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Studies of the normal-mode perturbations of steep gravity waves (Long~~et-  
Higgins 1978b,  c )  have suggested two distinct types of instability: a t  low 
wave steepnesses we find subharmonic instabilities with fairly low rates 
of growth, and a t  higher wave steepnesses there are apparently local 
(' superharmonic ') instabilities leading directly to wave breaking. Between 
these two types of instability is an intermediate range of wave steepnesses 
where the unperturbed wave train is neutrally stable. 

I n  the present paper we employ the time-stepping method of an earlier 
paper (Longuet-Higgins & Cokelet 1976)to test the rate of growth of each 
type of instability. For the initial linear stages of each instability, the 
computed rates of growth are accurately confirmed, and it is verified that 
the local instability does indeed lead to breaking. 

The later nonlinear stages of the subharmonic instabilities are further 
investigated. I n  the two examples so far computed it is found that the 
gradual rates of growth of the subharmonic instabilities are maintained, 
and that ultimately every alternate crest develops a fast-growing local 
instability which quickly leads to breaking. 

The task of understanding and predicting the formation of breaking waves on deep 
water has recently been approached in two different ways. On the one hand a 
general method has been developed for calculating the deformation of the free 
surface in any irrotational motion which is periodic in the horizontal coordinate 
(Longuet-Higgins & Cokelet 1976; referred to as paper I).This has been applied 
successf~~llyto a variety of initial conditions (see I and also Cokelet 1977).On the 
other hand a more analytical approach (Longuet-Higgins 1978b, c) has yielded some 
understanding of the initial rates of growth of any small perturbations to a uniform 
train of waves of finite amplitude. 

The conclusions reached in the more recent papers (Longuet-Higgins 1978b, c) 
were somewhat surprising. For instance i t  was found that there were a t  least two 
distinct types of instability: subharmonic instabilities of the Benjamin-Feir type, 

t Part I appeared in Proc. R. Soc .  L o n d .  A 350, 1-26. 
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which were however confirled to wares whose 'steepness' alc lay within a certain 
finite range (the upprr limit being a t  alc n 0.37  and the maximum growth-rate a t  
ak n 0.32); and secondly, local or st~l-rerharmonic inst:tbilities which first appeared 
when ulc E O 41. These had much higher rates of growth, and it was suggested that  
they led directly to overtt~rning of the free surface, that  is to say k~reaking waves. 

lVith regard to the subharmonic instabilities, rather good corlfirmation of the 
calculated growth rates was provided by the observations reported by Benjamin 
(1967). I3ut these were only for small values of the wave steeprless (nlc < O 17).  At 
higher values of ak. no direct measuren~ents are yet available. 

The calcrllations reported by 1,ongnet- Higgins ( I978 b, c) were lcngthy. Because 
of the need to verify the sornew hat unexpected conclusions relating to instabilities 
a t  higher valt~es of ak,  the present authors have, in this paper, set out to determine 
the initial growth-rates of each type of instability hy the quite independent time- 
stepping method of paper I. This method is indeed well suiteci to the present prob- 
lern whenever the initial perturbation has a length-scale equal to an integral number 
m of wavelengths of the unperturbed wave. Here we concentrate part ic~~larly on 
the case m = 2 when the perturbations are two wavelengths long. This case has the 
advantage that  the numerical calculations are the most accurate for any value of 
m a t  the higher values of ak, where confirmation is most needed Also, they display 
all the unexpected features mentioned earlier. 

These features are set out in more detail in $ 2 . In  5 3 ~3e briefly describe the time- 
stepping method, to be applied in the present instance Sections 4 and 5 describe 
the main results as they relate to the initial rates ofgrowth. From table 1and figure 5 
i t  will be seen that  the agreement between the two methods is remarkably good. 

But  the time-stepping method used in the present paper has the further advantage 
that  (unlike perturbation analysis) its validity is not limited to small perturbations 
of the finite-amplitude wave. Being without analytic approximation, the numerical 
calculation can be carried to the point when the perturbations themselves are of 
finite amplitude. This is done in 5s 6 and 7. As a result it is fountl, first, that  the 
'local' instabilities do indeed lead directly to wave breaking, in which the final 
overturning takes place very rapidly (figures 15 and 18). Secondlv, the subharmonic 
instabilities, when followed to their later stages of growth, de~yelop local instabilities 
at every alternate wave crest. These local instabilities are precisely si~nilar to the 
local instabilities found previously. In  other words, the disintegration of the wave 
train, which is brought about by the subharmonic instabilities, extends as far as 
t o  make the waves break, in all those cases tha t  we have tried. Moreover, the 
computed behaviour of the wave crests is so similar in all cases that there is hope 
for a local, asymptotic theory of the dynamics. 

