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I. A numerical method of computation 

BY M. S. LONGUET-HIGGINS, E. D. COKELETF.R.S. A N D  

Department of Applied iWathematics and Theoretical Physics, 
University of Cambridge, England, and 


Institute of Oceanographic Sciences, Wormley, Godalming, Surrey 
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Plunging breakers are beyond the reach of all known analytical approxima- 
tions. Previous numerical computations have succeeded only in integrating 
the equations of motion up to the instant when the surface becomes 
vertical. 111 this paper we present a new method for following the time- 
history of space-periodic irrotational surface waves. The only independent 
variables are the coordinates and velocity potential of marked particles a t  
the free surface. At each time-step an integral equation is solved for the new 
normal component of velocity. The method is faster and more accurate 
than previous methods based on a two dimensional grid. It has also the 
advantage that the marked particles become concentrated near regions of 
sharp curvature. Viscosity and surface tension are both neglected. 

The method is tested on a free, steady wave of finite amplitude, and is 
found to give excellent agreement with independent calculations based on 
Stokes's series. It is then applied to unsteady waves, produced by initially 
applying an asymmetric distribution of pressure to a symmetric, progres- 
sive wave. The freely running wave then steepens and overturns. It is 
demonstrated that the surface remains rounded till well after the over- 
turning takes place. 

Breaking waves are the agent for many significant processes in the upper ocean 
including the transfer of horizontal momentum from wind-waves to surface cur- 
rents. Yet remarkably, one of the most familiar and spectacular properties of the 
sea surface-its capacity to turn over on itself-is one of the least well understood. 
All the usual theories for surface waves- the small-amplitude approximations of 
Airy and Stokes, the nonlinear shallow-water theory and the Korteweg-De Vries 
equations for solitary and cnoidal waves- are essentially approximations, valid only 
when the fluid acceleration is sufficiently small compared to gravity. These approxi- 
mate theories cease to be valid when the acceleration is comparable to g, or when 
the surface elevation is a multivalued function of the horizontal displacement. 

The small-amplitude theories can indeed be carried to higher approximations, 
showing that the form of steady waves of large amplitude tends, in the limit, to the 
simple corner-flow discovered by Stokes ( I880a)in which the free surface has a sharp 
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angle of 120". But these theories are for steady, symmetric waves, and do not 
describe the development of the flow as the surface overturns. An attempt was made 
by Price (1971) to construct a perturbation of Stokes's corner-flow, but his expres- 
sions contain singularities for both t > 0 and t < O (both after and before the break 
point) and so do not represent an appropriate solution. 

An oft-quoted theory for wave breaking is that of Biesel(1952) who carried to 
a second approximation Miche's first-order Lagrangian solution for waves 
approaching a plane beach. In  this theory, the free surface appears to develop a cusp, 
and then intersects itself, forming a closed loop. It hardly needs to be pointed out 
that the approximation ceases to be valid long before the cusp is formed, and more- 
over that the looped surface is topologically impossible, if the fluid is to lie always on 
one side of the free surface. 

The mathematical difficulty of the problem arises essentially from the need to 
satisfy the condition of constant pressure (which is generally non-linear in the 
velocity) a t  a free surface which not only is unknown, but whose form is highly time- 
dependent. Since no appropriate analytical theory has yet been suggested, it is 
natural to seek whatever guidance can be got fromnunlerical computations. A start 
in this direction was made by Chan & Street (1970),who employed the so-called 
'marker-and-cell' technique. The Row being assumed two dimensional (that is, 
dependent only on the coordinates z, y and on the time t) ,  the (x,y)-plane is covered 
by a rectangular grid, and the velocity components are computed at  fixed points 
within each cell. The development of the flow is follo~ved in small time-steps, using 
difference-equations to represent the conservation of mass and momentum (the 
fluid being assumed incompressible and inviscid). For waves in water of finite 
uniform depth, this method achieved some success. The authors were able to 
demonstrate, for example, the steepening of the forward face of the wave almost up 
to the instant when the free surface becomes vertical. A description of the over- 
turning was not achieved, though the computational procedure nright, with further 
trouble, have been modified so as to cope with a multivalued surface elevation. It is 
notable that in these computations no use was made of the vorticity equation; i t  
was assumed simply that the initial flow was irrotational. At subsequent times the 
flow was not quite irrotational. 

Now all numerical computations using a rectangular grid have an important 
practical limitation. To obtain acceptable accuracy, the grid-spacing must be 
reasonably small, a t  least compared to the local scale of the flow or the radius of 
curvature of the free surface. But as the spacing is reduced, the number of grid 
points has to increase like N2,where N is the order of magnitude of the number of 
points in each direction. I n  this way, the quick-access storage of even the larger 
computers is rapidly used up, and the necessary computation time also exceeds 
practical limitations. 

