
On the Mass, Momentum, Energy and Circulation of a Solitary Wave. II

M. S. Longuet-Higgins; J. D. Fenton

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.
340, No. 1623, Including A Discussion on Scientific Results from the Copernicus Satellite. (Oct.
8, 1974), pp. 471-493.

Stable URL:

http://links.jstor.org/sici?sici=0080-4630%2819741008%29340%3A1623%3C471%3AOTMMEA%3E2.0.CO%3B2-R

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences is currently published by The
Royal Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rsl.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Thu Jul 5 16:06:35 2007

http://links.jstor.org/sici?sici=0080-4630%2819741008%29340%3A1623%3C471%3AOTMMEA%3E2.0.CO%3B2-R
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rsl.html


Proc. R. Soc. Lond. A. 340, 471-493 (1974) 

Printed i n  Great Britain 

On the mass, momentum, energy and circulation 
of a solitary wave. IPt 

B Y  M. S. LONCUET-HIGCINS,F.R.S. 

Department of Applied Mathematics and Theoretical Physics, University 
of Cambridge, and Institute of Oceanographic Sciences, Wornzley, Surrey 

Department of Civil Engineering, Imperial College of Science 
and Technology, London, S.W. 7 

(Received 15 February 1974) 

By accurate calculation i t  is found that the speed F of a solitary wave, 
as well as its mass, momentum and energy, attains a maximum value 
corresponding to a wave of less than the maximum amplitude. Hence 
for a given wave speed P there can exist, when 1"is near its maximum, 
two quite distinct solitary waves. 

The calculation is made possible, first, by the proof in an earlier paper 
(I)-fof some exact relations between the momentum and potential energy, 
which enable the coefficients in certain series to be checked and extended 
to a high order; secondly, by the introduction of a new parameter w 
(related to the particle velocity a t  the wave crest) whose range is exactly 
known; and thirdly by the discovery that the series for the mass M and 
potential energy V in powers of w can be accurately summed by Pad6 
approximants. From these, the values of H and of the wave height e are 
determined accurately through the exact relations 3 V = (H2- 1) M and 
26 = ( W + Y ~ - 1). 

The maximum wave height, as determined in this way, is em,, = 0.827, 
in good agreement with the values found by Yamada (1957) and Lenau 
(1966), using completely different methods. The speed of the limiting 
wave is F = 1.286. The maximum wave speed, however, is Fmax = 1.294, 
which corresponds to e = 0.790. 

The relation between e and F is compared to the laboratory observations 
made by Daily & Stephan (1952), with reasonable agreement. An important 
application of our results is to the understanding of how waves break in 
shallow water. The discovery that the highest solitary wave is not the 
most energetic helps to explain the qualitative difference between plunging 
and spilling breakers, and to account for the marked intermittency which 
is characteristic of spilling breakers. 

The first part appeared in Proc. R. Soc .  L o n d .  A337, 1. 
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In  this paper we continue and extend the study of solitary waves on water of 
uniform depth which was begun in an earlier paper (Longnet-Miggins 1974, to 
be referred to as paper (I)).In  that paper some new relations were proved connecting 
the mass, momentum and energy of a solitary wave, and these were used to derive 
a simple but close approximation to the form of the solitary wave of maximum 
amplitude. In  the present paper we turn our attention to the calculation of waves 
having less than the maximum amplitude. 

Since the first approximate theories given by Boussinesq (1871) and Rayleigh 
(1876), which were valid strictly for waves of small amplitude, higher approxima- 
tions have been suggested by AfcCowaii (1891), Weinstein (1926), Long (1956), 
Laitone (1960), Grimsham (1971) and Penton (1972). All these rely on expansions 
in powers of a small parameter, essentially the wave height. In  particular Fenton 
(1972) has carried such an expansion numerically to the ninth order, obtaining 
accurate results (enhanced by the use of Shanks transforms) up to amplitudes s 
within about 10 % of the maximum. 

Although further progress along these lines is possible (and will be described) 
one mould nevertheless hardly expect that a power series in s would give accurate 
results right up to the maximum wave amplitude. At this value of s, the surface 
develops a sharp crest with an angle of 120°, which must correspond to a singularity 
on or outside the radius of convergence. 

Other authors, including Nekrasov ( I92 I), Milne-Thornson ( I964, I968), Lenau 
(1966), Byatt-Smith (1970) and Strelkoff (1971), have derived integral equations 
for the wave profile. Numerical solutions for waves of less than the maximum 
amplitude, have been given by Schwitters (1966), Thomas (1967) and Byatt-Smith 
(1970) Here again, however, difficulties are encountered when the wave amplitude 
approaches its maximum value. These difficulties arise from the large curvatures 
near the crest, and our present ignorance as to the analytical structure of the flow 
in the neighbourhood of the crest (see Grant 1973). 

