
J .  Fluid Mech. (1969), vol. 37, part 2, p p .  231-250 

Printed in Great Britain 

231 
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The energy of internal waves tends to be propagated along certain characteristic 
paths inclined at  fixed angles to the vertical direction; the angle of inclination 
depending only on the wave frequency and the density stratification (not on the 
wavelength). The reflexion of such waves by smooth plane surfaces has been 
discussed recently by Sandstrom (1966). 

In  the present paper the role of surface roughness is examined. Surprisingly, it  
appears that quite small-scale irregularities can completely alter the reflecting 
properties of a surface; the tangential scale of the roughness elements may be 
much smaller than the wavelength of the incident or reflected waves. All scales 
of roughness are relevant, down to those comparable in magnitude to the 
thickness of the oscillatory boundary layer. For tidal waves in the ocean this 
thickness is of the order of 1 m. 

The behaviour of the coefficient of transmission as a function of the angle of 
incidence appears a t  first sight to be extremely complicated. Some simple 
examples of periodic surface roughnesses are discussed and elucidated: a saw- 
tooth, a square-topped wave and a simple sine-wave. The transmission coeficient 
T for a sine-wave, for example, is shown in figure 9. An approximate expression 
for T is also derived in the case of a slowly modulated sine-wave (figure 10). These 
results are for a non-viscous fluid. The effects of viscosity are also considered 
qualitatively. 

1. Introduction 
The laws of reflexion of acoustical and electromagnetic waves from rough 

surfaces are fairly well understood. In  other kinds of media the propagation and 
reflexion of radiation may be similar to that of light provided the differential 
equation governing the motion is elliptic in the space variables. However, for 
many other types of wave motion, particularly for internal waves in the ocean, 
the governing differential equation is hyperbolic (see, for example, Eckart 1960). 
Consequently, the wave energy in such a fluid tends to be concentrated along 
certain characteristic paths in the fluid, inclined at  fixed angles to the vertical. 

In  internal waves of small amplitude, for example, if the rotation and com- 
pressibility are both neglected, the governing differential equation for the 
vertical displacement 6 can be written 

at2 
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where N is the Brunt-Vaistila frequency, 

(assumed constant) and x, y, z are rectangular co-ordinates, z vertically upwards. 
If the radian frequency B is less than N ,  periodic solutions exist in the form 

x F ( x  cos 0 -+ z sin e), (1.3) 

(1.4) 

g = ,+ut 

where F is an arbitrary twice-differentiable function, provided only that 

COB e = -t. BIN. 

In  other words, the motions tend to be propagated along paths making a fixed 
angle B = cos-1 crjhT with the vertical direction, regardless of wavelength. 

The above conclusions can easily be generalized to a rotating stratified fluid 
(Eckart 1960; Sandstrom 1966). Thus Sandstrom shows that the differential 
equation for small-amplitude wave motion is hyperbolic whenever the frequency 
B satisfies 

where fv and f H  are the vertical and horizontal components of the Coriolis 
parameter. The wave energy is then propagated along straight paths whose 
angle to the vertical depends on the azimuth. Iff& is neglected in comparison 
with N2, then the above condition reduces simply to 

(1.6) f; < g2 < N 2 ,  

as found by Eckart (1960). The inclination of the ray paths is then independent 
of the azimuth. 

The importance of this type of propagation for internal tides in the ocean was 
emphasized by Sandstrom (1966), who carried out some simple and elegant 
experiments demonstrating the validity of the theory for baroclinic waves in a 
laboratory wave tank. Partial barriers placed in the path of a wave were found 
to produce shadow zones bounded by one of the characteristic surfaces,? 
according to expectations. 

Fofonoff (1967) has noted that the slope of the wave characteristics for tidal 
waves is almost equal to that of the continental slope in the north-west Atlantic. 
If internal tides are assumed to be generated mainly on the continental shelf, then 
one may consequently expect to find in the deep ocean certain zones where the 
tidal amplitude is intensified, others where it is weak or zero. Nevertheless, field 
observations designed to detect such effects have not yet positively confirmed 
these expectations. 

