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The generation of capillary waves by steep 
gravity waves 

By M. S. LONGUET-HIGGINS 
National Institute of Oceanography, Wormley 

(Received 17 November 1962) 

A theory is given for the non-linear transfer of energy from gravity waves on 
water to capillary waves. When a progressive gravity wave approaches its 
maximum steepness it develops a sharp crest, at  which the surface tension must 
be locally important. This gives rise to a travelling disturbance which produces 
a train of capillary waves ahead of the crest, i.e. on the forward face of the gravity 
wave. The capillary waves, once formed, then take further energy from the 
gravity wave through the radiation stresses, at the same time losing energy by 
viscosity. 

The steepness of the capillary waves is calculated and found to be in sub- 
stantial agreement with some observations by C. s. Cox. An approximate 
expression for the ripple steepness nea,r the crest of the gravity wave is 

(3m/3)  e-~7/6T''k'~, 

where T' is the surface tension constant and K is the curvature at the wave 
crest. The ripple steepness also varies with distance from the wave crest. 

Under favourable circumstances the dissipation of energy by the capillary 
waves can be many times the dissipation in the gravity waves. The capillary 
waves may therefore play a significant role in the generation of waves by wind, 
in that they tend to delay the onset of breaking. 

1. Introduction 
On the forward face of gravity waves in water there is sometimes observed 

a train of short capillary waves, carried forward more or less steadily with the 
gravity waves. The capillaries are especially noticeable when the gravity waves 
have wavelengths of 5-50 em and are near to their maximum steepness. 

Attention was drawn to these capillaries many years ago by Scott Russell 
(1844). More recently Munk (1955) suggested that they might be due to some 
kind of disturbance (of unknown origin) located near the crest of the gravity 
waves. On one form of Munk's hypothesis the wavelength of the capillaries is 
such that their phase velocity is equal to the combined phase velocity and 
orbital velocity of the gravity waves. The reason for their occurrence on the 
forward face is that capillary waves generated by a travelling source tend to 
occur forward of the source (Lamb, 1933, 3 370). 

The nature of the disturbance a t  the crest has however remained an unsolved 
problem. In some interesting experiments in a model wave tank, Cox (1958) 
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has found that in free gravity waves, generated by a plunger in the absence of 
wind, the capillary waves were still present. A wind blowing in the same direction 
did indeed augment the ripples, but the ripples were still present even when the 
mean wind-speed was zero (see figure l a ) .  

~ 1 1 1 1 1 1 1 1 1 ~  I 
FIGURE 1. (After Cox 1958, figure 9.) Slopes of plunger-generated waves: (a)  without 
wind; ( b )  with 2.8 m/sec wind; ( c )  with 9.0 mjsec wind; ( d )  with 11.6 mjsec wind. Hori- 
zontal scale : time between vertical lines is 0.1 sec or 1 SIX. Vertical scale : difference in 
slope between horizontal lines is 0.5. 

The purpose of the present paper is to suggest a, mechanism for the generation 
of these capillaries. The idea is as follows. 

It is observed that when gravity waves in deep water are on the point of 
breaking they develop sharp crests. I n  a classical paper (1847) Stokes showed 
that if indeed a sharp crest is formed and if the motion is progressive and irrota- 
tional then the angle a t  the crest is 120". It seems probable that just short of the 
formation of the highest wave the curvature of the surface becomes quite large, 
being infinite a t  a sharp crest, if gravity alone is taken into account. But where 
the curvature is great, the surface tension becomes locally quite important. Its 
effect is to produce an increase in normal stress near the crest. The suggestion 
is that it is this travelling stress which is responsible for generating the capillary 
waves. The present paper contains essentially a calculation of the amplitude 
and wavelength of the capillaries on this hypothesis. 

The present treatment of the effect of capillarity differs somewhat from the 
conventional one. Usually (e.g. Lamb 1933, 5 366) surface-tension terms are 
treated on a similar footing to the gravitational terms; expansion is made in 
powers of a small parameter corresponding roughly to the maximum steepness 
of the wave. I n  the first approximation the effect of capillarity is to modify the 
wavelength of the waves. Higher approximations in powers of the steepness 
have been investigated, for example by Wilton (1915) and Sekerz-Zenkovitch 
(1956).t Each step in the approximation introduces, in general, one extra 
harmonic in a Fourier series. However, with steep waves the method fails for 

t For related work see also Pierson & Fife (1961). 
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two related reasons. First, the small parameter used in the expansion becomes 
unsuitably large (of the order of 0-5). Secondly, the curvature of the surface, 
and hence the surface tension, becomes very unequally distributed over the 
surface. Thus, instead of affecting the wave uniformly, the surface tension 
produces simply a local disturbance near the crests. Such a local effect is not 
well represented by a Fourier expansion in harmonics of the fundamental 
wavelength. This limitation is typical of many non-linear problems when the 
amplitude of the perturbation parameter becomes unsuitably large. 

