion can be written as 

0 = + :v b-5-x / - (50) 
where in the surf zone • and (By} are given by 
(37) and (43), respectively. The second term 
represents the exchange of momentum due to 
horizontal turbulent eddies, with eddy coeffi- 
cient N. 

In this equation the magnitude of N is un- 
known. Suppose first that the exchange of mo- 
mentum by turbulence is negligible in compari- 
son with that due to the waves; then in general 
the second term on the right of (50) can be 
neglected in comparison with the first. There 
remains a balance between the first and third 

terms: 

(B•) = •-• (51) 

Substituting from equations (36) and (43), we 
have in the breaker zone 

2 CDumax (1)) 5 2 - = •pUm• (S sin O) (52) 

and hence 

(v) = (5•r/8C)umax (s sin 0) (53) 

This very simple relation implies that for con- 
stant values of C and s the longshore current is 
simply proportional to Uma• sin O, or to the 
longshore component of the orbital velocity. 

The proportionality of (v) and Um,x has been 
inferred on quite different grounds by P. Komar 
(personal communication, 1969). 

Using (36) the relation between u=,x and the 
local phase velocity c, we can also write (52) in 
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TABLE 2. Theoretical Values of • 
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5•ra (sin 0) (v) - 8 C ghs (53') c 

where c = (gh) TM. Now by Snell's law the last 
factor is a constant. Equation (53') then states 
that in a given wave situation, if both C and s 
are constant, the longshore velocity (v) is simply 
proportional to the local depth h. 

If we assume that. the shallow-water theory 
is valid as far out as the breaker line where the 

depth h is equal to h•, the mean longshore cur- 
rent, in the absence of horizontal mixing, can be 
written as 

h>hs where 

571' ot /2(8 •)0 -- S C (ghB)l sin 0B) (55) 
This relation is shown in Figure 4 by the dashed 
line (corresponding t,o y -- 0). The total long- 
shore flux in the surf zone is given by 

fh Q = h(v} dx 
-•hB 

= 

-- •hB Vo/S = • - Ixl 
We have so far neglected the horizontal mix- 

ing entirely. !n this idealized model there is a 
sharp discontinuity in the velocity profile at the 
breaker line. The presence of any horizontal 

0.00 0.500 
0.25 0.386 
0.50 0.290 
0.75 0.218 
1.00 0.167 

mixing, as well as any variability in wave height 
and position of breaker line, will tend to smooth 
out the discontinuity at the breaker line and 
produce a smoother velocity profile; this shifts 
the maximum velocity closer to shore, as in 
Figure 4. 

A very rough estimate of the effect of mixing 
on the velocity v• at the breaker line can be 
obtained by taking the average of the momen- 
tum h(v) over a distance L on either side of the 
breaker line, where L represents a mixing length. 
When L is small in comparison with the width 
x,I of the surf zone, the velocity v• is equal to 

the mean value of the velocities on the two sides 

of the discontinuity in Figure 4. Hence v, = 
1/2 Vo. More generally if we take 

L = • Ix,•l 0 < • < 1 (57) 

we obtain for constant bottom gradient 

= (58) 
where 

2 0 (50) 
As y increases from 0 to 1, fi decreases from 
to 1/6. Then we can write 

<v>Ivo 

x• 01 
•x 

Fig. 4. Schematic representation of the long- 
shore velocity profile as a function of distance off- 
shore. Broken line denotes values without hori- 
zontal mixing; full line, with horizontal mixing. 

571' (Xf] 1/2( 8 vs S C (gh•) sin 0•) (60) 
where 0• denotes the angle of incidence at the 
breaker line and fi is a constant between 0.5 
and about 0.!67. The dependence of fi on 7 is 
shown in Table 2. 

