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In a previous paper it was shown that in steep standing waves on water the collapse
of a rounded cavity in the wave trough can produce quite high local vertical acceler-
ations, initiating the growth of a strong vertical jet. In one example given here, the
acceleration exceeds 100g. The main purpose of the present paper is to follow the
subsequent development of the jet by means of a boundary-integral time-stepping
technique. It is found that the jets tend to bifurcate into two halves, each forming
a plunging or spilling breaker. The transition of the rising wave trough into a thin
jet is here compared with an asymptotic flow in which the free surface is given by a
quartic equation.
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1. Introduction

In a recent paper (Longuet-Higgins 2001a, hereafter referred to as paper I) it was
shown that steep standing waves on the surface of deep water can, in some circum-
stances, produce remarkably large vertical accelerations, giving rise to vertical jets
of water arising out of the wave troughs. A similar phenomenon could occur through
the impact of a water wave against a vertical wall or cliff face or against the side of
a ship in deep water. A sufficient condition for moderately large accelerations is that
the wave trough have the form of an almost circular arc, as in a shaped charge.
The previous calculations were carried out using a new method due essentially to

Balk (1996), which is particularly convenient for parametrizing the initial conditions
for the flow. The examples given in paper I showed that the resulting vertical accel-
erations of a particle in the wave trough could exceed 10g, before falling off rapidly
to smaller values.
After the acceleration had fallen to near zero, the tip of the jet began to develop

a sharp curvature. For the mathematical description of such a sharp corner, Balk’s
analysis, which is in terms of a Fourier series, is not so well adapted. In fact the
calculations tended to lose accuracy slightly before the sharp corner was formed.
The purpose of the present paper is to continue and extend the previous results by

making use of another but complementary method of numerical time-stepping, which
was devised for the study of breaking waves by Longuet-Higgins & Cokelet (1976).
This boundary-integral technique has been further developed by many authors: see,
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for example, Vinje & Brevig (1981), Dold & Peregrine (1986), Roberts (1983) and
Mercer & Roberts (1992). In the present paper we shall make use of an accurate
version of Vinje & Brevig’s formulation, which has been used previously to follow
the nonlinear development of steep gravity waves when subjected to a normal-mode
perturbation (Longuet-Higgins & Dommermuth 1997). It can equally well be used
to study the time-history of any space-periodic surface waves, and in particular to
follow the standing-wave jets that concern us here.

2. Initial conditions

In paper I the horizontal and vertical coordinates (x, y) of a point on the free surface
were given in general by equations of the form

x = ξ +
N∑

n=1

n−1an sinnξ,

y = y0 +
N∑

n=1

n−1an cosnξ,




(2.1)

where ξ is a parameter running from 0 to 2π over one wavelength L = 2π, and the
coefficients an(t) are functions of the time t only. Moreover, to conserve the total
mass of fluid,

y0 = −
N∑

n=1

1
2n

a2
n. (2.2)

In the present system, the initial conditions are specified by the values of the
coordinates (x, y) of each point on the surface at time t = 0, together with the
velocity potential at the free surface. In all of the examples considered here, the
initial velocity is zero. Hence we may simply take

ȧn(0) = 0, n = 1, 2, . . . , N. (2.3)

The particular examples chosen in paper I had very simple initial conditions. In the
first four examples A, B, C and D we took N = 2. The initial values of the coefficients
a1 and a2 were given in table 1 of paper I, and will be restated in the figure captions
below. They correspond to cases where the total width 2x1 of the wave trough is
given by

x1/π = 0.25, 0.20, 0.15 and 0.10, (2.4)

respectively. The time t is measured in units in which the wavenumber k and the
acceleration due to gravity g are both equal to 1.

3. Results

Figure 1 shows the development of the surface profile in case A , x1/π = 0.25, from
t = 0–2.4 at intervals of 0.2. A little more than half a wavelength is shown. When
t = 0, the wave trough between x/L = 0.375 and 0.625 is very nearly circular. The
‘crest’ arising out of the wave trough first develops a sharp corner at around t = 1.0
(the limit of the previous calculations). At around t = 1.2 a small protrusion arises
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Figure 1. Profiles of the free surface at times t = 0 (0.2) 2.4 in case A,
x1/L = 0.25. Initial values: a1 = 0.6879, a2 = 0.2379 and ȧ1 = ȧ2 = 0.
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Figure 2. Continuation of figure 1, (case A) t = 2.4 (0.2) 4.0.