Moreover, viscosity acts to damp the short waves produced by the local dis- 
turbance; since they are effectively destroyed within one wavelength of the 
gra.vity waves their wavelength is not necessarily a harmonic of the length of 
the gravity waves. 

The present analysis, therefore, introduces surface tension terms in an alto- 
gether different way. In  the first approximation the waves are treated as pure 
gravity waves, of nearly the maximum steepness, and then surface tension is 
introduced as a perturbation on this basic flow. The perturbation is still treated 
as small, and this limits the validity of the analysis to a certain range of wave- 
lengths and steepnesses-roughly those over which the phenomenon is observed. 

The amplitude of the capillary waves calculated in this way is compared with 
Cox’s observations and is found to be substantially in agreement. 

The effective transfer of energy from the gravity waves to the capillaries 
results in an appreciable da,mping of the gravity waves, which may exceed 
considerably the direct damping of the waves by viscosity. This fact has im- 
plications for theories of wave generation by wind. 

2. Formulation of the problem 
Suppose that two-dimensional, irrotational waves in a perfect fluid are travel- 

ling horizontally with velocity -c, in the direction of x increasing negatively. 
Let the motion be reduced to a steady state by superposing on it a uniform posi- 
tive velocity G. Define a velocity potential q5 and a stream fuiiction @ by the 
relations 

(2.1) 

where u and 2, are the components of velocity; the y-axis is taken to be vertically 
upwards. Writing 

x + i y  = z ,  f$+i$h = x, 
we have 

Let q and 0 denote the magnitude and direction of the velocity, i.e. 

(u,~) = (qcos0, qsin0); 

q = ce7, then if r is defined by 

we have also u - = q e-io = c eT--ie = c e5 

so that < = T - i O  

is a regular function of (u - iv) and hence of x. 

( 2 . 2 )  
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We take # and $ as co-ordinates, and attempt to find z and <in terms of them. 
It will be noticed that the curvature K along any streamline @ = const. is 

given by 

where s denotes arc length. And since aO/aQ = &/a@ we have 

(3.3) 

Boundary conditions 

It is assumed that the depth of water is effectively infinite, so that as y 2 - a, 
so (u - i v )  --f c and 5 + 0; i.e. 

The free surface, being a streamline, may be chosen as f? = 0, and we also take 
q5 = 0 a t  the crest of the wave. From Bernoulli's equation we have then 

< + o  when y+-co. (2.4) 

E+$q2+gy = const. when p = 0. (3.5) 
P 

At the free surface the pressure p is given by 

p = const. - TK,  

where T is the surface tension. Thus writing T l p  = T' and substituting in (3.5) 
we have 

24 (2.6) Qq2 + gy - T' - = const. when $ = 0, 
a f? 

(3.7) 
a 

a f? 
1 ~ ~ e ~ ~ + g y - - c T ' -  (e7) = const. that is to say 2 

g T ' a  
or Qe27 +cz y - -. - ,,,(eT) = const. (2.8) 

The left-hand side may be differentiated with respect to 4. Since 

we have then 

(2.9) 

(3.10) 

3. Method of approximation 
In  the zero-order approximation we neglect the surface tension entirely and 

assume tha t  the flow corresponds to a pure gravity wave of finite amplitude. 
Let all quantities referring to this basic flow be denoted by a suffix 0. Thus 
from (3.6) 

(3.1) 34; + gy, = const. (y? = 0)) 
a - (&2ro)  +& e--(To-%) = 0 a+ - ic3 

and from (2.10) (@ = 0). 
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Dividing by e270 we have then 

(3 .3)  a7.0 9 - 

a$ c3 
- +- e 37~sinB, = 0 ($ = O), 

the surface condition obtained by Levi-Civita (1935) for pure gravity waves. Also 

~ , - i 0 , + 0  as $+-a. 

Now let us write 5 = c o +  Cl, 4 = qo+411 etc., 
(3.3) 

in the equations of 9 3, where C,, q,, etc., represent the basic gravity wave and 
6, q,, etc., represent the perturbation due to surface tension. Squares and higher 
powers of the perturbation terms will be neglected. 

The boundary condition (3.6) becomes 

(~p~+q,p,)+g(y,+y,)-T’  - +--l = const,., 

and subtracting from this the boundary condition (3.1) for the basic flow we have 

(2 $) 
a41 a40 
a$ a$ 

qoql + gy, - T’ - = T’ - + const. 