7. COMPARISON WlTI-I OBSERVATION 

Because of the dependence of the longshore 
velocity on the distance from the shoreline it 
is particularly important to define precisely the 
position of the point of observation relative 'to 
the shoreline and breaker line. 
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TABLE 3. Laboratory Data by Brebner and Kamphuis from Galvin and Nelson [1965, p. !2] 

Ha, feet 0s, deg s rs, f•/sec (gHs)•/2/vs s sin Os r 

0.092 
0.097 
0.110 
0.118 
0.118 
0.138 
0 153 
0 159 
0 157 
0 159 
0.2OO 
0.203 
0 177 
0 220 
0 228 
0 231 
0 092 
0 112 

0 110 
0 118 
0 118 
0 133 
0 153 
0 159 
0 170 
0 158 

0 20O 
0 194 
0 184 

0 204 
0 231 
0 234 
0 085 
0 097 
0 110 
0 112 
0 118 
0 133 
0 141 
0.147 
0.151 

0.153 
0.176 
0.187 
0.177 

7.0 
7.5 
9.0 

10.0 
7.5 
8.0 

10.0 
12.0 

9.0 

9.5 
12.0 
!3.0 

9.0 
11.0 
12.5 

14.0 
10.0 
11.0 
13.0 

15 0 
11 0 
12 5 

150 
17 0 
13 0 

140 
170 
18 0 
130 
160 

18 0 
21 0 

12 0 
140 

17 0 
18 0 
140 
160 

18 0 
21 0 
170 
18 0 
22 0 

24 0 
170 

0 10 
0 10 
0 10 

0 !0 
0 !0 
0 !0 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 !0 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 !0 

0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 
0 10 

0.44 
0.47 
0.67 
0.82 
0.49 
0.67 
0.83 
0.99 
0.63 
0.80 
0.96 
1.07 
0.63 
0.88 
1.04 
1.16 
0.60 

0.81 
0.84 
0 91 
0.83 
0 97 
I 04 
I 14 

0 94 
I 12 
I 25 
1.32 
I 07 
I 25 
i 29 

1 32 
0 7O 
0 83 
0 88 
1.05 
0 91 
0 96 
i 10 
i 22 

1.08 
1.18 
1.36 
1.53 
1.21 

3.92 

3.77 
2.81 
2.38 
3.97 
3.15 
2.68 
2.29 
3.57 
2.83 
2 65 
2 39 

3 79 
3 02 
2 60 
2 35 
2 87 
2 35 
2 24 

2 14 
2 35 

2 14 
2 14 

1.99 
2.49 

2.01 
2 .O3 
1.89 

2.28 
2.05 
2.12 
2 .O8 
2.36 
2.13 

2.14 
1.81 
2.14 
2.16 
1.94 
1.79 
2.04 
1.88 
2.75 
1.60 
1.97 

0 012 
0 013 
0 016 
0 017 
0 013 
0 014 
0 017 
0 021 
0 016 
0 016 

0 021 
0 022 
0 016 

0 019 
0.022 
0.024 
0.017 
0.019 
0.022 
0.026 

0.019 
0.022 
0.026 
0.029 
0.022 
0 024 
0 029 
0 031 
0 022 
0 027 
0 031 
0 036 
0 021 
0 024 
0 029 
0 031 
0 024 
0 027 
0.031 
0.036 
0.029 
0.031 
0.037 
0.041 
0.029 

0.048 
0.049 
0.045 
0.041 
0.052 
0.044 
0.047 
0.047 
0.056 
0.047 
0.055 
0 .O54 
0 .O59 
0.058 
0 056 
0 057 
0 050 
0 045 

0 050 

0 055 
0 145 
0 046 
0 055 
0 O58 
0.056 
0.049 
0.059 
0.058 
0.051 
0.056 
0.065 
0.074 
0.049 
0 .O52 
0.062 
0.056 
0 .O52 
0 .O59 
0.060 
0.064 
0.060 
0 .O59 
0.066 
0.065 
0 .O57 

The profiles of velocity versus offshore dis- 
tance measured by Galvin and Eagleson [1965] 
show a maximum velocity about halfway be- 
tween the mean shoreline (not the still water 
level) and the breaker line, as one would expect 
from section 6 if horizontal mixing were im- 
portant. In the above instance, however, the 
flow was being accelerated downstream from a 
side wall, so that the compensating inflow would 
also contribute to the redistribution of longshore 

momentum and could have an effect similar to 

the presence of a large horizontal eddy viscosity. 
A useful summary of the available field and 

laboratory data has been compiled by Galvin 
and Nelson [1967]; these data have been criti- 
cally discussed by Galvin [1967]. It seems that 
the most commonly observed parameters of the 
wave field are the breaker height 

Hs -- 2ahs (61) 
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and the angle of incidence. 0B at the breaker 
line, though in some instances these quantities 
must be deduced from the wave height and angle 
of incidence as measured in deep water. Galvin 
and Eagleson [1965] have shown that there is 
considerable uncertainty in the measurement of 
HB and 0• (especially •) even under laboratory 
conditions. 