I n  the present paper we attack the problem again by means of series expansions, 
but with the addition of some new weapons to our armoury. First, in $5 2-4, we 
extend the series approximations of Fenton (1972) as far as the practical limit of 
computation, which, with the available word-lengths, should bc about the fifteenth 
power of s. Beyond the ninth approximation the coefficients are found to become 
irregular, but we are able to show, by means of the identities derived in (I), that 
the irregularities are not due to rounding errors. In  fact the identities are checked 
to  a high degree of accuracy, indicating that the irregular behaviour of the co- 
efficients is indeed significant (see g 3). 

We next show (ill § 4)that by a change of independent variable from 6 toy  = F2 -1, 
where P is the Proude number, the irregularities in the series for the momentuni 
and energy are removed. This appears to be due to the singular behaviour of c 
as a function of y in the neighbourhood of s = s,,,. Physically, there is a sharp 
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increase in the wave-height as the maximum amplitude is approached. However, 
no such sudden increase is found in the total mass 1M,so that the momentum and 
the energies are all smooth functions of y. 

With this change of variable the new coefficients behave sufficiently regularly 
for the maximum value of y to be estimated from a Domb-Sykes plot (see figure 1). 
The extended series can then be summecl, with the help of Shanks transforms or 
Pad6 approximants, up to P2equal to about 1.60, but not beyond (see figures 2 
and 3). 

The next step is to introduce a third variable w, related to the particle speecl at  
the wave crest. Unlike either of the two variables E and y, the range of variation of w 
is precisely known. When expressed in powers of w, the series for M, T and V appear 
initially less regular than for the series in powers of y.Nevertheless the summation by 
Pad6 approximants leads to rapidly converging results. Moreover from M and V 
it is possible to calculate P2with a comparable degree of accuracy, ancl hence also 
the wave height e (see figure 4). 

The maximum wave height, as determined in this way, is in remarkably good 
agreement with the values found by Yamada (1957) and Lenau (1966) by com- 
pletely different and independent methods. 

The calculations also yield the unexpected result that the wave speed P attains 
a maximum value at  a certain wave amplitude less than the maximum. Hence, there 
is a certain range of speeds near the maximum, where two quite distinct solitary 
waves can exist with the same wave speecl. 

Similar results are founcl also for the total mass M ancl for the kinetic and potential 
energies. 

These results are discussed in S 7. To many readers they will appear less extra- 
ordinary when it is recalled that Fenton (1972) already had found indications of 
a maximum in the value of the total 'drift' 6 (which is numerically equal to the 
mass fW),and that Schwartz (1974) has found a comparable result for periodic waves 
in water of uniform depth, namely that the Stokes parameter (roughly the amplitude 
of the first harmonic) is not a monotonically increasing function of the wave height, 
but also attains a maximum for waves of less than the maximum height. 

In  $6  we compare our theoretical relation between s and P with the laboratory 
observations by Daily & Stephan (1952). Over the range of s in which the observa- 
tions were made there is satisfactory agreement. An important application of our 
results is to the breaking of waves in shallow water. The fact that the highest solitary 
wave is not also the most energetic helps to explain the qualitative difference 
between plunging and spilling breakers, and to account for the marked inter- 
mittency which has been observed in spilling breakers (Longuet-Higgins & Turner 

1974). 
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2. THE S I I A L L - A M P L I T U D E  A P P R O X I X A T I O N  

Consider a solitary wave of arbitrary amplitude a,  travelling with velocity c in 
water of undisturbed depth h (see figure 1 of (I)). The form of the wave is known to 
depend on a single parameter, which may be taken to be either the relative wave 
amplitude e = a/h or the Froude number P = c/J(gh), where g denotes the accelera- 
tion of gravity. Througlzout this paper we shall choose units of length and time so 
thab g = h = ~ ,  e = u ,  P = c .  (2.1) 

Let rectangular coordinates be chosen in a frame of reference travelling with 
the waves, so that the motion is independent of the time. With the origin beneath 
the wave crest a t  the level of the undisturbecl fluid, let the x axis be in the direction 
of wave propagation and the y axis vertically upwards. 