It will be noticed that the term T‘aq,/a$, which was neglected in the zero-order 
approximation, becomes a forcing function for the perturbation. Similarly, 
from the differentiated form of the boundary condition, equation (2.10) we have 

Also rl-iO1-zO as $4  -a. (3.6) 

If the perturbations are to be sniall relative to the basic flow it is necessary 
that the surface tension term T’ aqo/a$ be small compared to other terms in the 
boundary conditions (3.1). So in particular we must have 

T I  aqoia+ Q Bq;, 

ii 
T‘ - (c  e70) Q +c2 ez70, 

a$ that is 

or (3.7) 

4. The zero-order approximation 
The expansion adopted by Levi-Civita (1935) for solving equation (3.3) is 

suitable only for waves of small steepness, when 7, and 8, < 1. For waves of 
finite steepness the approach suggested by Davies (1951) appears more suitable. 
Davies noted that if in the second term sin0, is replaced by +lsin30, where 
1 is a constant one has 

i.e. 



Generation of capillary waves by gravity waves 143 

of which an exact solution symmetrical about $ = 0 is 

e3So = 1 - A  e- imx,  

where A is a real const,ant lying between 0 and 1 and 

Thus 

(4.2) 

This approximate expression is also the first term in a series found by Havelock 

The highest wave 

(1918). 

I n  the limiting case when A = 1 equation (4.4) becomes 

u0 - iv, = c(1- e-i7+. (4.5) 

I n  the neighbourhood of the wave crest, when mx is small, the right-hand side 
reduces to c(imx)*. Thus we have 

= ~ , - i v ,  = c( imX)f ,  & 
dz 

whence 

and x = (im)g (+cz)Q. (4.6) 

This is equivalent to Stokes’s 120” angle solution, satisfying the exact boundary 
condition 

Li”x:’+gy = 0 (argz = - i n k i n ) ,  
2 dz  

provided that we take 
3 9  
3 c3’ 

m = -- (4.7) 

i.e. 1 = + in equation (4.3). So the approximation is exact in this limiting case. 

The almost-highest wave 

Since 8, generally lies between k i n  one would expect that the appropriate 
value of 1 should lie somewhere between 1 and p. Certainly the value 1 is appro- 
priate for very low waves, when O0 is uniformly small. On the other hand since 
we are dealing with steep waves where Oo = f i n  at the two extremes of the flow 
it seems preferable to take 1 = +. The relative error introduced by this assumption 
may be expected to be of order 

($- l ) / (4+ 1) = 20 %. 
Both Havelock (1915) and Davies (1951) obtained solutions in the form of 

infinite series which satisfy the exact boundary condition (3.3). Thus Davies 
shows that 

1 
- A5(&e-3imx - L e - 5 i r n x  6 8 8  ) +  ..., 

e31;O = 1 - A e-imx + LA3 e-3irn~ - A4(Le--2imX -1e-4irnx 
5 4  2 7  8 1  

where 
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and A is a real parameter lying between 0 and about 0.992. However, though 
the coefficients in this series do appear to be diminishing fairly rapidly it is 
evident that no finite number of terms can give a.n adequate representation of 
the flow in the neighbourhood of the crest of a steep wave (except possibly in the 
limiting case), since 8, is a rapidly varying function there, which cannot be well 
described by a finite number of harmonics. Indeed, one may expect a ‘Gibbs’ 
phenomenon ’ of the slope 8, which would render the partial sum of such a series 
misleading in that neighbourhood. This is not to say that the series does not give 
a fair representation of the wave surface over the remaining part of the wave. 

Similar comments apply to Havelock’s (1918) expansion which, though dif- 
ferent from Davies’s, still has the form of a Fourier series. 

Accordingly, in approximating c0 we shall adopt equation (4.4) with 
m = 3g/2c3, recognizing that there may be errors of order 20 yo in the final solu- 
tion. Let us write 

A = 1-8, (4.8) 

where S is a small quantity. From (4.4) we have 

eTo--iOo + [I- (1 - 6 )  e - - i ~ ~ ] + .  (4.9) 

In  the neighbourhood of the crest, where m X  is comparable to 6, we have 

At the free surface I$ = 0 we have 

Also 

At the crest of the wave, where Q = 0, we have 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

since m = 3g/2c3. Hence the vertical acceleration of the fluid at the crest is 
given by 

(4.14) 

which is the limiting value for the Stokes 120” angle (see Appendix). 

K o q i  = - 1 29’ 
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When mX is no longer small, that is to say at distances from the crest which 
are comparable to a wavelength, we find from (4.4) when @ = 0 

a70 1 mA(cosm$-A) 

a@ 3 ( 1 - 3 h o s m $ + d 2 ) '  

Putting A = 1 - 6 we find in particular 

eTo = [S2  + -I( 1 - 6) sin2 +m$l*. 

(4.15) 

(4.16) 

5. The perturbation solution 
We now seek a solution to the perturbation equations (3.4) to (3.6). (In equa- 

tions (3.4) and (3.5) it is assumed that qo, yo and ro represent the exact gravity 
wave solution; only after r1 and el have been found do we make use of the approxi- 
mate expressions found in 3 4.) 