Now substituting for h• in (60) we have for 
the longshore velocity v• at the breaker line 

5•I' V/• • 1/2( 8 vs - (gHs) sin 0s) (62) 
8%/2 C 

In other words, if we write 

(gHs) 1/ø' 
VB 

(s sin Os) = r (63) 

a dimensionless ratio, we have 

/ C ---- 1.39 %//•/•r (64) 
With little uncertainty we can take a to be the 
mean value of the entries in the last column 

of Table 1, namely a -- 0.42; then (64) further 
simplifies to 

(7 = 0.90•r (65) 

For each entry in the data compiled by Gal- 
vin and Nelson [1967] we have computed the 
quantity r as given by (63). The results of 
these computations for a typical page of labora- 
tory data [Brebner and Kamphuis, 1963] are 
shown in Table 3 and for the field data of 

Inman and Quinn [1952] in Table 4. Despite 
the great range in the values of the breaker 
height HB it will be seen that the computed 
•alue of r remains remarkably consistent. There 
is somewhat more scatter in the field data than 

TABLE 4. Field Data by Inman and Quinn from Galvin and Nelson [1965, p. 17] 

feet 0s, deg s rs, ft/sec (gHs)•/2/VB s sin 0$ r 

2.8 
3.1' 
3.7 
3.6* 

4.9 
3.8 
34* 
2 6* 
3 0* 
2 7* 
35* 

4 9* 
2 9* 
4 6* 
3 7* 
51 

47 
45 

4.8.. 
42 
2O 
I 7 
2.9 
1.6 

6.2 
31 

4.5 

3.5 
2.7 
4.7 

2.6* 
2.0 
1.8 

6.5 
1.5* 
4.0 
0. * 
5.0 

5.0 
0. * 
0. * 
1.0' 
0 * 
0 * 
0 * 

0 * 
0 * 
0 * 
6.0 

7.0 
4.0 
4.0 

4,5 
4.0 
7.0 
5.0 
5O 
5O 

7O 
3O 
4O 
35 

7O 
2 0* 
4.0 

2.5 

0.027 
0.027 
0.027 
0.027 
0.027 
0.027 
0.027 
0.035 
0.035 
0.035 
0.035 
0.035 

0.035 
0.035 
0 .o28 
0.027 
0.027 
0.027 
0.027 
0.027 

0.027 
0.027 
0.027 
0.027 
0 014 

0 014 
0 014 
0 014 
0 014 
0 014 

0 014 
0 014 

0 014 

0.38 

0.04 
0.22 
0 .O4 
0.84 
0.21 

0.55 
0 .O4 
0.01 
0.15 

0.09 
0.21 
0.50 

0.88 
0.2O 
0.29 
0.53 
0.70 
1.19 
0.4O 

0.36 
0.23 
0.56 
0.11 

0.54 

0,62 
0 49 
0 17 
0 13 
I 37 

0 O4 
0 11 

0 O6 

25.0 
25.0 
49.6 

269.0 
14.9 

52 6 
190 
22 9 

98 2 
62 1 

1•17 9 
59 8 
19 3 

13 8 
54 5 
44 1 

23 2 
172 
10.4 
29 1 
22 3 

31 2 

172 
65.2 
26 1 
16 1 

24.6 
62.4 

71.7 
9.0 

228.6 

72.9 
126.8 

0.0030 

0.0007 
0.0019 

0.0000 
0.0024 
0.0024 
0.0000 
0.0000 
0.0006 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

o .ooo0 
0.0028 
0.0033 
0 0019 
0 0019 
0 0021 
0 0019 

0 0033 
0 0023 
0 0023 
o .001.2 

0 0017 
o 0007 
o OOlO 
0 0009 
0 0017 
0 0005 
0 0010 
0 0006 

0.076 
0.018' 
0.093 

0.000' 
0.035 
0.124 
o. 000' 
o. 000' 
o. 600' 
0.000' 
o. 000' 
o. 000' 
0.000' 
o. 000' 
0.000' 

0.124 
0 076 
0 032 
0 020 
0 062 
0 042 
0 103 

0 041 
0 153 
0 032 
0 o28 
o o18 
0 061 

0 061 

0 015 
0 116' 
0 071 
0 077 

* Values for which 0s is reckoned to be 2 ø or less. 