Fenton (1972) has given a solution for the surface elevation 71 in the form of 
a series: 

in which the coefficients bij are constants and a is a parameter tending to zero as 
the wave amplitude tends to zero. In fact setting x = 0 we have 

The Froude number F is expressible in terms of a by Stokes's relation 

P 2 = - .tan 2a 
2a 

By inverting the series (2.3), both a ,  7 and P2may be expressed as power series 
in 6 . I n  this way we find, for instance, that 

where the leading coefficients A, and B, are equal to unitj7. Also the total mass 1lf 

and the total kinetic and potential energies T and T/ (see (I))are given by 

where again the leading coefficients in each series are equal to 1. 
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Penton (197:~) carried the expansions of a ,  P2and the mean drift 6 (which is 
equivalent to H)as far as the ninth order, i.e. to terms in c9. With the aid of Shanks 
transforms, satisfactory convergence was obtained up to about s = 0.5 and perhaps 
further. However, two puzzling features of the expansion were apparent. First in 
the expression for the mean drift S (or mass M )  the Shanks transforms did not 
converge well. Secondly, the coefficients in the series for 6 and a in terms of s 
began to show certain irregularities at  the higher orders. 

To obtain greater accuracy, and a t  the same time to reduce the possibility of 
rounding errors, we first recalculated the coefficients for M ,  T ,  V and F 2  as far 
as the fourteenth order, with the aid of the CDC 6600 a t  London University, where 
a precision of 29 decimal places is readily available. The resulting values (verified 
on the IBM 370 at  Cambridge) are shown in table 1. 

It can be seen that up to the ninth order the values given by Penton (1972) are 
verified except for iM,where there were errors in the fifth or sixth decimal places. 
However, it will also be apparent that beyond the ninth order the coefficients, 
though previously tending to diminish, now begin to increase rapidly and to 
alternate in sign. 

The first question to be asked is whether the higher coefficients are significant or 
are merely the result of rounding errors. As a check we used two identities, the first, 

being due to Starr (1947). Both this and the second identity: 

T- V = Sf' (T/F2) dP2 
(3.2) 



are proved in paper I.Each side of these equations was expanded in powers of s and 
the coefficients on the two sides were compared. Tile digerences in the coefficients 
are shown in the last two colu~nns of table 1, from which i t  can be seen that the 
identities are well verified. Hence i t  appears that the coefficients are indeed sig- 

behave in an irregillar way. 

nificant, to the degree of precision given. +4. CZTAXGEO F  V A R I A B L E  

What then is the reason for the irregular behaviour of the coefficients in table I ? 
T t  appeared to us possible that irregularities were due to the singular behaviour 
of the parameter s at  or near the value of F corresponding to the wave of maximum 
amplitude. For t h e  limiting wave itself is known to have a sharp-angled crest, with 
an interior angle of 120" (Stokes 1880).Shortly before the maxirlium amplit~zde is 
attained, there could be a large change ia e corresponding to  only a relatively small 
increase in the speed of the wave. If this were so, i t  might be expected that expan- 
sions of smoothly varying quantities in terms of a singula~parameter e might well 

To test this conjecture the series for Jf,T and V were reformulated in powers 
of the new parameter 

y = F 2 - 1, (4.1) 

which like e vanishes for waves of small amplitude. Thus we now have 

and 

The resulting coefficients lor s, 171, T and V are shown in table 2 .  It will be seen 
that all the coefficients for 171, T and 'V beyond 7% = I are now of the same sign, 
and inoreover vary sn~ootilly with n. The coefficieilts for V are in fact identical 
with those for IW,in accordailce witll equation (3.1). 

I11figure 1wo have plotted the ratios cn/cn-, of the coefficients in the series (4.3) 
for at. These are plotted against n-l, as in a Domb-8yi:es plot. 4 t can be seen that 
the odd ratios now lie on a smooth curve, and thc even ratios on another smooth 
curve, both tending towarcls the same limit as n co.As is well known, tile limit 
of cn/cn-,, if i t  exists, is equal to the recip>rocal of the radius of convergence yoof 
the series (4.3). 
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Extrapolation t,o l ln = 0 by means of the rational function 

fitted to the points n = 4, 6, 8, 10 and 12 leads to the valne l/yo = 1.462, hence 
P2= 1.684, while a similar extrapolation from the points n = 5, 7, 9, 11 and 13 
leads to l/yo = 1.562, hence P2= 1.640. I11 figure I the broken line is drawn to the 

TABLE2. COEPFICIEKTSI N  THE EXPANSIONS O F  6, M ,  T AND V IK POViTERS OF Y 

FIGUREI. A Domb-Xykes plot of the ratios cn/cn-, of successive coefficients 
in the series for the mass M in powers of 7 .  

30-2  
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mean value l/yo = 1.51 1, corresponding to F2= 1.662. However the difference 
between the two extrapolations is a measure of the uncertainty of this estimate. 