Since we expect a solution in the form of a capillary wave, we shall in the first 
place neglect the gravitational terms in (3.4) and (3.5) in comparison to the 
surface tension term. The effect of this assumption will be discussed later. 
Equation (3.4) then becomes simply 

(a constant term on the right-hand side is omitted as having no effect on the 
motion). Since q,, = c eTo and q1 = c e7o r1 this equation becomes 

or 

It is convenient to write this as 

where 

(5.3) 

(5.3) 

(5.5) 

The function r1 has also to satisfy Laplace's equation and the condition 

rl+O as @+-a. (5.6) 

Now let us make the conformal transformation 

Fluid Mech. 16 10 
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where P(x )  is a function of the complex variable x = $ + i@ which is equal to 
P(#) on the real axis @ = 0. Then on @ = 0 we have @ = 0 for all q5 and so also 
a/3ja$ = 0. Hence a?, ar1aa ar,ap 

ag - aaa@ apag +--, ---- 

- arlap ar,aa 
aa a $ + a p q J  - --- 

when @ = 0. The condition (5.4) thus reduces to 

C 27, 
- 71 - - = R(a) 
T' ap (p = O ) ,  that is 

where m a )  = Q($)/P(Ys). 
Also 7, is to satisfy Laplace's equation in the co-ordinates a, @ and 

rl+O as @+-a, 

provided that p + - 00 as @ + - GO. 

Now R(a) is an even function of $ and so of a. Let us define 

r ( t )  = R(a)eiaida; rm 
then r(t)  is a real, even function o f t  and 

On substituting this expression in (5.13) we see that 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.11) 

(5.15) 

is a solution of the equations. So, since 7, -if?, is a regular function of a! + $3 
we have 

(5.16) 

where r(t)  is given by (5.13). Since R(a) is a real, even function of a! we have also 

r(t) = 2 [  R(a)  cos atda. (5.17) 

In  (5.16) the contour of integration is to be taken to pass above the singularity 
at t = c/T'. 
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We are interested especially in the behaviour of this solution for large values 
of 161 and so of la/ .  If the function r ( t )  is suitably bounded at  infinity, the chief' 
contribution to the integrand will arise from the residue at t = c/T' ,  and will 

In  particular when a < 0 we have 

where 

(5.18) 

(5.19) 

Since aa/a$ = P($)  when p = 0, and Q($)  = &-,/a@ this last expression becomes 

where 

(5.20) 

(5.21) 

We note that in the expression for P($)  in (5.5) the ratio of the second term to 
the first is small, by (3.7); so that to this approximation we have 

and hence 

P($)  + e70, (5.22) 

(5.23) 

6. Discussion 
The solution (5.19) represents a wave upstream of the crest, i.e. on the forward 

face of the gravity wave. It is stationary with respect to the moving co-ordinate 
system; hence the phase velocity with respect to the surrounding medium is 
equal to -qo.  

Now from (5.19) the wave-number k, is given by 

a 
a+ 

ac/T') + qo- (ac/T'). 

But aaia$ = ~ ( $ 1  + e7o 

as we have just seen. Hence 

k, = q,(c/T') e70 = qi/T' 

01' qo = (T'kc)$. (6.2) 

But f (T'k,)* is the classical expression for the velocity of free capillary waves, 
of small amplitude (Lamb 1932). So it aJppears that to this approximation the 
waves at  some distance from the crest are free capillary waves. 

10-2 
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Capillary waves in deep water have a group velocity equal to  $ times their 
phase velocity. The fact that the group velocity exceeds the phase velocity, while 
the phase velocity is minus the velocity of the opposing stream, explains why 
the waves are found up-stream of the source of energy. (See, for example, 
Lnmb 1933, $269.) 

The variation of the wave amplitude may be derived by considering its rela- 
tion to the local energy density E. If a, denotes the amplitude and k, the wave- 
number of a capillary wave on a locally uniform stream, the amplitude of the 
surface slope 0' is 

and the potential energy per unit distance, which equals the work done in 
stretching the surface against surface tension is $T /@'I2. The total energy 
density is twice this, or 

To interpret the variation of E ,  and hence 18' 1 ,  with distance s along the surface, 
consider the balance of capillary wave energy. By analogy with known results 
for gravity waves on slightly non-uniform currents (Longuet-Higgins & Stewart 
1961), and other types of wave motion, one expects that the capillary wave 
energy density will satisfy an equation of the form 

(6.3) 10'1 = 

(6.4) E = $T 10'12. 

a 24 - [E(c, + qO)]  + h'x -O = 0, 
as 2s 

where ty denotes the group-velocity of the capillary waves and 8, is an inter- 
action coefficient between the waves and current, called the radiation stress. 
Essentially 8, represents a mean transfer of inomeiitum across a fixed plane 
normal to  the undisturbed surface. I n  the case of capillary waves it is found? 
that 

Substituting cg = - ;q,, and X, = ZE in equation (6.5) we have 

S, = {T = +E. 