Finally we should like to emphasize that,  unlike those in paper I, the waves 
treated here are theoretically free waves, with constant and uniform pressure a t  
the free surface. Thus there is no input of energy; me are studying the dyna~ilics of 
breaking waves ~ tnder  the simplest possible conditions. 
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2. T H E  N O R M A L - M O D E  A N A L Y S I S  

I n  the perturbation analysis of Longuet-Higgins (1978 b,c) the normal modes were 
calculated in the form 

x = X($,1C.) +el($, 11')ciUt 

Y = Y($, +6?(9, 11')e-iut,'1 
where $ and @ denote the velocity potential and stream function in a frame of 
reference moving with the speed c of the unperturbed wave, and x, y are rect- 
angular coordinates (shorizontal, y vertically upwards) expressed in terms of 9, 
and the time t as independent variables. X and Y represent the coordinates of the 
unperturbed wave, and [, 9 the normalized perturbation, 6 being an  arbitrary small 
parameter. The free surface, which in the unperturbed wave is given by @ = 0, is 
given by 

in the perturbed state. I n  fact [, ?jandfhave both real and imaginary parts, corre- 
sponding to the 'in-phase' and 'quadrature' components of the normal mode, and 
each of these components is given, in turn, by Fourier series in cos (l$/c) and in 
sin (1$/c), where 1 is a non-negative integer and $ runs from 0 to 2mnlc. 

Throughout this paper the units of length and time are normalized by taking 
g = 1and the wavelength of the unperturbed wave to be 2n. 

It was shown by Longuet-Higgins (19783, c) that  each normal mode may be 
designated by one or more rational numbers (mode numbers) which indicate its 
principal wavenumber components when ak is small. For example n = (i ,#)de-
notes a subharmonic normal mode with principal components having wavenumbers 
Q and $. An index + or - may be added to designate that  the perturbation is 
either growing or decaying, respectively. 

In  general a is a complex quantity, and the frequencies occur in conjugate pairs. 
The unstable modes are those for which cr has a positive imaginary part. The cal- 
culations revealed two distinct types of instability. The first are subharmonics, with 
wavelengths greater than that of the unperturbed wave. At small wave steepness 
ak these are clearly of the Benjamin-Feir type (Benjamin 1967). If we imagine the 
side-band frequency Acr as  fixed and the steepness ak of the unperturbed wave to  
increase gradually, then these subharmonic modes first become unstable when ak 
slightly exceeds Aa/,i2. The maximum rate of growth is found for a normal per- 
turbation two wavelengths long, a t  an amplitude ak = 0.32. But  when ah slightly 
exceeds 0.37 the perturbation apparently becomes neutrally stable again: the 
instability disappears (a result first predicted by Lighthill (1967)). Beyond ah = 0.37 
the normal-mode analysis of Longuet-Higgins (1978 c )  indicates a narrow range of 
neutral stability, culminating in the onset of a second type of instability which (it 
mas suggested) is more local, being concentrated near the crests of individual waves. 
For this type, a is pure imaginary, and the initial rate of growth is much higher. 
It was foreseen that  these instabilities might develop directly into breaking waves. 
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3 .  T H E  T I M E - S T E P P I K G  M E T H O I )  

I n  the present paper we aim to test and extend these results by the entirely 
independent time-stepping method developed in I. This method is based on the 
fact that  in an  irrotational, incornpressible fluid the lcinernatic and dynamic 
boundary conditions describe the evolution of the flow in terms of quantities speci- 
fied only on the boundaries. For deep-water naves, the only boundary is the free 
surface, the region of greatest interest. I t s  location is given by the coordinates, 
(z?,Y;), j= 1 , 2 , .. .,X, of specified fluid particles. I11 order to follow the motions 
of the surface we need know only the tangential and normal velocities of the par- 
ticles on it .  Ciiven the value of the velocity potential $* along the surface we find the 
tangential velocity a$*/& by numerical differentiation. To find the normal velocity 
a$*/&$ we use Green's third identity ((4.2) of paper I)to derive an integral equation 
for 2$4:/c?nin terms of other surface-evaluated quantities. Having solved this 
equation numerically we march forward in time with the evolution equations 
((2.7) and (2.10) of paper I). 

The rnotion is assumed to  be periodic in the horizontal coordinate, though not 
necessarily in the time t. This assumption enables us t o  transform the semi-infinite 
region of fluid (x*,y*-plane) into a finite enclosed region (<-plane) such that  the 
free surface maps to the exterior boundary (see § 3 of I ) .  The basic numerical 
computations are performed in this transformed plane. 