out of the crest and then becomes sharper (t = 1.4 and 1.6), while the main body
of the crest thickens and continues to rise. By the time t = 2.4 it appears that the
sharp tip of the jet is being reabsorbed by the main body.
In figure 2 it can be seen that after t = 2.4 the tip is completely reabsorbed, while

on each side the surface overturns as in a plunging breaker. The calculation could
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Figure 3. Profiles of the free surface at times t = 0 (0.2) 2.8 in case B,
x1/L = 0.20. Initial values a1 = 0.7815, a2 = 0.2764 and ȧ1 = ȧ2 = 0.

not be continued much beyond t = 4.0, owing to the sharp curvature at the tips of
the two breakers.
The corresponding acceleration ÿ of the particle at the central point (y/L = 0.5)

is shown in figure 12, curve A. The acceleration ÿ reaches a peak of about 2.8g
at around t = 0.75, when the free surface is still nearly flat locally, and then falls
abruptly to −g, when the sharp-pointed tip is formed. In other words, that part
of the fluid is in free-fall. The acceleration remains at −g until t = 2.5, when the
sharp tip has been reabsorbed into the main jet. The acceleration remains negative,
however, until after t = 4.0.
Next consider case B, when x1/L = 2.0; the initial width of the trough is only

one-fifth of the wavelength. Figure 3 shows the jet developing more rapidly than in
case A, but otherwise in a similar way. The sharp tip that is formed between t = 0.8
and 1.0 rises higher, and when it falls back into the main body it produces a small
circular cavity, shown enlarged in figure 4. This reabsorption of the mini-jet can be
viewed as the same process as the ‘shaped charge’ effect, but in reverse.
The vertical acceleration for case B is shown in figure 12, curve B. This time ÿ

rises to almost 5g at around t = 0.71, before falling to −g and remaining there till
after t = 2.8; throughout this time the tip of the jet is in free-fall.
The very small scale of the features near the cavity in figure 4 prevents the com-

putation in this case being carried beyond about t = 3.1. However, on the reasonable
assumption that this small part of the flow does not significantly affect the devel-
opment of the rest of the profile we may cut out a small central section of total
width 0.01, say, and splice both y and φ across the gap, using a simple interpola-
tion formula, before continuing the time-stepping. This procedure yields figure 5.
An enlarged view (figure 6) shows the detail of one of the overturning jets for two
different grid solutions.
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Figure 4. Enlargement of the top of the jet in figure 3 at time t = 2.8 (0.1) 3.1.
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Figure 5. Continuation of figure 3 after cutting and splicing a
narrow central section (|x| � 0.1).

In case C, when x1/L = 0.15, the corresponding profiles are shown in figures 7–10.
From figure 7 we see that the tip of the jet is reabsorbed at around t = 2.0. The
maximum vertical acceleration, from figure 12, curve C, is now greater than 8g.
Again, to carry the computation beyond t = 2 it was necessary to cut and splice a

narrow section of the profile including the small cavity, as in figure 8. The resulting
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Figure 6. Enlargement of the overturning jet in figure 5 (case C) at t = 3.8
(– – –, 256 points; ——, 512 points).

0.2

0.3

0

0.1

0.2

0.3

x/L

y/
L

0.1

0.5− − − − −
−

−

−

0.4 0.3 0.2

t = 0

2.0

1.0

0.1 0 0.1

Figure 7. Profiles of the free surface at times t = 0 (0.2) 2.0 in case C,
x1/L = 0.15. Initial values: a1 = 0.8779, a2 = 0.3112 and ȧ1 = ȧ2 = 0.

profiles are shown in figures 9 (centre rising) and figure 10 (centre falling). The side
jets clearly become very sharp pointed and thin.
Case D, when x1/L = 0.10, shows a somewhat different behaviour. Figure 11

suggests that the sharp tip does not have time to develop before it is overtaken by
the main body of the jet. The absence of this feature enables us to continue the
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Figure 8. Splicing the central section of figure 7 at t = 2.0 (——, original; – – –, splice).
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Figure 9. Continuation of figure 7 (case C) after splicing.

calculation until the plunging breakers on each side develop very sharp corners. This
time the vertical acceleration ÿ rises to over 10g.
Figure 12 combines and compares the acceleration curves for all the cases A–D

considered so far. It is essentially an extension of fig. 8 in paper I to negative values
of ÿ (and larger values of t) and confirms very satisfactorily the agreement between
the two quite different methods of numerical calculation.
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Figure 10. Continuation of figure 9 (case C).
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Figure 11. Profiles of the free surface at times t = 0 (0.5) 3.0 in case D, x1/L = 0.10.
Initial values: a1 = 0.9701, a2 = 0.3270 and ȧ1 = ȧ2 = 0.