Figure I also gives some indication of the nature of the singularity on the circle 
of convergence. For if near yo 

where JI,, K and p are constants, then as n -t cx, 

Therefore 

p + l  = -yo lim d(cnlc,-1) 
n-+m d( l/n) 

I n  figure I ,  the gradient of the asymptote near l /n = 0 is about 2.94, giving 
p+  1 = 1.95 and so p = 0.95. This being close to unity suggests that there is a t  
most a weals. singularity- possibly only logarithmic -a t  y = yo. 

A Domb-Sykes plot of the coefficients for V and T gives almost identical results 
with those for LW.By contrast, the ratios of the coefficients for e, as seen from the 
second column of table 2, behave in a quite irregular manner, after about n = 9. 
There is no well-determined radius of convergence, and i t  appears that the series in 
powers of y is st best asymptotic. 

When we attempt to  sum the series for M and e in powers of y we find (see figure 2) 
that for i%! the partial sums 

converge well up to about F2= 1.60, but not beyond. Some improvement can be 
obtained with the use of Shanks (1955) transforms: 

as in Fenton (1972),and by Pad6 approximants [N,N] (see Baker 1965) up to  
about F2= 1.63, but not beyond. The series for V and T behave in a similar fashion. 

As for e (see figure 3) the Shanks transforms e(S12) and e(Sl,) appear a t  first to 
give results accurate up to P2= 1.70 but the Pad6 approximants [N,N] do not 
agree with the Shanks transforms. I n  fact the Pad6 approximants clearly diverge 
when P2> 1.68. 

The reasons for this behaviour will shortly become clear. 

FIGURE2. Convergence of the power series (4.3)for M in powers of y, in the range 

1.5 < B2< 1.75. 

The S ,indicate partial sums to jterms, e(S,) indicate the Shanks transforms and [N, N] 
the Pad6 approximants. The open circles represent values calculated from the series for 
M and F2 in powers of o (see $5).  
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A difficulty in using either y or 6 as expansion parameters is that the precise 
range of these variables is not yet well determined (see I) .  On the other hand, one 
quantity whose range is precisely known is U , the value of tlle velocity a t  the wave 
crest (in the frame of reference moving with the wave speed). I n  the wave of 
limiting height U vanishes, and for waves of low amplitude Z/' tends to 2/(gh). 
Thus the new parameter 

w = 1- ti2/gh (5.1) 

varies between 0 and 1 as the wave amplitude varies from 0 to its (unknown) 
limiting value Emax. 

Application of Bernoulli's theorem shows a t  once that 

w = 1-(F2-26). 
Thus we have simply 

w = 26-y 

and from (5.2) and (2.5), since A, = A, = 1, we have 

m 

W = 6- 2 Anen. 
n=2 

Inverting this series we obtain 
m 

6 = w +  2 G,,wn 
n=2 

say. By substitution in equations (2.5) and (2.6) we can now obtain also P2,M, 
T and V in powers of w. 

The coefficients of the new series are shown in table 3. At first sight they appear 
similar to those in table 1, that is to say they tend to  diminish in magnitude up to 
about n = 9, :tnd then to increase sharply and oscillate in sign. Nevertheless we 
find that by this simple change of variable the convergence is now radically improved. 
Thus, the [ N ,N] Pad6 approximants for M ,  V and T are found to coilverge re- 
marlrably rapidly, as can be seen from table 4. Even when w = 1, one can rely on 
a t  least three significant figures and, generally, more. The approximants for 6 are 
not so regular.. However, from the values of LTd! and V we can calculate y using 
the relation 

y = 3 V/llf  

FIGURE3. Convergence of the power series (4.2) for e in powers of y ,  in the range 

1.5 < E2< 1.75. 

The Sjindicate partial sums to j terms, e(Sj)  indicate the Shanks transforms aiid [ W , N ]  
the Pad6 approximants. The open circles represent values calculated from the series 
for M and F 2 in powers of o (see $ 5 ) .  
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derived from equation (3.1), and then e from 

E = +(Y+ W )  (5.7)
by (3.3). 