Evidently the time-stepping method can be adapted without essential change to  
the present problem, provided the spatial period L contains m wavelengths of the 
unperturbed motion (rn an  integer). I n  the present paper we confine ourselves to 
the case m = 2, first because the initial perturbations, as calculated by the normal- 
mode method (Longuet-Higgins 1978b, c), are given rnost accurately when m = 1 
or 2, a t  the larger values of ak. Secondly, the case m = 1 excludes subharmonic 
instabilities and yields only the localized instabilities; and these occur a t  slightly 
higher values of ak  than when rn = 2 so the accuracy is correspondingly less. By 
considering rn = 2 we shall include both types of instability, and with greater 
initial accuracy. 

A third advantage of the case m = 2 is that ,  of all integer values of m, this yields 
the subharmonic instability having the highest growth-rate, namely when 

I n  the time-stepping method the reference frame is stationary, relative to  the 
water a t  infinite depth. So if we denote the velocity-potential and stream-function 
by $*,@*, and the rectangular coordinates by x*, y*, we have the relations? 

t I n  (Longuet-Higgins 19786, c) the undisturbed waves were taken to he propagating in 
the negative x-direction. Here we assume they propagate in the positive sense. 
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To begin the time-stepping we need only to know the values of x*, y* and $* when ~ = ef, as a function of some parameter which increases monotonically along the 
free surface. (Here one can take this to be $ / c  in the first place.) Now on the free 
surface $ = ef we have from (2.1) to first order, 

when t = 0; and it remains only to write 

where x and y are given by (3.2). 
The computation points were a t  first taken a t  N equally spaced values of $ 

along the free surface. Later it was found that improved accuracy could be ob- 
tained by distributing the points a t  equally spaced intervals of arc length in the 
transformed <-plane (see I, $ 3). Normally N was taken as 90 but occasionally 60 
or 120 according to the accuracy required. After the initial distribution, the same 
points were followed as Lagrangian marker points throughout the rest of the com- 
putation. This proved beneficial because they tended to concentrate a t  the crests, 
the regions of largest curvature. 

The computations were programmed in FORTRAN IV and performed on Ruther- 
ford High Energy Laboratory's IBM 3601195 digital computer. The array storage 
requirements were proportional to (X2 + 7 7 N ) and in double precision (8 bytes/ 
word) the core storage (arrays+ buffers+system overheads) was 310 K bytes 
(1 K = 1024) for I%' = 90. The computations were first limited by the availability 
and expense of computer time. With 1V = 90 the time required (cu. N2) for one 
solution of the integral equation (4.5) of I was 2.2 s. This usually had to be solved 
twice per time-step when Adams-Bashforth-Moulton time-stepping was used. 
The time-step At was adjusted so that no particle moved further in a time-step 
than the distance between itself and an adjacent particle. When At was altered, 
three Runge-Kutta steps requiring four solutions of the integral equation were 
taken. The ai~iount of computer time per run varied a great deal, but generally 
higher waves took longer because of large particle velocities and hence smaller 
time-steps. In the examples to be described, the runs typically required 5-10 min of 
machine time. 

Throughout the computation. the surface pressure was assumed to be zero. 

4 .  E X A M P L E  

Now as an example of the time-stepping computation described in $ 3 we show 
in figure 1 the results of a computation for the perturbation n = (i,q)+  when 
aL = 0.32. According to the normal-mode calculations (Longuet-Higgins 1978b, c) 
this should in fact be the fastest-growing mode of the Benjamin-Feir type. In the 
left hand column of figure 1 are shown two successive crests of the perturbed wave, 
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with time increasing down the page. At the top right is shown the initial pertur- 
bation, according toequatioll(2.3) but with thevertical scale mtiltiplied by a factor 5 ,  
for clarity. Belonr this, correspondilig to each profile on the left, is the per t~~rbat ion  
calculated by taking the difference between the profile on the left and the unper- 
turbed wave adranccd with tlie theoretical phase-speed c.  

It will be noticed, first, that  every a l t e~na te  crest of tlie original profile is higher, 
in general, and the intermediate crests are lower. This is because the perturbation 
is an  odd one, being equal, but of opposite sign, on adjacent crests. 

Kext i t  will be seen that  after half a cycle of the perturbation (namely a t  the foot 
of figure 1) tlie waves that  were the higher have become lower, and rice T-ersa. 

FrcXrr~I?1. Dexelopment of the sltbllarlnon~c ~ni tah~l i ty  orer. one l?alf-penod of the (i,:)+ 
perturbation, 1~11en nA = 0 31 Tlw left ]land colltmn sllous the time-stepped surface 
profiles The 11gl1t hand column slioxrs the rehultlng perturbatlorl, enlarged ve~tlcally 
by a factor 5. Tlme incleases dowmards. In this case N = 90, c = 0.025. 
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FIGURE2. AS in figure 1, but m-~th & = 0 (zero perturbation). Thls tests the accuracy of the 
time-stepplng technlqne. On the nght, the vertlcal scale is enlarged trines 20. 