To overcome these essential difficulties we have developed and tested a quite 
different numerical method, which we describe in the present paper. 

For oscillatory waves, the diffusion of vorticity into the interior may be quite slow 
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(see Longuet-Higgins 19533, 1960). Hence, up to the point of breaking it may be 
a good approximation to neglect viscosity and assume the motion irrotational. This 
leads to a velocity potential satisfying Laplace's equation (V2q5 = 0). Now within 
a closed boundary such functions are uniquely determined by their values on the 
boundary itself. Moreover the time-evolution of the flow is uniquely debermined by 
the pressure applied a t  the moving surface, through Bernoulli's equation. Hence 
the problem is in reality a problem in one space dimension, not two. 

Using this insight, and assuming the motion to be periodic in space (though not 
necessarily in time) we f i ~ s t  transform the coordinates so that the domain of the 
fluid lies within a simple closed contour. The boundary C corresponds to the free 
surface. We then show that for particles on the surface, the kinematical and 
dynamical conditions can be very simply expressed in terms of the rates of change 
of q5 and of the coordinates following a$xeclpurticle. It follows that by proceeding in 
small time-steps we are able to follow the potential q5 from one position of the free 
surface to the succeeding position. This does not alone solve the problem, however. 
From the values of q5 on the new position of the surface we can indeed calculate the 
tangential component of velocity a$/c?s. But for the next step we need also to know 
the normal component a$/En.The crucial step is to determine a$/Enat each point 
of the boundary by the solution of an integral equation (equation (4.5) below). Once 
this is done, with sufficient accuracy, the time-stepping can procecd. 

It will be apparent that this mixed Eulerian-Lagrangian method has the out- 
standing advantage that the independent variables are all evaluated a t  the free 
surface. The velocity potential and its derivatives in the interior are not used, 
though these can easily be calculated from surface values by Cauchy's theorem. 
Hence the number of independent variables in the computation is of order A', 
not N2, and for given storage and machine-time much greater accuracy can be 
obtained. 

The method is also flexible. Not only free waves can be computed, but also waves 
to which is applied any smooth distribution of pressure a t  the free surface. 

One welcome but unexpected advantage is also the tendency of the marked 
particles to concentrate near regions of sharp curvature, where accurate resolution 
is most needed. 

The accurate programming of the computation is an essential and by no means 
trivial task, described below in §§  5-8. As will be seen, one of the keys to success was 
to devise a simple smoothing technique, which eliminated certain unwanted 
instabilities. 

The method was first tested on the special case of a free progressive wave of finite 
amplitude, for which accurate and independent methods of computation have 
recently become available. As will be seen from $9, the present time-stepping 
technique mas in excellent agreement with the independent computation. Then as 
a first application of the method, we describe in § 10the development of a free wave 
which by an initial application of surface pressure is raised to an energy level 
exceeding the maximum for a steady, progressive wave. Figures 6-12 show how the 

1-2 
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wave develops in time, ultimately turning over and plungillg towards the forward 
face of the wave. 

Some of the implications of this straightforward ~alculat~ion I I. are discussed in § 
This paper is intended to be the first of a series in ~vl ich the present method of 
computation is employed as one tool in a systematic investigation of free surface 
flows and breaking waves. 

2. BASIC E Q U A T I O N S  

Let (le, y) denote rectangular coordinates with the x-axis horizontal and the 
y-axis vertical, as in figure I. The motion is assumed to be periodic in the le-direction, 
with period 

L = 22nlk. (2.1) 

The fluid is inviscid and incompressible, and the origin is taken to be in the mean 
surface level. The motion may be assumed to be started from rest by conservative 
forces, so that i t  is irrotational a t  all times; any slow diffusion of vorticity inwards 

FIGURE1. Choioe of axes and rlotatioii for space-periodic \xrare motion 
in deep water. 

from the boundaries is neglected. By a choice of reference frame, the x-averaged 
horizontal velocity at  some given depth y may be taken as zero and then, since the 
motion is periodic and ir.rotationa,l, ;ilmust vanish a t  all other depths y (beneatli the 
lowest point of the free surface). Thus 

a t  all depths, and also a t  all times, since a non-zero value of aZ/lat would iniply an 
infinite rate of input of horizontal niomentuni. 