Now the purpose of this note is to point out the peculiar effects which quite 
small irregularities in a reflecting surface may have upon the nature of the 
reflected waves. These will affect not only the proportion of energy reflected or 
transmitted, but also the amount dissipated at the surface itself. 

t See also some recent experiments by Mowbray & Rarity (1967) on the generation of 
internal waves by moving bodies. 
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Moreover, in the more familiar type of reflexion the important parameter is 
the ratio of the scale of the surface roughness relative to the wavelength. But in 
the reflexion of internal waves the important ratio is the scale of the roughness 
relative to the thickness of the oscillatory boundary layer-a much smaller 
quantity. Hence, quite small-scale irregularities can have a pronounced effect on 
the coeEcients of reflexion and transmission.t 

For simplicity we consider any medium such that the rays have a constant 
slope a, that is to say they make a constant angle 

e = cot-la (1.7) 

with the vertical. We have seen that this is exactly true of waves in stratified 
fluid when the rotation is ignored, in which case cose = alN. (It is also true in 
a rotating but perfectly homogeneous fluid, in which case the angle 8 between the 
rays and the axis of rotation is given by sin 0 = a / 2 Q  where Q denotes the radian 
frequency of the rotation.) We shall especially have in mind baroclinic tides in 
the ocean, for which (1.7) is approximately valid. The results may easily be 
extended to the general case, when 8 is a function of the azimuth. 

In  $52-7 we shall neglect all viscous effects. The discussion is then purely 
geometrical. The subject may be said to be a peculiar kind of geometrical optics, 
where the reflected and incident rays make equal angles, not with the normal to 
the reflecting surface, but with an axis fixed in space. 

The necessary modifications resulting from viscosity are discussed in fj 8. 
Finally, in $ 9  follows a short discussion of some of the implications for the 
reflexion of internal waves in the ocean. 

2. Reflexion from a plane surface 
Consider first the situation shown in figure 1, where an incident ray OP of 

slope 01 meets a plane surface with slope /3 (Sandstrom 1966). The reflected ray 
must have the opposite slope -a. If < a, as in figures 1 ( a )  and (c), then the 
reflected energy is carried onwards along PQ. If p > a, as in figure 1 (b) ,  then the 
energy is reflected back along PQ’. 

The situations 1 ( a )  and 1 ( c )  we shall describe as ‘onwards reflexion’ or 
‘transmission ’, and 1 (b)  we shall describe as ‘backwards reflexion’ or simply 
‘ reflexion ’. 

We may note that an incident beam continued between two parallel rays will 
be reflected as a narrower beam if /3 > 0 as in figures 1 ( a )  and ( b )  and as a broader 
beam if /3< 0 as in figure 1 (c).  

The direction of the rays is of course the same as the direction of the group- 
velocity. In  an isotropic medium this generally differs from the direction of the 

t This difference in the reflecting properties of a rough surface towards waves governed 
by elliptic and hyperbolic equations respectively may be traced to the fact that, with an 
equation which is elliptic in the space variables, the small-scale irregularities may be 
patched up by solutions that are sinusoidal in the direction tangential to the mean surface 
and are exponentially decreasing along the inwards normal. With a hyperbolic equation, 
on the other hand, such solutions are not available; wave solutions varying harmonically 
in one direction vary harmonically also in the direction at right angles. 
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phase-velocity, which is orthogonal to the wave crests. In  fact, in the baroclinic 
waves considered here, the group velocity and phase-velocity are mutually 
perpendicular; the rays are parallel to the wave crests. Thus a narrower beam 
for the reflected waves implies also a shorter wavelength. 

0 
0 sl 

n-'a 

FIGURE 1. Examples of the reflexion of characteristic rays (with slope a) from a 
plane surface (with slope /3). (a)  a > p ;  ( 6 )  u < p ;  (c )  a > -/3 > 0. 

If we define the transmission coefficient T as the ratio of the total transmitted 
(or onward-reflected) energy to the total incident energy, then clearly we have 

3. Reflexion from a saw-tooth 
Suppose first that the roughness has the form of a symmetrical saw-tooth, with 

slopes fi, as in figure 2. 
If the slope p of the roughnesses is less than a, as in figure 2 (a), then the inci- 

dent rays have unimpeded access to both the forward and rear slopes of the saw 
tooth, and so also have the transmitted rays. Those rays falling on the forward 
slopes are diminished in intensity on reflexion, and those falling on the rear slopes 
are increased in intensity. But all the energy is reflected forward so that on the 
whole T = 1. 