Hence - 

and so 

Therefore E cc &, 
and since E cc ] O r ] 2  it follows that 

lar/ cc 40. 

(6.6) 

I n  other words there is a gradual variation of the steepness of free capillary 
waves along the surface; the wave steepness is proportional to the magnitude 
of the underlying current. 

I n  equation (5.19), on the other hand, the steepness of the capillary waves is 
equal to b,  a constant. It will now be shown that this discrepancy is due to our 
previous neglect of the gravitational terms in the free surface condition (3.4). 

t R. W. Stewart, private communication. 
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I n  order to eliminate y1 from the free surface condition we must use the differ- 
entiated form, equation (3.5). It will suffice to consider only free waves in 
which the right-hand side of (3.5) is replaced by zero. Thus, let us take 

By the same transformation of co-ordinates as in (5.7) this becomes 

Now let us write 1 1 -  , (6.12) - i d  - Aye-i(c/""a+ifll  

where S is, by hypothesis, a complex amplitude which varies slowly compared to 
the phase in the exponent. Then we have when ~ = /3 = 0 

T 'W . - - 2 - __ e--i(c/2"ja. 

i c  a4 
Substituting in (6.11) gives 

Since the exponent varies rapidly compared to S we may carry out the differ- 
entiation with respect to q5 in the exponent only, giving 

To the same approximation, the factor multiplying the exponential must vanish. 
Hence 

1 Xi' . ige-2To - 
Sag5 c3 P($) 

Taking the real part of each side and replacing P(4)  by eTo we have 

the last step following from equation (3.8). Integration now gives 

Hence 

(6.13) 

(6.14) 

From (5.12) we have now, when /3 = 0, 

1011 K eTo K qo, (6.15) 

so tha,t in this, higher, a,pproxirnation the wave steepness is indeed proportional 
to the stream velocity. 
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Consider now the effect of neglecting the gravitational term in the non- 
homogeneous perturbation, equation (3.4) or (3.5). In  equation (3.4)) for ex- 
ample, the forcing term is the surface tension pressure - T ’ K ~ .  We saw in § 4 
that near to the crest of the gravity wave this term varies as (a2 + W A ~ # ~ ) - ~ .  On 
the other hand, the velocity qo of the underlying stream varies as (a2 + m2#2)% or 

Po Gc (T’KO)-B.  (6.16) 

Thus over the important range of variation of the perturbing pressure the velo- 
city qo varies comparatively little. Since the capillary wave amplitude is, for 
free waves, proportional to qo, we expect that the effect on the wave amplitude 
at the edge of the forcing zone is affected comparatively little by the neglect of 
the gravitational terms. Thus the capillary wave amplitude near the crest is 
still given approximately by (5.19) and (5.30). Only a t  some distance from the 
crest does the variation in current qo become important. 

This reasoning suggests that under the condition stated, and in the absence 
of viscosity, the steepness of the capillary waves is given approximately by 

(6.17) 

where b is given by (5.20) and (qo)crest denotes the velocity at the crest of the 
wave. 

7. The effect of viscosity 
So far the viscosity of the fluid has been neglected. One may expect that its 

direct effect is mainly on the short capillary waves, where the velocity gradient 
and hence the loss of energy, is comparatively great. 

The rate of energy dissipation by viscosity in a capillary wave in deep water 
(see, for example, Lamb 1932, 3 347) is given by 

aElat = 4ukz E = 4 ~ ( q ; / T ’ ) ~  E. (7.1) 

Including this term in the energy equation (6.5) we have 

Substituting for cg and S, the same values as before we obtain 

and so (7.3) 

(7 .3)  

On the forward face of the wave aqo/a$ is negative and hence for small values of 
qo, E will tend to increase with distance away from the crest. But as qo increases 
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E may tend ultimately to decrease away from the crest. There will be a maximum 
wave steepness where 

= _ _  4v 3 
~~ - a$ ~ ' 2 4 0 .  

Equation (7.3) may be integrated to give 

and so 

Hence 

log E = 2 log qo + Io' q; + const., 
T'2 

(7.4) 

(7.5) 

Adjusting the constant of proportionality so that lBll = b a t  the crest we have 
finally 

(7.7) Pll = b q ~  exp [$ Io' 4: a$] . 
0 crest 

8. Explicit formulae for lBll 
Up to this point the explicit expressions for the zero-order approximation 

which were obtained in $ 4  have not been used. I n  (4.11) and (4.13) let us intro- 
duce the non-dimensional co-ordinates 

'rn 
(L = 3 (4, $4, 

so that near to the wave crest 

eTo = &4(1+<2)&, 

37, 1 m 
- - 
a@ - 36(1+c2) '  

Then from (5.23) we have 

where 

and from (5.20)t 

where h is the non-dimensional parameter 

csQ A = -  
mT' . 