As a check we can calculate the values of L = T - V and it is found that the 
relation 

P2dL = TdP2 

derived from equation (3.2), is indeed well verified. 
The limiting value of y (as can be found from table 4) is equal to 0.663, wliich is 

quite consistent with the radius of convergence of the series for fl.l(y),estimated 
earlier. Moreover, the corresponding values of P2and e, namely 

TABLE3. COEFFICIENTSIN THE EXPAXSIONS OE e, Jf,T 

AND V I N  POWElZS OF W 


TABLX4. PADEAPPROXLMANTS [X, AT] FOR Jf, 2' 
AKD V AT TWO HIGH VALUES OF W 
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agree closely with Yamada's (1957) estimate em,, = 0.828 derived from a direct 
calculation of the profile of the highest wave, and Lenau's (1966) result 

derived independenkly from the solution of an integral eqnati0n.t 
Tlle behaviour of $1, T,V, y and e as functions of w is shown graphically in 

figure 4. When w is small, these quantities are evidently all increasing functions of w .  

FIGURE4. The mass LM,circulation C, wave height s, kinetic energy T,potential energy Ti ,  
Lagrangian L and y = F2- 1, where F is the non-dirnensional wave speed, as functions 
of the parameter w .  The plotted points denote the rough estimates for the wave of limiting 
amplitude given in paper I. 

-f Lenau also pointed out that this is practically the same value as can be obtained froni 
a solution due to I'ackham (I~sz),who approximated the pressure condition at  the free surface, 
replacing sin 0 by +I sin 30. If in Peckham's solution one sets 1 = 1 one obtains 

g,,= ,/27/2n = 0.8270 
(see also Davies 1952). 



The most striking feature of the diagram is that while E is increasing throughout 
the entire range, both M ,  T, P and y have maxi7nn between (*, = 0.80 and w = 1.00. 
The maximum in 31was suspected by Yenton (1972). On the other hand the rnaxima 
in 7,T and y are more surprising, and may have some important physical con- 
sequences (see $5 8 and 9). 

Using w as a parameter, the variables 111 and E can now be plotted as functions 
of PZ(see figures 2 and 3). The previously found behaviour of the series for 1l.aand E 

in powers of y can now be explained. For, beyond a certain value of P2,both &I 
and 6 are double-valued functions of Ii'Y The ordinary partial sums 8,cannot 

TABLE5 .  CALCULATED1-ALUES PARTICULAROF J1, T, V ,  7, E ,  B7,L, C ARD I FOR 

VALGES O F  THE PARAMETER O 

0 
 AM 
 [P 
 v
 7' 13 .B' L 
 c .I 

.05 0.5250 .00887 .00870 .04971 .04986 1.02456 .00017 .5206 .5379 

.10 0.7534 .02578 .02484 .09891 .09946 1.04829 .00094 .7406 .7898 

.15 0.9344 .04845 .04593 .I4746 .I4873 1.07120 .00252 .9105 1.0009 
.20 1.0906 .07603 .07100 .I9531 .I9765 1.09333 .00503 1.0533 1.1924 
.25 1.2299 .I0792 ,09935 .24434 .24617 1.11460 .00857 1.1772 1.3708 
.30 1.3563 .I4354 .I3041 .28845 .29423 1.13510 .01313 1.2566 1.5395 
.35 1.4715 .I8231 ,16359 .33352 .34176 1.15478 0.1872 1.3835 1.6993 
.40 1.5765 .2236l .I9833 .37741 .38871 1.17363 .02528 1.4692 1.5503 
.45 1.6717 .26671 .23399 .41991 .43496 1.19160 .03272 1.5443 1.9920 
.50 1.7572 .31081 .26991 .46081 .48040 1.20864 .04090 1.6095 2.1236 
.55 1.8326 .35499 .30532 .49981 .52491 1.22467 .04967 1.6646 2.2443 
.60 1.8975 .39819 .33939 .53658 .56829 1.23959 .05880 1.7097 2.3321 
.A5 1.9510 .43915 .37115 .57074 .61036 1.25329 .06798 1.7144 2.4462 
.70 1.9923 .47646 .39956 .60166 .65082 1.26557 .07690 1.7684 2.5214 
.75 2.0203 .50844 .42332 .62860 .68930 1.27617 .08512 1.7812 2.5782 
.80 2.033 .53313 .4410 .650G 3 2 5 3  1.2848 .0921 1.782 2.612 
.85 2.030 .B4&2 .4510 .6665 .7583 1.2909 .0972 1.771 2.621 
.90 2.008 .5509 .4512 .6742 .7871 1.2939 .0997 1.746 2.598 
.95 1.964 .5379 .4394 .6711 .8608 1.2927 .0985 1.707 2.539 

3.00 1.897 .5052 .413 .633 .827 1.286 .0924 1.653 2.440 

possibly coilverge beyond the radius of convergence: F2 = 1.653. Even the Pad4 
approximnnts [S,N / ,which can converge beyond this point, arc necessarilj- single- 
valued, and cannot yieltl values for 171 and e beyond the point where P2 takes its 
niaxin?um value. 