6788 

TABLE 5. 

M. S. LONGUET-HIGGiNS 

Summary of Observations' Mean Values 

Investigators Type of Beach (s) (Hs) (0s) N (r) 

Putnam et al. [1949]* 

Saville [1950]* 
Brebner and Kamphuis 

[106a] 

Galvin and Eagleson [1965] 
Putnam et al, [1949] 
Inman and Quinn [1951] 

Galvin and Savage [1966] 

GBonded sand 
Metal or smooth cement 

ravel, 1/4 inch in diam. 
Concrete or 0.3 mm sand 

Roughened concrete 

Smooth concrete 
Oceanside 

Torrey Pines and Pacific 
Beach 

Nags Head 

0 133 
0 172 
0 123 

0 100 

0 100 
0 100 
0 100 

0 109 
0 021 

0.022 

0 28 
0 23 
0 22 
0 14 

0 15 
0 14 
0 16 

0 16 
6 42 

3.58 

144 

36 8 
22 0 

65 

13 9 
21 2 

14.6 

11.8 
11.1 

4.9 

14 

14 

9 
7 

45 
48 
48 

18 
18 
21 

0 121 

0 134 
0 322 

0 087 
0 054 
0 068 
0 .oa5 
0.044 
0.020 
0.064 

0.027 3.75 15.4 4 0.035 

* Data rejected by Galvin [1967]. 

in the laboratory data, as is to be expected, 
especially considering the difficulty in measur- 
ing the angle of incidence 0•. If we omit from 
consideration all observations (marked with an 
asterisk) for which 0• is reckoned to be 2 ø or 
less, the mean value of the. entries in the last 
column is (r) -- 0.054 for the laboratory meas- 
urements and (r) - 0.064 for the field data. 

A summary of such mean values is given in 
Table 5, for all the data compiled by Galvin 
and Nelson [1967] with the exception of the 
field observations of Moore and Scholl [1961], 
which contained a large proportion of zero or 
negative values of v• and were thought to be 
influenced by disturbances other than wave ac- 
tion. In the laboratory measurements of Saville 
[1950] and of Galvin and Eagleson [1965] the 
entries corrdsponding to angles 0• less than 6 ø 
have also been discarded on the grounds of un- 
reliability. 

On quite different grounds Galvin [1967] has 
rejected all the early laboratory measurements 
of Putnam et al. [1949] since they were found 
not to be reproducible under almost the same 
conditions either by Brebner and Kamphuis 
[1963] or by Galvin and Eagleson [1965]. It 
is possible that Putnam et al. employed a dif- 
ferent definition of breaker height. than Brebner 
and Kamphuis or Galvin and Eagleson. Galvin 
also suggests that less weight should be attached 
to the observatiofis of Saville [1950], since he 
did not actually measure H• and 0•; these 
entries in the table are estimated from Ho and 
0o. 

Retaining then only the most reliable meas- 

urements in Table 5 (namely those not rejected 
by Galvin [1967]), we find for the field obser- 
vations (r) - 0.040 and for the laboratory data 
(r) - 0.050. 

According to (65), these values of r corre- 
spond to mean values of the friction coefficient 
C given by 

C = 0.036/S C = 0.045• (66) 

where fi, as we h•ve seen, is between 0.50 and 
0.167, depending on the horizontal mixing. 

Assuming a friction coefficient C of about 
0.010, we see that both field observations and 
laboratory data are consistent with a mean 
value of fi equal to about 0.2. This suggests 
that horizontal mixing played some part, though 
not a do.rninant one, in the distribution of the 
longshore current. 

A more precise estimate of the effects of hori- 
zontal mixing are given in the accompanying 
paper. 

8. CONCLUSIONS 

By the use of the concept of radiation stress 
and the small-amplitude theory of water waves, 
we have shown that the total longshore thrust 
exerted by the waves on the water and sea bed 
inside the surf zone is very simply related to 
the energy density and direction of propagation 
of the waves in deep water (.equation 28). This 
relation is quite different from that. given by 
previous authors, and it would be interesting to 
test it directly by experiment. 

The local wave stress •, is also simply related 
to the local rate of energy dissipation, and, {t 
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would be interesting to test this relation also. 
The comparisons so far made between theory 

and observation suggest that the rational pre- 
diction of longshore currents may be practically 
possible. There is no need, as some authors have 
suggested, to fall back on empirical correlations. 
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