This is because after a half-cycle the perturbation is exactly proportional to its 
initial value, but of opposite sign. 

Third i t  will be seen, by comparing the perturbations a t  the top and bottom of 
figure I, that the magnitude of the perturbation has indeed increased. 

Figure 2 shows a precisely similar computation but with c = 0,  that is, the initial 
perturbation is zero. This is simply a test of the accuracy of the time-stepping. After 
the same interval of time the perturbation shown on the right (magn. x 20) has 
in fact grown very little; i t  is a measure of the error inherent in the calculation. 
The r.m.s. amplitude of the perturbation was less than 4 x lop4. 

Now figure 3 shows the companion mode n = (4,#)- which is expected to decay. 
Again, comparison of the perturbations a t  top and bottom of the figure shows that 
the perturbation is indeed diminished. 
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0 L' l a  0 
1 l n  

FIGURE3 .  Devclopxncnt of the cteeay~ligrnode ( i , 3 ) - nhen nk = 0.32. 

Paraxneterr as In figure 1. 


To determine the rate of growth of the perturbation h(x*,t) over a given interval 
of time, say (0,t),we aim to determine the ratio R(t)of the root-mean-square values 
of h(x*,t )  and h(x*,0). By definition? 

It is also useful to define the correlation coefficient between h(x, t) and h(x+x,,0) by 
J' h(x, t) h(x +fz,, 0)ctx 

Cix,,t ) = 
t)j2dx {h(,r+x,,0 ) ) 2  ds]+[J'{h(x, ' 

t In  this section a and y are xvrittrn for x* and yW.This sllould cause no confusion wit11 tlie 
notation of $ 2. 
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We might expect the maximum correlation between h(z,t )  and h(r+ x,,0) when 
X, = ct, where c is the phase velocity. However, since rje-'"t has both a real ancl 
an imaginary part, corresponding to components in-phase and in quadrature with 
the initial perturbation, the maximum (absolute) correlation will in general fluc- 
tuate in time. If T denotes the period of the perturbation ( T  = 2x/Re (n))  then a t  
times t = sT, where s is an integer, we should expect C(ct, t )  to be near unity; while 
a t  times t = (s+ 9)T we should expect C(ct, t) to be nearly - 1.Provided the maxi-
mum value of IC(x,,t)l is near unity, then a useful measure of the growth-rate 
should be derived from the corresponding value of R(t). I n  fact we would expect 
that while the perturbation is still small 

The actual determination of the integrals in (5.1)and (6.2) must be done with 
care. The computer program begins a t  t = 0, and has its own method of determining 
the time-step length, At. In  general the flow will not be computed at exactly 
t = $ST, but rather a t  times before and after this. Hence it is necessary to inter- 
polate the particle positions to this time. This can be done in a variety of ways. 
Let us assume we have a simple equation of the form 

and we store y and f at every time-step. Our time-stepping technique is fourth- 
order (local errors (At)5) which means it would be consistent to use five pieces N 

of information about y and f for interpolation. However it seems a good idea to 
use information only at times t, and t, which braclcet the time of interest, t. This 
implies a cubic interpolation formula (errors - (At)4) based on y,, y,, fl and f, 
(here subscripts denote time levels). We tried interpolating the particle positions 
using such a formula, and it was clear that the results were 'noisy '. A linear inter- 
polation (errors - (At),) based on just the particle positions themselves was much 
smoother. This is to be expected since the displacements are calculated from the 
time derivatives by integration, a smoothing process. In order to have a smooth 
interpolant ij(t), and to make use of both the displacement and derivative infor- 
mation a t  t, and t,, we took the average of two quadratics each fitted through t, and 
t, but with one using fl and the other using f,.Thus we have 

where 

This interpolation formula is exact for quadratics and has local errors which vary 
as (At)3. 
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Once the positions of the fluid particles are interpolated to the required time we 
wish to determine the shape of the perturbation. The free surface is specified by 

where N represents the contribution from an unperturbed steady wave and h 
represents the perturbation. The steady wave profile is calculated by the technique 
of Longuet-Higgins ( 1 9 7 8 ~ )at  t = 0 ,  and for some later time it is just horizontally 
displaced by an amount ct where c is its phase speed. The perturbed wave profile is 
represented by the collection of points ( x , , y , ) ,  j = 1, ...,AT and to calculate 
h ,  = h(x , , t )  we simply subtract H, = H ( s , , t )  from y,. However in practice we 
represent N ( x ,  t )  by another collection of 37 points, and the horizorital coordinates 
of these will not necessarily coincide with the 2,. Therefore we use a periodic cubic 
spline to interpolate H ( x ,t ) in space. 