Figure 2 also suggests a reason for the rather higher estinmtes of c,,,, made 
by Byatt-Xmith (1970) ancl Fenton (19.72). These estimates were based on an 
cxtrapolatioli of the relation between c and P for waves of s-i:hstal~tially less 
than the mdxinluni amplitude, and so did not take account of the sharp curvature 
of the actual curve near c = e,,,. 

The maximum vnluc of F we find to be 1.294, correspondilig t o  6 = 0.790. I t  is 
perhaps significant that  Byatt-Smith was uilable to obtain coni~ergel~ce in his 
integral equation for any value of F greator tllai~ 1.293. 'Phis svould be consistent 
with a nalural expectation that ill the neighbourhood c.f a stationary vriluc of P 
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the integral equation would not have a unique solution, and hence would not 
converge. 

We have also examined the Pad6 approximants to 41 and F2 derived from the 
series in powers of e. However, the approximants derived from the cd-series converge 
more rapidly than those from the e-series, in both cases. I n  every case, for both 
ill and P2,the Bad6 approximants converge more rapidly and regularly than do 
the Shanks transforms. 

For practical use, we have given in table 5 the values of 41, T,  V, e and y a t  
equal intervals of w .  Also given ill table 5, and shown graphically in figure 4, are 
the values of the circulation C, defined by 

C =Imu - d s  = (5.10) 
- m  

(see I; u and Q refer to the motion with respect to a stationary frame of reference, 
in which u -t 0 a t  infinity). To calculate C we used the relations 

I=F111, J 
given in (I),from which 

C = MF-2TIP. 

Evidently C has a maximum a t  about w = 0.775. The limiting value of C, from 
table 5, is 1.653. Hence me can state that for the limiting wave 

very nearly. TI7e conjecture that this relation is exact. 

The most unexpected of our findings, namely the maxima in 1M,T,V ancl F2,  
may be made to  seem more reasonable in the following way. 

When the wave height e is a little less than the maximum, the crest will be rounded, -
so that the wave profile is rounded and convex, in a t  least a short horizontal interval 
enclosilig the crest. On the other hand, in the limiting wave, the surface profile 
consists of two concave arcs, and the surface elevation immediately falls away with 
horizontal distance from the crest. Hence, if as the wave amplitude approaches its 
limit, the crest 'flilss up' locally, the limiting wave profile may intersect the profile 
of a wave having slightly smaller amplitude, and i t  is easy to see that the total 
volume M of the limiting wave can indeed be slightly less. 

Further, the kinetic energy 1' and potel~tial energy V ,  both of which can be 
expressed as int,egrals over the volunze of the wave, can also be slightly reduced, for 
the same reason. 

Now me may also define 7, the ~ ~ o i g h t e d  taken over the energetic average of 77 

m r t  of the wave, bv 
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and by the same argument i t  is not difficult to  see that T j  may actually diminish 
as the limiting wave is approached. But 7 is also related to the wave speed P2,  
for from (6.1) and (3.1) we have 

-7 = 2V/N = $(F2- I ) .  (6.2) 
Therefore a slight decrease in T j  implies also a decrease i11 the speed F. 

Another view of this phenonienon is to be gained from the remark that in a 
solitary wave the speed P is related to the exponent ( -2a) in the outskirts of the 
wave profile by Stokes's equation (2.4). As the wave amplitude s increases, P also 
increases a t  first, hence the total width of the wave diminishes. But in the final 
stages of growth, as s approaches a,,,, a slightly wider 'base ' is required to support 
the highest waves and so P must finally dec~easeslightly. 

It would be instructive to draw the actual sequence of wave profiles, from tho 
wave of lowest amplitude to the highest wave. It,would then necessarily be found 
that whereas a t  the lower amplitudes each profile intersects the preceding profile 
a t  only one point in the interval 0 < x < co,the highest wave intersects its neigh- 
bours in two points in 0 < x < co. 

However, as pointed out in $5,the wave profile q(x) ,and particularly the height 
~ ( 0 )of the wave crest, is not determined so accurately by the use of series expansions 
as are the integral properties represented by X,T and V, which have been used 
for the calculation of 3'. We therefore leave the accurate determination of the 
surface profile for a future study. 

Figures 5 and 6 show the mass M ,  the momentum I and the total energy 
E = T + V as functions of the wave height e. It is remarkable that the curves for 
E and +iWpractically touch, not far from the maximum value of F. We can, how- 
ever, show that if the curves do indeed touch then the point of contact is not 
exactly a t  the maximum of P.For from equations (3.1) and (3.2) we have in general 

3dV = (P2- I )dM+MdP2,  

P2(dT-d V) - T dE12 (7.1) 

a'nd if the curves in figure 6 touch, then 

d T -td V = gdlw. 