Since m = 3g/3c3 this parameter can also be expressed as 

2c48  
3gT' . 

= __- 

(8.2) 

t It can be shown that the conditions for P(4)  and Q(4) in $ 5  are satisfied. 
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If we denote by K the absolute value of the curvature a t  the crest, 

k = - = L  m c  
388 2c284’ 

(8.9) A=--- 9 
6PT’  ‘ 

then we have also 

Equation (8.5) expresses the initia,l steepness b as a function of h only. The 
integral was computed, and is shown in figure 3. For small values of A, since 
(1 -I- E2)fQ does not differ greatly from unity, (S.4) shows that a’ + and so we 
expect 

(8.10) 

10 

1 

10 

1 

h 

5 
ro 

0.1 

0.01 I 
I I I 

0 1 2 3 4 5 
h 

FIGURE 2. The solid curve represents b(h) ,  giving the steepness of the capillary waves 
near to the crest of the gravity wave, as a function of h = g/6T’K2. The broken line repre- 
sents the approximate value ( 2 ~ / 3 )  e-*. 

0.1 

0.01 
0 1 2 3 4 5 

h 

FIGURE 2. The solid curve represents b(h) ,  giving the steepness of the capillary 
near to the crest of the gravity wave, as a function of h = g/6T’K2. The broken line 
sents the approximate value ( 2 ~ / 3 )  e-*. 

waves 
repre- 

The function (27r/3) e--h is also shown in figure 2,  compared with the computed 
value of b.  It is convenient also to write 

3n 
3 

b = - e-* x B(A), (8.11) 

where B(A) is a function of order unity. Some computed values of B(A) are given 
in table 1. 

It will be seen how critically b depends upon A, which in turn is inversely 
proportional to  A?. 
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The variation in steepness of the capillary waves is found by substitution in 
(7.7). At least near the crest of the wave we have 

where e is a non-dimensional parameter depending on the viscosity: 

(8.12) 

h 
0.0 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4-0 

a h )  
1~0000 
0-9543 
0-9538 
0.9606 
0-9707 
0.9827 
1.0180 
1.0582 
1.1019 
1.1486 
1.1981 
1.2503 

h 
4.5 
5.0 
5.5 
6.0 
6-5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

B(& 
1.3053 
1-3630 
1.4236 
1.4871 
1.5537 
1.6234 
1-6964 
1.7726 
1.8519 
1.9341 
2.0195 
2.1086 

TABLE 1. Values of B(h)  d5 
7r 

Eliminating li' from this expression by means of (8.9) we have 

e = .i($):hqL!gQ/T'%). (8.13) 

Taking 17 = 0.0178, g = 981, T' = 7.ic.g.s. units we have 

vgtlT'9 = 3-95 x lop3, 

8 = 1.75 x 10-2h*. 
a dimensionless quantity. SO 

(8.14) 

(8.15) 

It is convenient to express lBll as a function of the number n of ripple cycles 
measured from the crest of the gravity wave: 

1 
27J 

(8.16) 

In  figure 3, lBll is plotted against n, for various values of A, using equations 
(8.5), (8.13) and (8.16). 

If the capillary waves extend over an appreciable fraction of a, wavelength, 
it  will be necessary to use the more general equation (5.16) for determining the 
variation in steepness of the capillaries. In  terms of the non-dimensional co- 
ordinates (t,~) we have 

(8.17) 
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So on substitution in (7 .7)  we have 

Also n is given in terms of by 

(8.19) 

1 

0.01 

0.001 
0 5 10 

n 

FIGURE 3. Theoretical values of the capillary wave steepness lBll as a function of 
the number of wavelengths from the crest of the gravity wave. 

The assumptions made during the course of the analysis imply certain limi- 
tations on the values of the physical parameters: 

First, the capillary waves must be short compared to the basic gravity wave. 
This is equivalent to saying that in the classical dispersion relation v2 = gE + Tfk3 
the surface tension term is relatively small, or 

Tk3 < gk. 

This implies that the length of the gravity waves must be large compared with 
%r(T'/g)*, which is about 1.7 om. 

Since the capillary waves have been treated as perturbations on the main flow 
the capillary wave steepness 1011 must be reasonably small, say < 0.3. From figure 
2 we see then that h must exceed about 2. 