0 t 37' 

FIGLXE4. The correlation coefficient C(ct, t )  between ?L(x,t )  and h(z+ct , 0) as a function of 
the t ~ m e  t for the perturbation (+, 3)' when ak = 0.32 (see figure 1). 

TVe calculated the integrals in (5 .1)and (5.2) by interpolating h ( x ,  t )  to equally 
spaced values of x with periodic cubic splines, and then using the Simpson rule. 
The value of C(ct,t ) is plotted in figure 4 as a function of the time t , for the particular 
mode n - ( i ,  i)" discussed in § 4. I t  can be seen that C(ct,  t )  does indeed fluctuate 
in time. with extrema at  about t = +sT ( s = 0 . 1 , 2 , ...) as expected. 

Of particular interest is the value of X ( t )at  t = $ST(s = 1 ,2 ,3 ,  ...) and the corre- 
sponding rate of growth 

p' = t-I 111R ( t ) .  

For ale = 0.32, n = (4,#)+ we find that, when t = gT then P' = 0.0264 and when 
t = T. then ,b' = 0.0254. This is to be compared with the value ,b = 0.0234 obtained 
by the normal-mode analysis (see table 1). 
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TABLE 1. COMPARISON OF CALCULATED GROWTH-RATES OF NORMAL-MODE 

PERTURBATIONS 

time-stepping with -normal-mode caloulation integral equation 
7-7 


G5 3T P 	 P' 
a,% c(k /g)+  n Re (u) (a la )  Im (u)  C(ct, t)  R ( t )  t - I  In R 

,2072 15.17 .OOOO - .999 0.999 - .00010.10 	 1.005013 ,2676 11.74 .OOOO - .997 0.995 - ,0004 
.2098 14.97 .OOOO - ,996 1.002 .00010.20 1.020203 
,2406 13.06 .OOOO -.990 1.000 .OOOO 

( 4 , $)+ .2150 14.61 .0132 - .992 1.219 .01350.25 1.031746 { r(i,9- ,2150 14.61 -.0132 -.980 0.833 --.0125 
o,32 	 ,0254 

,1804 17.41 .OOOO - .994 0.985 - .00090.38 1.074399 
,1309 24.00 .OOOO - ,853 0.909 - .0040 

0.40 1.082225 4- ,1840 17.07 .OOOO - ,908 1.118 ,0065 
0.41 1.086045 ( 8 )  .OOOO a, .065 - - -

6,  R E S U L T S  

Similar calculations were carried out for the modes 9% = (&$)  at  the unperturbed 
wave amplitudes aE = 0.10, 0.20, 0.25, 0.32, 0.38, 0.40 and 0.41. For the normal 
modes under consideration the perturbation theory (Longuet-Higgins 1978c) pre-
dicts that a t  the two lowest values of ak the waves will be stable, a t  the next two 
they will be unstable, a t  the next two they will be stable again, and a t  the highest 
value of aE they will be violently unstable. This general behaviour is confirmed by 
our computations. Figure 5 shows a graph of the growth-rate /3 plotted against the 
unperturbed wave amplitude ak. The solid curve represents the growth-rates 
according to Longuet-Higgins (1978b) ,  and the points represent the present results. 
The surprising prediction of a return to stability with increasing wave amplitude 
is confirmed reasonably well. Departures of the observed growth-rates from the 
predicted ones are probably due to computational inaccuracies, although the finite 
amplitude of the perturbation may play a rBle. The results for the highly unstable 
mode a t  ak = 0.41 are not shown on figure 5 but will be discussed later. I n  all 
cases except aE = 0.32 we took e = 0.0125. 

Table 1 lists the quantitative results of the calculations. The first six columns 
give the unperturbed wave amplitude and phase speed, the mode of the pertur- 
bation, its frequency in a reference frame moving with the unperturbed wave, the 
semi-period of the perturbation and the growth-rate. These quantities are all 
derived from the normal-mode theory. The last three columns give the maximum 
correlation coefficient, the r.m.s. amplitude ratio and the observed growth-rate, 
all evaluated a t  t = 4T.Wre shall now discuss the results in detail beginning with 
the lowest waves. 
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At a k  = 0.10, the modes n = 3 and 72. = 8 display a negligible growth-rate, as 

shown in the last column of table 1. The correlation coefficients are -0.999 and 

-0.997 respectively, after one semi-period. These imply very little change of 

shape, and this is verified by an inspection of the profiles in figures 6 and 7 . On the 

left of each figure are the complete wave profiles, plotted every one tenth of a semi- 

period. The reference frame is a t  rest, i.e. the average horizontal fluid velocity is 

zero at any point which lies always below the free surface. The perturbation 

profiles h(x,t) ,  plotted with a vertical exaggeration of 20: 1, are on the right. Note 

how in figure 6 the smooth profile of h is very nearly a sine wave of length 4rc. This 