4. Transition to a jet

One of the most interesting features of the profiles in figures 1, 3, 7 and 11 is the
smooth transition of the rising trough from a sharp corner, with slope angle less than
45◦, to a more narrow, sharp-tipped jet. In figure 7, for example, this occurs between
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Figure 12. The vertical acceleration as a function of the time in cases A–D.
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Figure 13. Intermediate profiles in case C at intervals of ∆t = 0.02,
showing the transition from a sharp corner to a jet.

t = 0.6 and 0.8. An enlargement, with intermediate profiles at intervals ∆t = 0.05, is
shown in figure 13. It is notable that there is no discontinuity at the instant when the
angle of maximum slope is 45◦, as there is in a Dirichlet hyperbola (Longuet-Higgins
1972). Instead, the sequence of profiles more closely resembles one of the canonical
forms for the development of a sharp-pointed jet which have been derived in a recent
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Figure 14. Profiles given by the asymptotic expression (4.1) when γ = −6,
at intervals of ∆t = 1.0.

paper (Longuet-Higgins 2001b). These are given by the quartic equation

x2 = ±δt−2 − (y3 + 9x2y)/t + [(7γ − 9
2)x

4 − 9(2γ + 1)x2y2 − (γ + 9
2)y

4]/t2, (4.1)

where x and y are horizontal and vertical coordinates in a free-fall frame of reference,
and δ = ±1 and γ is an arbitrary dimensionless constant. Expression (4.1) is valid
asymptotically for small values of x/t and y/t. The scales of length and time, and
the value of γ, are chosen so as to match the outer flow. An example is shown in
figure 14, where γ = −6.0. A uniform vertical velocity V = 0.05 has been imposed.
To make figures 13 and 14 directly comparable, the profiles in figure 13 have been
replotted in an inertial frame of reference, by giving each curve a uniform vertical
displacement 1

2g(t − t1)2, where g = 1 and t1 = 0.6.
Similar comparisons can be made between equation (4.1) and the profiles in fig-

ures 1, 3 and 11 at the appropriate times.

5. Example of an extremely high acceleration

So far we have assumed the maximum number N of harmonics in our representation
(2.1) of the initial conditions to be just 2. Consider, however, a case when N = 3,
namely let

a1 = 5
8 , a2 = −2

8 , a3 = −3
8 , (5.1)

with ȧn(0) = 0, n = 1, 2, 3, as before. Figures 15 and 16 show that the initial wave
trough is very flat, with two rather sharp corners at each end. Each corner is roughly
the arc of a circle. When t > 0, each corner collapses at first independently of the
other, but then the two resulting jets converge to form a smaller semicircular trough
near the centre. This gives rise to extremely high accelerations, ÿ exceeding 400g
(see figure 17). The calculations cease at around t = 0.54 = tc, say. A logarithmic
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Figure 15. Profiles of the free surface at times t = 0 (0.1) 0.5 with initial
conditions a1 = 5
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Figure 16. Enlargement of the central portion of figure 15.

plot is interesting. In figure 18 we have plotted ln(ÿ/g) against ln |tc − t|. It can be
seen that the plot is linear over 11

2 decades, showing that

ÿ/g ∝ |tc − t|β (5.2)

over this range of t. This type of power-law behaviour has been shown to be typical
of free-surface flows that are close to being critical, in the sense that they almost
pinch off a ‘bubble of air’ (see Longuet-Higgins & Oguz 1997).
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Figure 17. The vertical acceleration of a particle on the central line in
figures 15 and 16, as a function of t.
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Figure 18. Logarithmic plot of ÿ/g against |t − tc|, where tc = 0.54.

6. Conclusion

When a standing gravity wave is allowed to develop from a rounded cavity, the
vertical acceleration may attain quite high values compared with g. However, in the
subsequent development of the jet the accelerations are relatively small and the tip
of the jet is practically in free-fall. In the examples given here the jet bifurcates into
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two plunging or spilling breakers falling away to either side. As shown elsewhere
(Longuet-Higgins & Dommermuth 2001), other initial conditions can give rise to
single, sharp-pointed jets, which relapse into the surface and form a temporary cavity:
a time-reversal of the cases discussed here. Both types of behaviour seem to have
been observed by Jiang et al . (1998) in their experiments on subharmonically forced
standing waves. However, a full dynamical explanation of these authors’ observations
has yet to be given.

The calculations in §§ 3–5 were presented at the IUTAM Symposium on Free-Surface Flows,
Birmingham, UK, in July 2000. M.S.L-H. is supported by the Office of Naval Research under
contract N00014-00-1-0248. D.G.D. is supported under contract N00014-97-C-0345.
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