Hence k < ( g / W .  (8.20) 
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A similar restriction follows from the assumption that the surface tension 
term in the boundary condition for the basic gravity wave is relatively small; 
for if T’K < $q; while Kqi = i g  at  the crest (see 0 3) then T’K2 < $9, or 

h 9 +. (8.21) 

In  order that the disturbance at the crest shall produce ripples upstream it is 
necessary (Lamb 1933, 8 370) that the velocity q,, of the stream shall exceed the 
minimum phase velocity of gravity-capillary waves. This velocity is equal to 
(2g’T’)k, where g‘ is the apparent value of gravity, i.e. g‘ = 49. Hence we have 
q,, > (gT’)i, or & > gT’. But q; = g/3K and so this leads to 

which is already satisfied. 

length of the gravity wave we must have from (7.7) 

A > %  (8.22) 

In  order that the capillary waves shall be damped out in less than one wave- 

The integral is of the same order as 

where L is the wavelength. If the exponent is to be greater than 2 in absolute 
magnitude we must have 

or 

In  c.g.s. units this becomes Lit > 81 cmg or 

L > 5-8cm. (8.23) 

This condition is consistent with (8.20). 
There appears to be no theoretical upper limit to the wavelength L. However 

with wa,ves longer than a few metres it becomes unlikely that the sharp curv- 
atures required by the condition (8.2) will be attained for any appreciable time. 

9. Comparison with observation 
In  the experiments of Cox (1958) corresponding to figure 1 the frequency of 

the gravity waves was 6 . 6 ~ 1 ~  and the wavelength was 4.7~111 so that the 
phase velocity c was given by c = 6.6 x 4-7 = 30*9cm/sec. The value of the 
curvature K at the crest of the gravity wave can be estimated from the data in 
more than one way. For example one might attempt to apply the theory of 
gravity waves of finite amplitude, assuming a maximum surface slope about 
0.35. However, this procedure would not give a very reliable value for K since, 
as we have seen, even the finite amplitude theory of Davies (1951) is liable to 
be in error near the crest. For this reason we prefer to derive K directly from 
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figure 1 a. The trace in figure 1 a represents the wave slope; the surface curvature 
is given by the gradient of the slope profile where the profile passes through zero. 
In  figure 1 a the vertical and horizontal scales are such that a gradient of unity 
corresponds to a rate of change of slope of 6.80 see-l; the wave speed being about 
30.9 cm/sec this is equivalent to a curvature of 6*80/30.9 = 0.22 cm-l. 

The individual waves in figure 1 are by no means identical. The variability is 
probably due mainly to the reflexion of waves at  the far end of the tank, which is 
difficult to eliminate experimentally. Even a small amount reflexion will have 
a pronounced effect on the slope of waves which approach their maximuin steep- 
ness. In  the circumstances it seems best to take mean values over the 13 wave 
cycles in figure 1 a. Allowing, as far as possible, for the existence of a ripple near 
the crest we find that the tangent to the profile a t  the point of zero slope (corre- 
sponding to the wave crest) makes an angle of 75-8" with the time axis. The 
corresponding curvature is therefore K = 0.22 x tan 75.8" = 0.87 cm-l. Hence 
we have 

Since the condition (8.21) is only marginally satisfied, we can expect no more 
than rough agreement between theory and observation. 

In  figure 3 we have plotted the observed values of the ripple slopes as mea- 
sured-f from the profiles in figure l a. Each plotted point represents a mean value 
over the 13 wave cycles. The plotted points lie not far from the curve corre- 
sponding to h = 2,  and generally fall between h = 2 and h = 3. 

We conclude that the ripples can be attributed at least in part to the mechan- 
ism that has been described. 

h = g/6T'hT2 = 2.93. 

10. Energy dissipation by capillary waves 

of energy by viscosity in such a wave is equal to 
Consider a gravity wave of amplitude a and wave-number k. The dissipation 

4vE2E = 2 p g v ( ~ k ) ~  (10.1) 

per unit time and horizontal distance. Suppose that a t  the crest of each wave 
a capillary wave of amplitude ac and wave-number k, is generated, and that the 
whole of this capillary wave energy is dissipated before the capillary wave 
reaches the next crest. Then in one wavelength the dissipation of energy1 by the 
capillaries is equal to ~ T ' ( U ~ ~ , ) ~  x $cc and per unit horizontal distance the dis- 

3 
277 S77 
- x *T(ack,)2 x $cc = ~ Tk(a,k,)2cc. (10.2) 

If now the slope ack, of the capillaries is assumed to be of the same order of 
magnitude as the gradient ak in the gravity waves, and if the phase velocity c, of 
the ripples is comparable to the phase velocity ~ / l c  of the gravity waves, then 
the ratio of (10.2) to (10.1) is of order 

sipation is k 

3 T'a 
,)" = = 0.35 U 

1677 g v  (10.3) 

t The author is indebted to Dr Cox for kindly supplying a copy of the original record, 

2 In t,his calculation, energy supplied by the radiation stress is neglected. 
from which these measurements were taken. 
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in c.g.s. units. In  gravity waves of period 0*5sec, or length 6cm, we have 
CT = 2n/0-3 = 31.4, so that r is of order 10. In  other words, the capillary waves 
are ten times more effective in damping the gravity waves than is the direct 
action of viscosity. As the wave period increases so r diminishes in inverse 
proportion. r is reduced to unity only when the wave period is about 2sec 
(wavelength 6 m). 