If, however, fi  is greater than a (as in figure 2 ( b ) )  then no rays fall on the 
forwards slope of the saw-tooth, and all those rays falling on the rear slopes are 
reflected backwards a t  the same angle a. The same rays are reflected again 
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forwards but downwards, so that seemingly the energy ends up in the lower 
corners of the saw-tooth, where it is absorbed by viscosity (see $S).t  We have 
then T = 0. 

The graph of T versus the ratio ,8la is then as shown in figure 3. 

FIGURE 2. The reflexion of rays from a simple saw-tooth. 
(a) a > B, (a) a < B. 

0.0 
0 1 2 3 

Pla 
FIGURE 3. The transmission coefficient T for the saw-tooth roughness of 

figure 2, as a function of Pla. 

7 It is assumed that the wave amplitude is small enough that the absorption takes place 
before non-linear effects cause any reflexion. 
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4. Reflexion from a square-topped wave 
Very different is the transmission coefficient from a square-topped wave-form 

such as that shown in figure 4. 
Let a denote the width of the horizontal upper part of the wave-form, b the 

width of the lower part, where a + b = 1. Further, let h denote the height of the 
vertical sides. Clearly, all rays falling on the upper part are transmitted; hence 
we have always T > a. 

Consider now the rays falling in the remaining segments of the surface. If 
h/a < 1,  then most of these rays strike the lower horizontal part of the wave-form 
and are reflected onwards. But a small fraction of the beam, after striking the 
flat lower portion, hits the side wall and is reflected back. This fraction of the 
incident rays is equal to  P D  in figure 4 (a) ,  where PE is the reflected ray through 
the corner E .  An exactly equal proportion of rays hits the side wall first and is 
reflected back off the bottom. Since P D  equals h/a (where a is the slope of the 
incident rays) the proportion of reflected radiation equals 2h/a. Hence the trans- 
mission coefficient is given by 

(4.1) 

T = 1 - 2h/a (0 < h/a 6 @). (4.2) 

The upper bound for h/a in the last equation is determined by the fact that, when 
P D  = i b ,  then P lies at  the mid-point M of CD, and T = 1 - b = a (see figure 
4 ( b ) ) .  At somewhat greater values of h/a a portion of the reflected beam equal to 
2PM is reflected again off the other vertical wall and is transmitted onwards as 
in figure 4(c).  Since PM = (h/a-+b) it follows that T = a+2(h/a-*b),  that is 
to say 

When h / a  = b, as in figure 4 (d) ,  the width of the backwards-reflected beam is 
reduced to zero and so T = 1. When h/a somewhat exceeds b (figure 4(e)), part 
of the beam is reflected again and hence 

T = 1+2(h/a-b)  ( i b  < h/a 6 b). (4.3) 

T = 1 - 2(h/a - b )  (b  < h/a < #b). (4.4) 

At h/a = t b ,  we have T = a again (figure 4 ( f ) ) .  Then part of the beamis reflected 
yet again and T increases linearly towards unity; and so on. 

In  general it  can be seen that, at  the critical slopes a given by 

h/a = (n+i)b (n = 0,1 ,2 ,3  ,... ), (4.5) 

when the incident ray through B (after n reflexions) passes through the mid- 
point of CD, all the rays incident between B and E are reflected backwards; 
hence T = a. On the other hand, when 

h/a = nb  (n  = 0,1 ,2 ,3 ,  ...), (4.6) 

so that the ray through B (after n reflexions) passes through one or the other of 
the end-points of CD, all the rays incident between B and E are eventually 
reflected onwards; hence T = 1. 
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C P D  b 

C P M  D b 

c, p D b 

FIGURE 4. The reflexion of rays from a square-topped roughness of height h and width b for 
increasing ratios hlba. Transmitted rays are denoted by t,, t ,  and reflected rays by r. 
Shadow zones are denoted by 0. Figures 4 (b )  and ( d )  correspond to h/ba = + and 1. 
Figures 4 (f) and (h)  correspond to h/ba = 3 and 2. 
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C P  D b 

C P  D 

c p, D 
FIUURES 4e-h. For legend see previous page. 
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Between the critical slopes 01 given by (4.5) and (4.6), the position of the point 
P on CD depends linearly on h/a (PD being a constant & h/a). Hence, the graph 
of T versus h/a consists of a series of straight-line segments passing between the 
levels T = a and T = 1, as in figure 5 .  