It is convenient to choose units of mass, length and time so that the density p is 
unity and also so that 

g = 1 ,  k = l ,  (2.3) 
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where g is the acceleration due t'o gravity. By (2.1) we have then 

L = 2x. (2.4) 

We have now the following equations for the velocity potential $. Since the fluid 
is irrotational and incompressible 

Since VQ is periodic and = 0, it may be shown (Longuet-Higgins 1953a)that a t  
great depths VQ vanishes exponentially: 

I V$I < A(x,t)  eu. (2.6) 

At the free surface y = y,(x, t )  we have the kinematic conditions 

DZ a4 DY a4 -=-
~t ax, E=y9 

where 

which denotes differentiation following a given particle. We have also the dynamical 
condition derived from Bernoulli's equation, namely that 

where p, denotes the pressure applied a t  the surface. From this we can immediately 
derive the rate of change of Q following the motion, namely 

The difference bctween the right-hand sides of (2.9) and (2.10) is simply a change of 
sign in the last term. 

3. TRANSFORMATION C O O R D I N A T E SO F  

Since the motion is periodic in x with period.2~ we may write 

r e i O  = { = e - i ~  ( z  = x+iy), (3.1) 

where {is a ncw complex variable, analytic and single-valued everywhere inside the 
contour C which corresponds to the fluid surface (see figure 2). (r,O) are polar 
coordinates in the {-plane, and we have from (3.1) 

All points a t  infinite depth in the (x,y) plane are transformed into the origin 0 in 
the <-plane. 
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Let us mi te  

x = $+i$ 

for the complex velocity-potential in the physical (x,y)-plane. Then 2 is gei~erally 
analytic and single-valued inside C. P<loreover by equation (2.6) it follows that as 
g-> 0 - A<. (3.4) 

Hence x is analytic and single-valued everywhere inside C. 

FIGURE2. Ono wavelength in the z-plane transformed to a closed domain in the <-plane by 
equation (3.1). Tlie free surface is transformed into the contour C. 

At the free surface we have from (2.7) and (3.2) 

Dr DY aq a$---- eu-= r-= 1.2 -
~t ~t ay a y 7  

DO DX aq a$-=--=--I- -
~t ~t ax ae. 


Lastly, since 


the dynamical condition (2.10) becomes 

9= 
Dt 

4. THE DIRICHLETP R O B L E M  

Suppose that a t  some initial instant t = to we are given the velocity potential rj5 

througl~out the fluid, and I~ence the value of cj!~ and its derivatives both inside and 
on the contour C(t,). Let ( I . ,  0) denote the (Lagrangian) coordinates of a particle on 
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C(to). Then equations (3.5) will determine the position of the same particle a short 
time dt later. Similarly (3.6)will determine the value of #(to + dt) on the new contour 
C(to-t- dt). By considering adjacent particles, and differentiating along the surface 
we can then obtain the tangential component of velocity a$/as. But this does not 
immediately determine the normal component a$/an, which is also needed for the 
step afterwards. 

The problem of cleterminiiig the normal component of velocity a t  the boundary 
is equivalent to the Dirichlet problem of finding the normal gradient of a function $ 

FIGURE3. Definition of variables for the Dirichlet problem of $ 4. 

whose values are given on a closed contour C, and which is harmonic (V2$ = 0) 
everywhere inside C. We may formulate the problem as an integral equation as 
follows. 

Let (s,n) be tangential and normal coordinates a t  a typical point P on the 
boundary (see figure 3), and let (R,a)be the polar coordinates of P with respect to 
an arbitrary point &(r,, 8,) in t'he interior. Let 

1
X = -Ill R (4.1)2n 

so V2S = 0. Then by Green's theorem we have 

Denot'ing $(yo, 0,) by $,, we have then 
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Letting &(ro, 6,) approach 6,we have in the limit 

where P denotes the principal value (C is assumed to be a sniooth at Q ) .  Hence 
altogether from (4.3) and (4.4) 

Since the right-hand side involves only the values of 4on C, which are known, and 
since 22,a are determined soleljr by the shape of C, equation (4 .5) is an integral 
equation for (8$/an),with a singular kernel In R. 

It remains to express the time-derivatives of 1'. 0 and g5 j r ~terms of the tangential 
a i d  normal derivatives of 9. We have in general 

where 

Neiice equations (3.5) and (3.6) become 

Equations (4.5) and (4.6), together wit'h initial conditions, are the basis for the 
following computations. 