It has been assumed that the steepness of the capillaries is comparable to that 
of the gravity waves; in general r is proportional also to ( ~ ~ I c ~ ) ~ / ( a k ) ~ .  Since it 
appears that the amplitude of the capillaries depends very critically on the 
maximum curvature of the gravity waves, one expects that the ratio will 
increase very rapidly just before breaking occurs. That is to say the damping 
by the capillaries comes into action just before the gravity waves break. 

1 1. Conclusions 
When gravity waves, of length greater than a few centimetres, approach their 

maximum amplitude, the effect on them of tension is localized near the wave 
crests, not distributed over the whole wave. Instead of a modification to the 
wavelength, the effect is to produce a train of ripples on the forward face of the 
wave, having a phase velocity such that the ripples appear stationary to an 
observer moving with the wave. Energy is fed into the ripples not only by the 
surface tension at the crest but also by interaction with the gravity wave on 
its forward face, through the radiation stress. Ripple energy is simultaneously 
being drained away by viscosity. On the rear face of the gravity wave both the 
radiation stress and the viscosity tend to reduce the ripple energy. 

The ripple steepness is given, to within an order of magnitude, by equation 
(7.7) at least for regular waves. It has been shown that 

377 
3 

b + - exp ( - g/6T'K2), 

where K is the curvature at  the crest. The ripple energy thus depends very 
critically upon h-. 

The present analysis applies in the first place only to regular waves. On an 
irregular wave train, such as would be encountered on a surface subject to wind 
action, the formation of wave crests is spasmodic: the nature of the ripples 
associated with a sharp crest then depends on the length of time for which the 
sharp crest is in existence. If the crest exists for more than a few ripple periods 
then the present analysis may apply. Hence ripple formation by sharp wave 
crests may well inhibit the breaking of wind-generated waves at a certain stage 
of their growth. 

On a water surface subject to a wind velocity of more than about 5m/sec 
capillary waves are observed (Roll 1951) which are probably due to shear in- 
stability, as described, for example, by Miles (1963). In addition, some ripples 
may be generated locally by the complex airflow in the neighboiirhood of any 
sharp-pointed crest. These mechanisms are quite distinct from the one discussed 
above. NevertheIess it may be noted that capillary waves of whatever origin 
will still tend to draw energy from the gravity waves on which they ride, by means 
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of the radiation stresses, and to lose energy through viscosity. The gain or loss 
of energy to the ca.pillaries will depend on their position relative to the crests 
of the gravity waves. 

The present calculations have been based on a theory for gravity waves of 
finite amplitude which, in the critical region near to the crest of the wave, is a t  
best approximate. A more exact theory for gravity waves of nearly maximum 
amplitude would not only be useful in the present application but also of some 
interest in itself. 

I am indebted to Mr J. A. Grant for carrying out the computations for figures 3 
and 3 a t  the Mathematical Laboratory, Cambridge, and also to Dr J. C. P. Miller 
for his interest in the problem. 

Appendix: The Stokes 120" angle 
It has been shown both theoretically and experimentally by Taylor (1953) 

that in a standing gravity wave of maximum amplitude the vertical accelera- 
tion at the sharp crest is equal to - g. It is not so well known that in a progressive 
wave of limiting height the acceleration near the crest is equal to +g directed 
away from the crest; at the crest itself the acceleration is indeterminate. 

In  Stokes's limiting angle (Stokes 1847) the velocity potential $ is given by 

4 + i @  = C(x + iy)$ = Crt e3i+, (A 1) 

where c = $( -ig)B, (A 3 )  

u - it> = $C(x + iy)* = i c y *  eiyI2,  

( U 2 + V 2 )  = g p7p" = gr. 

and rcosy = x, rsiny = y. It is easily seen that the lines y = -in i-in are 
streamlines. Also since 

(A 3) 
we have 

Thus the Bernoulli condition i(u2 + v2)  = - gy is satisfied on the free surface. 
To obtain the acceleration, differentiate (A 3). This gives 

Multiplying (A 3) by the complex conjugate of (A 4) we find 

The expression on the left represents the vector acceleration a, say. Substituting 
for C on the right-hand side, we have simply 

(A 6) a = 1 e i y .  29 

In other words the acceleration has a magnitude $9 and is directed everywhere 
outwards from the vertex. 

On the free surface the acceleration is the same as that of a particle sliding 
freely down a plane inclined at Qj. to the horizontal, that is, it  is +g directed down 
the plane. 
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Particles vertically beneath the wave crest, in the plane of symmetry, have an 
acceleration equal to +g directed vertically downwards. 

At the crest itself the acceleration is indeterminate; the acceleration in the 
neighbourhood of the crest depends upon the direction from which the crest 
is approached. 

The difference between the vertical accelerations in the two cases of the 
standing and the progressive wave of limiting height shows that the value of 
the vertical acceleration is not a sufficient criterion for the breaking of gravity 
waves under all conditions. 
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