In  the limiting case a = 0, the roughness consists of a sequence of thin vertical 
barriers of height h spaced at  equal intervals b. The transmission coefficient T 
then oscillates linearly between the values 0 and 1. 

I I I I I I 

0 1 2 3 4 5 

h l W )  
FIUURE 5. The transmission coefficient T for the square-topped 

roughness of figure 4. 

5. Reflexion from a blunt saw-tooth 
The apparently quite different behaviour of the transmission coefficient for the 

wave-forms indicated in $5 3 and 4 may be reconciled by considering the wave- 
form shown in figure 6 (a ‘blunt saw-tooth’). This is derived from the ‘saw-tooth’ 
of figure 2 by truncating each angle so as to  leave horizontal reflecting surfaces 
of width t c  a t  both top and bottom of the wave-form. 

This affects the transmission coefficient in two obvious ways. First, the upper 
horizontal surfaces reflect onwards a proportion i c  of the incident rays, so that at 
all events T >, &. Secondly, the lower surfaces prevent energy being lost in the 
lower angles, so long as c is large compared with the thickness 6 of the boundary 
layer. 

A :c B 

2.5 C D  2 E  
FIGURE 6. A blunt saw-tooth: definition diagram. 
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Evidently, as c + 0, the wave form tends to the saw-tooth form of figure 2. As 
c+  1, however, the form reduces almost to the square-topped wave-form of 
figure 4, provided b = ij and the height h of the wave is given by 

The difference between the two wave-forms is that the vertical sides of the square- 
topped wave-form are replaced by sloping sides over a small distance (& - c) .  It is 
clear that so long as P > a this will make little difference to the transmission 
coefficient. 

For any given value of c and a ,  the transmission coefficient may easily be 
determined by graphical construction. When PIa < 1 all rays are obviously 
reflected onwards, and so T = 1. WhenP/a > 1 the behaviour of T is qualitatively 

1.0 

T 
0.5 

C 

0 

0 I 2 3 4 5 

PIa 
( b )  

FIGURE 7 (a), ( b ) .  The transmission coefficient T for the blunt saw-tooth of 
figure 6, as a function of P/a. (a)  c = Q, ( b )  c = &. 
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similar to the behaviour described in 54, that is to say T fluctuates between & 
and 1. The corresponding slope a of the incident rays may be called a critical 
slope. This is one for which the incident ray which passes through the point B 
in figure 6, after an integral number of reflexions, passes through the mid-point 
of the segment CD. However, now the critical slopes no longer occur at  equal 
intervals of a-l, but at  intervals which become uniform as a-tm. 

For speed in calculating the transmission coefficient a computer program was 
written to calculate the ray paths and the corresponding coefficient T. The 
results are shown in figures 7 (a) ,  ( b )  and (c)  for c = 3, & and +. 

It will be seen that, as P/a increases through 1, so T drops suddenly from unity 
to the value c. This is because the forward slopes of the wave-form are suddenly 
shielded from the incident rays, while the rear slopes reflect the rays backwards, 
not onwards. Only the rays falling on the two horizontal parts of the wave-form 

I I I I I 
0 1 2 3 4 5 

Bloc 
( 0 )  

I I I 1 I I I I I I I I I 

0 2 4 6 8 10 12 

Bloc 
(4 

FIGURE 7 (c) ,  (d). The transmission coefficient T for a blunt saw-tooth. (c) c = 6, (d) G = $. 
For comparison, figure 7 ( d )  shows also the transmission coefficient for a low, square- 
topped wave-form with hlb = &a, b = & (thin curve). 

16 Fluid Mech. 37 
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are transmitted. As PIa increases further, T falls linearly from c to Bc, after which 
it oscillates between &c and 1, though not linearly in general. 

As c -+ 0 it is easy to see that for any given ray such that PIa > 1 the number n 
of reflexions must increase without limit. In  fact, if (xi,zi) are the Cartesian 
co-ordinates of the ith reflexion point, relative to  axes with origin at  the bottom 
of the 'unblunted' wave-form, we have: 

zi = PIXil, (Z(-zi+i) = a ( l4  + lX1+11)* (5.2) 

s o  (5.3) 

or 

Hence 

Since lzol + 4- tc  and IznI 

so 

+ $c we have, 

(2 - c)/c + eznalp, 

n + (,8/2a) log (2/c- 1). 