-0.0500 e--
0 1 0.2 0.3 0.4 0.4434 

a h  
FIGURE5. The l~near groxvth-rate /? of the norrnal perturbations ,a = 4,2 and (a, :)* as a 

ftinctio1-1 of the steepness ah of tllc uiil?crturbed wave train. Curves represent tho normal- 
mode calculations of Longuct-Higg~ns(197Sb) .  Plotted po~ilts are from the time-
stepp~ngmethod of the present paper, 0,7% = & and ($, 2 ) + ;  x , n = & and (4,;)-. 
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FIGURE6. The mode n = when nk = 0.10 followed over one half-cycle of tlie pertnrbation. 
The left hand column shows the time-stepped profiles. The right hand column shows the 
resulting perturbation enlarged vertically by a factor 20. Time increases downwarcls. 
B = 0.0125. 

is to be expected since this mode is exactly a sine wave in the limit as ah -+ 0 (which 
is the basis for the notation n = 9, signifying one sine wave in two fundamental 
wavelengths). Likewise the profile of the mode n = in figure 7 is predominantly 
three sine waves. 

The profiles for ak = 0.20, n = & and are illustrated in figures 8 and 9. Com-
paring these to figures 6 and 7 we see that the increased nonlinearity of the un- 
perturbed waves enhances the higher harmonic content of the perturbation profiles, 
local bumps and dips begin to appear. The correlation coefficients are -0.996 and 
-0.990, and the growth-rates are 0.0001 and 0.0000 for n = $ and 3 respectively. 
This extremely good agreement with theory is heartening when it is realized that 



14 M. S. Longuet-Higgins and E. D. Cokelet 

FIGURE7. Tlic mode n = 9 wherl ak = 0.10 follo~vedover. one half-cyclo 
of tlir perturbation. 

we first compute the con~plete wave profile (unperturbed wave +perturbation), 
interpolate in time, interpolate in space, subtl.act the unperturbed ware, and then 
make tile comparison to find G andR. 

For ak = 0.23 theory predicts one growing mode n = ( i ,$)+  and one decaying 
mode n = (i,23)-, 'il llic11 indeed are fotlrld The profiles for the growing rlrode are 
displayed in figure 10 in which the localized nature of the extreirla are rr~ore appar-
ent than before. The correlations a t  t = iT still exceed 0.98 in magnitude. The 
growth-rates differ from those predicted by a t  most 5 O/,, with the decaying mode 
diminishing more slowly than predicted. This is not surprising since any numerical 
inaccuracies can feed energy to a potentially growing mode and so obscure the 
decaying one. 
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FIGURE = = 0.20 folloa~edover one half-cycle 8. The rnode n. when nk 
of the perturbation. Compare figure 6. 

The modes (4,$1' at aE = 0.32 have already been discussed in 8 3. (a,$)& is of 
particular interest since it represents the fastest-growing Benjamin-Feir mode. 

One of the une~pect~ed results of the normal-mode theory is that a wave whose 
steepness is near aE = 0.38 will be stable to the modes n = and n = 8. The results 
given in table 1 and plotted in figure 11 certainly suggest this. The correlation 
coefficient equals -0.994 for n = 8 ,  and there is a very slight decay in amplitude. 
We observe a lower correlation coefficient and an increased rate of decay from 
n = 8. This is probably due to a variety of factors such as: (1) insufficiently con- 
verged eigenfunctions used as initial values, (2) the increased size of the pertur- 
bation amplitude for the mode n = 4 due to the manner in which the eigenfunctions 
were normalized, and (3) inaccuracies in the time-stepping. Whatever the cause, 
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FIGERE9. The mode n = 2 \%-henak = 0.20 folloxved over one half-cycle 
of the perturbation. Compare figure 7. 

the graph of C against t reveals a slightly noisy signal. The profiles for the two 
modes are shown in figures 1 1 and 12. 

The normal-mode theory predicts that ak = 0.40 is just on the neutrally stable 
side of a very rapidly growing instability. We have tested the n = 4mode and have 
observed growth but a t  a rate significantly slower than that of the unstable waves 
on either side. This discrepancy is probably due to the factors mentioned previously 
and to the close proximity of the rapid-growth region. The profiles are shown in 
figure 13. One interesting feature of these is the near step-function shape of the 
perturbation a t  t = 0 and t = $T = 17.07. This is also apparent in the n = & profiles 
for ale = 0.38 a t  t = BT = 8.71 as shown in figure 11. The perturbation elevates 
one wave trough and lowers the next. This also happens but to a lesser extent for 
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FIGURE10. Dexelopment of the unstable mode ( i ,8)" when a k  = 0.25, over one half-cycle of 
the perturbation. The vertlcal scale on the rlght is enlarged tlmes 20. 

n = #, ak = 0.38 a t  t = $T= 12.00. We have not calculated the mode n = $ for 
a k  = 0.40 because the relatively low frequency of the perturbation would have 
required an excessive amount of computer time, and the results would probably 
be too inaccurate to justify this. 