From the last three equations we may eliminate d T  and d B  t,o give 

which does not vanish. On the contrary, from figure 5 we see that 
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The horizontal distance As to the maximum of F2is thus given by 

which is small, but consistent with our calculations. 

FIGURE5. The momentum I,mass M and total energy E shown 
as functions of the normalized wave height c. 

In general it appears from figure 5 that 

M > 2(T+ V ) .  (7.4) 

On substituting for T and V from equations (3.1)and (5.11)we have 

M > (F2M-PC)-$(P2-1)~Y.l;  

that is, E(P2- 1 > PC~3 ) ~ (7.5) 

or 5V > PC. (7.6) 
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FIGURE6. Tlla Inass 111and enelgy E over the upper range of c. 

S. ( 7 o a r ~ ~ n 1 s o x  O B S E R V ~ ~ T I O XWITH 

The best lliodern obsorx-ations of speed and surface profile of solitary waves are 
probably those of Daily & Staphan (1951, 1952) who Tt7ere able to  make measure- 
ments over the range of wave amplitudes cor;espor~dir?g to  0 < 6 < 0.62, or about, 
three-quarters of the range of e. Theyv were liot able t'o obtain :rave amplit~tdes very 
close t o  the tlleoretieal 11laximum. Jn figure 7 their experimental piot of P against 
e is reproduced, together witl: our tl~eoretical carve. Also sho13-ii arc tivo earlier 
approximntions. Eviclent!y the observations agree better with our theoretical curve 
than wit1.r either of the tn-o approximations. However, there appears 'so be a 



FIGURE7. (After Daily & Stephen 1952.) Observed values of the non-dimensional speed P = c/,/(gh) in 
relation to the non-dimensional wave height c: = alh, compared with the approxin~ations of Boussinesq (1871) 
and 31cCowan (1891), and with the present calculations. 
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systematic tendency for the observed wave height to escced slightly the theoretical 
wave height, for agiven value of di'.This may be due partly to the presence of a viscous 
boundary-layer a t  tlie bottom, but also may he due to a general tendency for 
unsteady motions to be associated with augmented heights. 111 experiments with 
solitary waves on shoaling beaches, lppen & Kulin (1955) found maximum ampli- 
tudes far in excess of the corresponding amplitude in water of urliform depth, 
generally by a factor of 2 or 3. It is possible that in uniform depth unsteadiness due 
to energy dissipation may produce a similar effect. 

Daily & Xtephan (1952) did not report observations of waves with amplitudes 
greater than 0.62. This could be due simply to their method of wave generation. 
For, if i t  is true that a plunger tends to generate waves of a given mass iYf and 
impulse I depending on the stroke of the plunger, then, over a range in which ilf 
and I are nearly stationary with respect to c, i t  will be hard indeed for the apparatus 
to select a unique wave. 

Furthermore since froin figure 5 the increment of the total energy E is also sinall 
beyond E = 0.66, we see that only a slight loss of energy can appreciably reduce the 
wave amplitude to a point lower down the energy curve. I n  small-scale experiments 
in a channel of uniform depth, and with side walls, such losses are appreciable (see 
Ipperi & Kulin 1955). Hence the higher waves are more likely to be obtained by 
generating waves of moderate amplitude, which are then rnade to propagate into 
a gradual l~  narrowing channel, or into water of very gradually diminishing depth, 
as discussed in the next section. 
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9. O N  T H E  B R E A K I S G  O F  W A V E S  I N  S R A L L O W  W A T E R  

From figures 5 and 6 i t  is clear that the total energy E (or in dimensional terms 
EIqh3) has a niaximum at  about c = 0.778. The presence of this inaxiinum has some 
interesting and far-reaching consequences for the way in ~vhich solitary waves 
break as they enter shoaling water. 

Xost observers (Mason 1952; Iverson r95q Ippen & Kulin 1955) have dis- 
tinguished two main types of breaking wave: on the one hand the 'plunging' 
breaker, in which the forward face of the wave groms markedly steeper than the 
rear slope, and finally the crest falls violently into the forward face; on the other 
hand the 'spilling' breaker, in which the crest remains practically symmetrical 
and a quasi-steady whitecap, or roller, forms on the forward face. The height of 
plunging breakers, a t  the moment of plunging, is noticeably variable, and ranges 
from O.9h to about 3.0h, depending on the slope of the beach (see Ippen & Kulin 
1955). The height of symmetrical spilling breakers, on the other hand, is much less, 
lying between about O.65h and O.85h. 