Hence n is nearly proportional to log ( l /c) .  As c+O, n increases without limit, 
but relatively slowly.? 

Thus, if viscosity is ignored, then as c-f 0 the zig-zag curve in figure 7 becomes 
compressed towards the left like a concertina (figure 7a) .  Hence when P/a > 1 
the transmission coefficient T is indeterminate. We shall see in $8 how this 
indeterminacy is removed when viscosity is taken into account. 

6. Reflexion from a sine-wave 
We are now ready to understand the reflexion of rays from a simple sine-wave 

(figure 8). 
Let /3 denote the maximum slope of the sine-wave. When P/a < 1 all rays are 

reflected onwards: T = 1. When P/a > 1, a typical wavelength ABCDE may 
be divided into four parts: a part AB near the crest, where the absolute slope is 
less than a ;  a similar part CD near the trough; and two parts BC and DE near the 
sides, where the absolute slope is greater than a. A typical ray striking AB will be 
reflected upwards and onwards. A ray striking DE will be reflected downwards, 
possibly more than once, until it reaches CD, when it will be reflected back 
upwards and either onwards or backwards according as the number of reflexions 
which it has undergone is even or odd. 

There are two kinds of critical slopes a. When a is such that the ray through B 
(which is tangent to the wave-form) passes through the mid-point of CD after 
n reflexions, then all the rays incident between B and E are reflected backwards 

t Carl Wunsch has pointed out to me a paper by Balazs (1961) from which it can be 
shown that the field of motion is periodic in logz. See also Wunsch (1968). 
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FIGURES 8(a)-(4. For legend see p. 244. 

(as in figures 8 (c) and (9)) .  Thus the only transmitted rays are those falling on AB. 
Hence T = #In where psin # = a, that is to say 

T = (l/n) sin-1 (alp). (6.1) 

Examples of this are illustrated in figures 8 ( c )  and (9). On the other hand, when 
the ray through B, after n reflexions, passes through one of the end-points of CD, 
then all the rays incident between B and E are ultimately reflected onwards. 

Hence T = 1. (6.2) 

(Examples of this are illustrated in figures 8(a )  and ( e ) . )  
18-2 
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FIGURE 8 ( e ) - ( g ) .  The reflexion of rays from a sine-wave. 

In  the intervals between these critical values the function T is piecewise 
monotonic, as can easily be seen from figure 8. Thus the transmission coefficient 
oscillates between the two bounding curves (6.1) and (6.2). 

The calculated curve of T as a function of /3la is shown in figure 9. As might be 
expected, there is a close resemblance between this curve and figure 7 (b).  

The two bounding functions (6.1) and (6.2) are indicated in figure 9 by broken 
lines. We note that for large values of /3la (6.1) becomes 
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which tends to zero as p/a -+ 00; this is in contrast to the lower bounding curves of 
figure 7 ,  which correspond to T = +c. Evidently the difference is due to  the fact 
that for a sine-wave the length of that part of the curve for which the slope is less 
than a diminishes to zero as a -+ 0; but for the flat-topped curve there is always 
such a segment of length &. 

1.0 4 

0.5 - 

--- - - __  - I 

I I I I I 

PI. 
FIGURE 9. The transmission coefficient T of a simple sine-wave as a. function of the ratio 

of the maximum slope /3 to the slope a of the incident rays. 

7. A modulated sine-wave 
A moment’s consideration will show that the reflecting properties of an 

irregular wave pattern such as in figure lO(a) will be highly complicated; the 
chief complexity arising from the possibility that rays reflected from the trough 
of one wave may meet the sides of an adjacent trough. 

If, however, we consider a wave train of slowly varying amplitude and phase 
such as in figure lo@), we may assume that the reflexion of a given ray from the 
sides of more than one trough is negligible provided that the slope of the wave 
envelope (shown by a broken line) is smaller than the slope of the incident rays. 
Let us suppose this to be so, and let us consider for the sake of illustration the case 
when the wave-form has a narrow spectrum,with a Rayleigh distribution of wave 
amplitude. Such a wave-form is characteristic of many physical phenomena, 
including surface waves on the ocean (see Longuet-Higgins 1952; Cartwright & 
Longuet-Higgins 1956). Then, the wavelength being almost constant, the steepest 
slope p of each individual wave trough is proportional to the amplitude of the 
individual trough, and so has a Rayleigh distribution also. The probability 
density of p is therefore given by 

where 

and p denotes the r.m.s. value of p. 
P(P) = - exp ( -D2/P2)  
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Let us find the mean value T of the transmission coefficient T when P is distri- 
buted according to the law (7.1). This is given simply by 