The instability a t  aE = 0.41 differs from the others considered in two ways: (1) 
i t  has zero frequency with respect to the unperturbed waves (i.e. i t  remains 'locked 
on ' to  the crest) and (2)  i t  grows very much more rapidly. The first fact means tha t  
we can measure its growth-rate a t  every time-step, and the second means we need 
only follow the wave a short time before i t  breaks. The profiles (with a 5 : 1 vertical 
exaggeration of the perturbation) are plotted in figure 14 over a non-dimensional 
time of slightly more than 2 units. The nature of the perturbation is such as t o  
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FIGURE1 1 .  Tlie neutrall) stable modc n = ) when ah .= 0.38 follomcd over ono half-cycle of 
the perturbation. The vertical scale on the rlght IS enlargetl tlmos 20. 

reduce one wave crest and raise the other with not much alteration of the profile 
elsewhere. The crest-plots of figure 15 show the overt~lrning. These computations 
were done with 120points along the profile for increased resolution. The comparison 
of theoretical and observed growth-rates is given in figure 16, a plot of l nR  against 
time. The spread of observed values a t  each data point represents the variability 
of R for slightly different methods of calculating the integrals. This gives a rough 
indic~ition of the rninimr~m size of the errors involved. The agreement with the 
linear theory is quite good especially during the initial stages of growth. At later 
times the deviatiorls are not too grcat even when the perturbation has grown large 
enough to  cause marked asynlmetries in the vrtiaveprofiles. 
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FIGCRE12. The neutrally stable mode n = $ wllert ak = 0.38; as in figure 11. 

7 .  THE N O N L I N E A R  S T A G E S  O F  G R O W T H  

Since the time-stepping method is not subject to any assumptions of linearity, 
we may use i t  to follow the later, nonlinear stages of the instabilities studied earlier. 
In  figure 17 we show the mode (4,#)+ a t  ak = 0.32, carried through a second half- 
cycle 0 .55T  < t < 1 .05T .  It will be seen that  in the final stages every alternate 
crest ultimately steepens and breaks. Figure 18 shows a close-up of the crest in a 
frame of reference which is a t  rest relative to deep water. It will be seen how like 
the profiles are to those in figure 15. Indeed, the two figures are almost superposable. 

It follows that when ak = 0.32 this instability, which began as a subharmonic of 
12cnjamin-Feir type, later develops a different, local type of instability which is in 
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FIGURE13. Development o f  the mode n = when a72 = 0.40. 

all respects similar to that arising a t  ak = 0.41. Since wave breaking involves 
energy loss, this leads to the disintegration of the original wave train. 

To test whether the same phenomenon occurs with lower waves, a similar run 
was carried out on the mode (4,#)+ at  the lower wave amplitude a k  = 0.25. Figure 
19 shows the surface profile, after nine successive half-periods. I n  the final profile 
the waves do indeed break (see also figure 20). A close-up of the breaking crest is 
shown in figure 21. Again, the close similarity to the local instability in figure 16 
will be noted. 

The calculated values of C(ct,t )  and are shown in table 2. The constancy of /3 
throughout the whole stage of development is indeed remarkable, as also is the 
closeness of /3 to the value 0.0132 derived from the independent normal-mode 
analysis. 
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FIGURE14. Development of the highly unstable mode n = (#)+ when ak = 0.41. 

The vertical scale OIL the right is magnified times 5. 


Do all subharmonic instabilities lead to breaking? Because of the necessary 
machine time, the question cannot readily be answered by computation. One may 
reason as follows. It appears (from Longuet-Higgins 1978b) that an individual 
gravity wave becomes unstable when ak  z 0.436. Roughly, then, one would expect 
an instability to lead to wave breaking if the local wave steepness exceeds this 
amount. If now we assume, first, that the subharmonic instability tends to increase 
the amplitude of every alternate wave but leave the wavelengths roughly unchanged, 
and secondly that the energy in each wave varies roughly as the square of the local 
amplitude, then we should expect subharmonics to lead to breaking only when 
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1.6 2.0 2.4
X 


FIGURE15. The mode n = ($)+ when ak = 0.41 ;enlargement of the wave crest, seen in a framo 
of reference a t  rest. Time interval between profiles is 2n/50; the range, 1.37 < t C 1.87. 

FIGURE = when ak = 0.41, shown by In R(I)as a function oft .  16. Growth of the mode lz ( 2 ) '  
The broken line represents the growth /3t where /3 is tjhe rate corresponding to the normal- 
mode analysis. 