Xow a solitary wave entering slowly s21elving water will, if it is not brealiing, 
have only a sn~all dissipation of energy, arising mainly fi-om friction a t  the bottoni. 
I ts  total energy Egh3 (in dimensional units) will therefore remain almost constant. 
As the depth I& decreases, the non-dimensionel energy E will accordingly increase. 
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The wave will therefore tend to evolve along the curve of figure 5 ,  with both s and 
E increasing a t  first. 

However, when the maximum value of E is attained the wave can no longer re- 
main symmetrical. It must therefore become unsyminetrical and possibly unsteady. 
If it is evolving slowly, as on a gentle slope, it may develop small instabilities on 
the forward face of the wave, and in this way lose enough energy to enable it to 
proceed dozun the declining energy curve towards the symmetrical wave of n~aximum 
amplitude. At this point, or close to it, there may momentarily be a balance between 
the energy lost through the instabilities on the forward face (which in large waves 
will develop into a whitecap) and the relative energy E gained through diminishing 
depth of water. However, if the dissipation is sufficient, the energy will fall below 
the threshold value 0.918gh3and the wave will jump back to a point on the lower 
part of the energy curve. Most probably, since some energy may be lost whereas 
momentum is conserved over a short distance, the wave will jump to a point on the 
energy curve where the impulse I is close to its limiting value 2.44.t This occurs 
when the wave height s is about 0.64. The wave will then grow again and the process 
repeat itself. This hypothesis is well in accordance with the marked intermittency 
noticed in spilling breakers by Longuet-Higgins & Turner (1974). 

If on the other hand the beach slope is relatively steep, then the solitary wave, 
on arriving a t  the maximum value of E ,  may not be able to dissipate sufficient 
energy soon enough to enable it to descend the energy curve towards the wave of 
maximum amplitude. In  this case it evolves rapidly into an unsymmetrical wave, 
and ultimately becomes a plunging breaker. Because the wave is not restricted to 
a symmetrical form, its height can ultimately be much greater than the limiting 
value of 0.827 for the symmetrical wave. 

10. CONCLUSIONS 

By accurate calculation, and the use of integral quantities such as the mass and 
potential energy, we have determined the behaviour of the wave speed and other 
parameters of the solitary wave, as functions of the wave height s, over the entire 
range 0 < s < 0.827.We have shown that the speed F ,  the mass M and the potential 
and kinetic energies, all have maxima within the range of wave amplitudes. 

There is good agreement between our theoretical values of Fand the best available 
observations of solitary waves in water of uniform depth, which however extend 
only as far as s = 0.62.The absence of observations of very high waves in water of 
uniform depth can be accounted for by the reduction in wave amplitude associated 
with only a very slight loss of energy. 

Considerable light can be thrown on the breaking of solitary waves in shallow 
water by the single fact that the highest wave is not the most energetic. To obtain 
greater energy the wave must become asymmetrical and probably unstable. The 

f Any additional mass M can always be accommodated in the fringes of the wave, without 
altering the mean level. 
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growth of the asymmetry and the nature of the instabilities which seem to develop 
on the foru~ard face of the wave would repay further study, both theoretical and 
experimental. 0 1 1  the smaller scales, however, such instabilities are bound to  be 
influenced strongly by surface tension, which we have so far ignored, as having 
increasingly less effect when the wavelength is enlarged. 

The reasons given in $ 6  for the existence of an energy maxi~nunl for solitary 
waves must also apply to periodic gravity waves, including waves in deep water. 
Thus we may expect to find similar phenomena for breaking in deep water, par- 
ticularly some instabilities on the forward face of each wave and a marked inter- 
mittency in spilling breakers. The detailed discussioil of waves in deep water is 
left for a separate study. 

Note added on 6 i t fay 1974. Since completing our calculations i t  has come to our 
notice that Witting (1974)has arrived a t  a similar conclusion regarding the asymp- 
totic nature of the series (2.2), but by a quite different approach. His coiiclusion 
is based in part on an examination of the numerical behaviour of the coefficients 
in an expansion of (x+ iy) about the point (4+i$) = cc (where 4 is the velocity 
potential). He suggests that in general an expansion in integral powers is not 
complete. (Itmust be admitted, however, that asymptotic series can give highly 
accurate results.) In  the special case of the highest wave, his numerical results suggest 
that the series (2.2) may be complete, and that, if so, then em,, = 42712~= 0.827... . 
Thus in this case his conclusions independently confirm our own. 

We are indebted to Dr L. W. Schwartz for comments on a first draft of this paper. 
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