( b )  

FIGURE 10. (a )  An irregular wave surface; ( b )  a gradually modulated sine-wave. 

where T(P) denotes the function of figure 9, and P is given by (7.1). Now T(P) is 
somewhat complicated, but as we have seen it oscillates between two fairly 
simple limiting curves. We shall approximate T(P) by the mean value of these 
two curves; that is to say we take 

Substituting (7.3) into ( 7 . 2 )  we obtain 

On integrating the second term by parts we have 

T = [P(a) -P(O)] - BP(a) -- p ( p )  d(a/P) .  
in Iam J( 1 - cc2/p2) 

Writing UlP = 1/<, alp = p, 

and substituting for P(P) from (7. l), we find 

(7.4) 

(7 .7)  
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On writing E2 = 1 + 6 the integral is transformed as follows: 

247 

where erfc (5) = - e-ta dt = 1 - erf (x) XW (7.9) 

{see Erdblyi et al. 1954, p. 136). Thus altogether we find 
- 
T = (1 -$e+) - $(I -erf (p)) ,  

T = $[3 - exp ( - a2/P2) + erf (alp)]. 
(7.10) 

(7.11) 
- 

that is 

I I I I I 
0 1 2 3 4 5 

PI. 
FIGURE 11. The mean transmission coefficient 5! for a rough surface having the form of 
a gradually modulated sine-wave with a Gaussian distribution of surface slope. denotes 
the r.m.8. value of p, the steepest slope of an individual wave. 

The function (7.11) is shown in figure 11. It will be seen that p is practically 
equal to unity whenP/a < 0.5, that is to say when the r.m.8. ‘slope amplitude’ is 
less than half the slope of the incident rays, but that for larger values ofP/a  the 
transmission coefficient falls off rather rapidly. 

One must bear in mind that the r.m.s. value of the local slope s is not equal t o p  
but to p / J 2 .  It is possible that (7.11) may be valid for non-Gaussian reflecting 
surfaces, provided that p is replaced by J2 I. For some kinds of surface, however, 
I may not even exist. A more plausible generalization of (7.11) is to express p in 
terms of the median value s1 of 181. For the Gaussian surface just described, this 

(7.12) 
is given by erf (s,/p) = 0.5, 

and hence s , /p  = 0.4769 . . . . (7.13) 

This gives T = 4(3 - eqCa/@ + erf (Ca/sl)l, (7.14) 

where s1 denotes the median of the distribution of absolute slope and C 9 0.477. 
It would be most interesting to compare (7.14) with experimental determinations 
of the transmission coefficient for various kinds of irregular reflecting surfaces. 
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8. Viscous effects 
Let us consider how the situation shown in figure 1 will be influenced by 

viscous forces. 
In the absence of viscosity the particle motion close to the boundary is not 

zero, but has an oscillating component parallel to the boundary. However, the 
viscous boundary condition implies that both normal and tangential components 
of velocity vanish. For sufficiently small viscosity (i.e. high Reynolds number) 
the boundary conditions can be satisfied by adding to the non-viscous solution 
a thin boundary layer, whose thickness is of order 

S = ( v /a )& ,  (8.1) 

where Y denotes the kinematic viscosity and (r denotes the radian frequency. 
However, because the velocity just outside the boundary layer is a harmonic 

function of distance parallel to the boundary, there is a non-uniform flux within 
the layer. Hence, by continuity there is a small component of velocity normal to 
the boundary just outside the layer. This component of velocity is of order S/h 
times the tangential component, where h denotes the tangential wavelength. 
The normal velocity in turn induces a small change in the amplitude of the 
reflected wave and also a small phase shift, both of order S/h. 

The order of magnitude ofthe energy loss is easily found from the consideration 
that virtually all the energy dissipation takes place within the boundary layer. 
One may assume that in a single wave cycle a fraction of order unity of the energy 
in this layer is destroyed. But in one wave cycle a fraction of order unity of the 
energy in a typical wavelength of the incident or reflected wave is also trans 
mitted, since the group velocity is of the same order as the phase velocity. There- 
fore, the proportion of energy lost is of order &/A, where h denotes the smaller of 
the wavelengths of the incident and reflected waves. 