2.8 



23 The deformation of steep surface waves. I 1  

FIGURE17. Later stages in tho development of the mode (4,#)+ 
when nk = 0.32 (continuation of figure 1). 

The example ak = 0.25 shows that this condition is contradicted. The reason 
appears to be that every alternate wave is not only increased in amplitude, but also 
shortened relative to its neighbours, so that locally a higher value of the wave steep- 
ness is attained. 

This is confirmed by figure 22. I n  figure 22a is shown the variation with time of 
the individual wave amplitude a', defined as half the height of each crest above the 
trough in front of it. This is normalized by multiplying by the constant wavenumber 
k. The amplitude of each wave fluctuates, and the fluctuations grow in time. Figure 
22 b shows the individual wavenumber k' corresponding to the horizontal distance 
between adjacent troughs. This also fluctuates, by as much as 12% in either direc- 
tion, though these fluctuations are almost in quadrature with the fluctuations in a'. 
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Finally, figure 22c shows the fluctuations in the individual wave steepness a'k'. 
These are slightly greater than the fluctuations in a'k above. The wave finally 
breaks when the individual wave steepness is about 0.39. 

Hence i t  may be that waves of even lower amplitude than ak = 0.25 will develop 
instabilities (m = 2) to the point of breaking, assisted by a shortening of the indi- 
vidual wavelength. 

FIGURE18. Enlargement of the wavo crest in figure 20, near the instant of overturning, seon 
in a reference frame a t  rest. Time interval between profiles is 2rc/50; t'he range, 
34.66 < t 4 35.15. 

The profiles in figures 15, 18and 21 are so similar as to suggest that the dynamics 
of the final stages of overturning are determined mainly by local conditions near 
the wave crest. If this is so then we would expect that the local length-scale I and 
time-scale 7 would be related by 

1/g+ = 0(1), 

where g denotes gravity. I n  fact if we take I to be the 'width' of the crest, measured 
by the horizontal distance over which the profile is convex, then I z 0.4 while the 
time 7 for the evolution of the crest in figure 55 is above five plot intervals, i.e. 
about 0.6. Since g = 1 in these units the above relation is indeed satisfied. 

However it will be noted that the time-scale for the initial growth-rate of the 
instability when ak = 0.41 is much longer than 7 since P, t'hough larger than for 
the Benjamin-Feir instabilities, is still only equal to 0.065. Thus P-l is about 15.5. 
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FIGURE = 0.25.The profiles 19. Later development of the unstable mode (4,#)+ when ak 
are seen a t  times t = +ST,s = 0,1, 2, ..., 9 where T is the period of the mode. 

X 

FIGURE = 0.25.20.Profiles of the mode (4,$)+ near breaking, when ak 

The time interval between profiles is 2 n/4 ; t = 140.86and 142.42. 
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FIGERE21. Enlargement of tlrr ovcrturn~ngcrests In the mode (3,  j)+when ak = 0.25, seen 
in a rcfercncc-fiama at rest. Tlnle interval between profiles 1s 2rc/50; the range, 141.92 
< t < 142.42. 

TABLE2 .  OVERALLGROWTH-RATE OF THE 


IXSTABILITY (4,$)+ WHEN ak = 0.25 


By applying the independent time-stepping method of paper I we have confirmed 
and extended the conclusions of recent studies (Longuet-Higgins 1978b, c) relating 
to the stability of gravity waves. The initial rate of growth of each type of instability 
has been verified, and it is confirmed that subharmonic instabilities of Benjamin- 
Feir type are indeed confined to a certain range of ware steepnesses. Beyond this 
range, the perturbations are neutrally stable, until a t  about a k  = 0.41 a second 
type of instability is found which leads directly to wave breaking. 
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FIGURE of local properties of the surfwe :(a)the local wave amplitude a';22. Time-depmdcnc~ 
( b )tlie local wat-enumber k'; (c) the local wave steepness a'k'. 
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In the cases we have tested, the subharmonic instabilities apparently grow to the 
point where the wave crests develop local instabilities which again lead to breaking. 
The final stages of these breaking waves appear to be very similar in all cases, and 
their dynamics are related to local scales of length and time. This gives hope for a 
nonlinear theory of the latter stages of wave breaking. 

As emphasized in earlier papers, the present calculations assume potential flow 
and neglect the possible influences of viscosity and capillarity, which must introduce 
qualitatively new effects. Illoreover the motion is assumed to be two-dimensional, 
and the depth of water to be infinite. For sufficiently large-scale waves, 
viscosity and capillarity may indeed be negligible. The possible effects of three- 
dimensionality and of finite depth are, however, very interesting in the appropriate 
circumstances, and require further study. 

Throughout this investigation we received support from the Departments of 
Energy and Industry, through a contract with the Institute of Oceanographic 
Sciences. 
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