When either the incident or the reflected ray is nearly parallel to the boundary, 
it can be seen that the corresponding wavelength h of that ray is necessarily much 
reduced; hence the energy loss is high. 

In  addition, when S/h is O( 1) in either the incident or reflected rays, the shearing 
velocities in the region beyond the boundary layers will become so large as to 
produce considerable energy losses there also; in fact, the boundary-layer 
approximation will no longer apply. 

Generally, we see that the energy loss will be slight provided that &/A is small 
and the difference between the slope of the boundary and the slope of the incident 
or reflected rays is not of order &/A or less. Nevertheless, any ray that has been 
reflected a number of times of order h/6 will lose a substantial amount of energy. 
Such a ray reflected an infinite number of times will be eventually extinguished. 

Hence in 9 5 the correct limiting form of T as c + 0 is indeed the form shown in 
figure 3, rather than the indeterminate form of figure 7 as c-+ 0. Further, we can 
approximate the value of 6 at which the non-viscous ray theory of figure 6 
becomes inapplicable. This will be after a number of reflexions n such that 

nS/Ph = O( 1). 
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Because of viscous losses, the values of T calculated in $9 2-7 on the non-viscous 
theory must be considered as upper bounds. The greater the number n of 
reflexions, the more the viscous transmission coefficient will diverge from the 
non-viscous coefficient. 

9. Discussion 
From the previous section it can be seen that viscosity limits the accuracy of 

the ray theory at  least to those situations where the relevant length scales are all 
large compared to 6. However, the scale of the surface roughness may be quite 
small compared to the wavelength h of the incident or reflected waves, and the 
complicated patterns of reflexion described in $02-7 will still be found, provided 
only that roughness scale is large compared to 6. 

FIGURE 12. The effect of a projection on the reflexion of waves from a 
sloping bottom inclined at  nearly the critical angle. 

In  other words, complicated reflexions may be expected from all roughness 
scales which are large compared to 6, no matter how great the wavelength of the 
incident radiation. Only those roughness scales that are small compared to 6, 
being ‘blanketed’ by the boundary layer, will be too small to affect the reflexion 
from the surface. 

We may remark that, for waves of period 12 h in water of kinematic viscosity 
v = 0-013 cm2/sec, we have CT = 1.3 x 10-4rad/sec, and so 

6 = (v/a)& = 10cm. 

Thus even for waves of tidal period the reflexion may be complicated by irregu- 
larities on the ocean floor of the order of 1 m or more. 

This conclusion must be subject to the consideration that the probable increase 
in wave amplitude near the bottom, accompanied by strong shear, may cause the 
motion to become locally unstable and hence produce turbulent mixing. In  this 
way the basic stratification of the lower layer could be destroyed, leading to the 
onwards reflexion of the incident rays before they had reached the bottom. 

However, this effect would not be felt by a wave motion that depended solely 
on the rotation, such as inertial wave motion in a homogeneous fluid. 
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It is not difficult in principle to extend the results of the present paper to rough 
surfaces whose mean inclination to the horizon is different from zero, or to 
systems in which the incident and reflected rays make different angles with the 
vertical direction, or to situations which are three-dimensional. These will be 
left as recreations for the reader. 

Sandstrom (1966) has shown experimentally that, when an incoming wave 
impinges on a smooth inclined surface that has almost the same inclination as one 
of the ray paths, then an intense beam is transmitted (as would indeed be 
expected from figure 1 ( b ) ) .  He suggested that near the edge of the continental 
shelf, for example, barotropic tidal motions might be efficiently converted into 
baroclinic tides. However, a simple extension of the present analysis to a rough 
but inclined surface shows that, when the meaninclination of the surface is nearly 
that of a characteristic ray, only a slight roughness will result in the absorption 
or scattering of a large part of the transmitted beam (see figure 12). In  practice, 
therefore, Sandstrom’s conclusions may require substantial modification. 

This work was carried out under NSF Grant GA-1452. I am indebted to Mr 
C. N. K. Mooers and Dr S. A. Thorpe for comments on a f i s t  draft of the manu- 
script. Carl Wunsch kindly supplied references to related work. 
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