5. SOLUTIONO F  THE I Y T E Q R A L  E Q U A T I O N  

The values of 9, a$/as and &$/anare to be evaluated a t  a finite number iV of points 
on the boundary which will correspond to fixed particles. We label these with the 
suffixj, wherej= 1,2, . . .,N .  The corresponding values of r, 6 are similarly labelled 
rj, Oj. We will suppose thak Q lies in turn at  ( r i , Od) where i = 1,2, ...,N also. Helice 
R,a, s take the values Rij, aij, sip The integral oil the left of (4.5)can be approxi- 
mated as the product of the ( N x 1)matrix (a$/an)jmultiplied by an (N x AT) matrix 
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of coefficients, say A,j.The integral on the right can be approximated by a quantity 
Bi.Hence we have N linear simultaneous equations of the form 

to be solved for the values (a$/an)j. 
The success of the method will depend critically upon the accuracy with which 

the integrals in equation (4.5) are approximated by linear sums. Let i be fixed, and 
let us take &(ri, 13,) as origin of s, writing sij = 8(j-dmodA\7.Since In R is singular both 
a t  s = 0 and s = s,, but In (Rls) or In [R/(s, -s)] is not, we write the integral on the 
left of (4.5) as follows 

where s, is the arclength at  a point close to s = 0 and on the positive side, and s,, is 
a similar arclength just short of the other end of the range of integration. (In our 
calculation we take s, to be the larger of s, and 0.18, and s,, to be the smaller of 
s,-, and 0 . 9 ~ ~  .) 

We deaote the integrals in (5.2) by 11, I.,  ...,I5respectively. 11, I3and I4are 
no longer singular, and may be calculated by approximating the integrazld over 
each sub-interval (sj, sj+,) by a 4-point Lagrangian polynomial. More specifically, 
a 4-point, closed-range quadrature formula is used a t  the end-points of each 
integral, and a 4-point, open-range quadrature formula is used for the remainder 
(Buckingham, 1962). The local errors in this method are of order AS)^, where As is 
the maximum arclength between two adjacent points sj. 

The remaining integrals I2and I5must be handled differently. I2for example, can 
be written as the sum of integrals of the form 

Each term in the integrand can be evaluated exactly. To find the derivatives of 
with respect to s, we approximated (a$/ar~)~ by a fourth-order Lagrangian 

interpolation polynomial over the 5 points centred on j ,  and differentiated this. 
The integral I, is handled in a similar way, except centred on the point ( j+ 1). This 
technique gives local errors of order ( A ~ ) ~ l n  (As). 

To calculate the arclengths sj, the quantities r j  and (4-2.njl.N) as functions of j 
(considered as a real variable) were approximated by cubic splines (see Ahlberg, 
Nilson $ TValsh 1967). Prom these can be calculated drldj, deldj and hence 

a t  each point j. Equation (5.4) was then integrated by Simpson's rule, giving s j  a t  
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each point, 114th local errors of order (As)4. The tangential derivative d$/dj mas 
calculated similarly. Hence we found 

with errors of order (As)3. 
To evaluate the integral oil the right-hand side of (4.5)we need to know aja t  each 

point of t,he contour. I n  general we have 

~jsin Oj -r,: sin Oi
aj = aj$i= arctan 

rj cos Bj -ri cos Oi 

and in the exceptional case we may use 

sin Oi (drldj),-tY cos 0 (dB/dj), 
ai = = arctail cos0, (dr/dj)i- r sin 6 (dB/dj), 

Because the curve is a simple closed colltour we have a,, = ai+n. The right hand 
sicle of (4.5)call now be written 

and integrated using Simpson's rule, since we know the integrand at  equally spaced 
values of j. This gives local errors of order (As)*. 

The above method of solving the integral cquatioil was programmed in FORTRAN IV 

and solved on the 1.B.M.370/165 digital computer at  Cambridge University. With 
iV = 60 points along the free surface, the central processing time was 3.4 s and the 
core-store 150K bytes for a ciouble-precisiou calculation (17 significant figures). 
About 80 % of this time was used to set up the 60 x 60 system of linear equations, 
and 20 O,; was used to invert the matrix, The errors in a$/&z were found to decrease 
like (As)3, which is consistent with the errors in the least-accurately determined 
integral. The computation time varied roughly as N2.  

For numerical purposes, equations (4.6) may be regarded as first-order ordinary 
difierential equations in t. For most of the time-stepping IVG used the Adams- 
Bashforth-30uto (A.B.M.) scheme which, applied to an equation of the form 
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is as follows: 

Here At denotes the short time interval, f, denotes f(t +nAt) and y,,, yl, denote the 
'predicted' and 'corrected' values of yl (see Acton 1970) The method is fourth- 
order, local errors being O(At)j, but requires only two evaluations off a t  each time 
step. Applied to equations (4.6) this means that we have to solve the integral 
equation for a$/an only twice for each time-step. 

Since the A.B.M. method needs information from three previous time-steps, a 
fourth order Itunge-Kutta (R.K.) technique was used to make the first three time- 
steps from the initial conditions (see Gerald 1970). This method uses no inform a t'ion 
about previous time-steps, but takes four mini-steps forward from the current time. 
A weighted average is then used to calculate the function a t  the new time. The R.K. 
method requires four evaluations of the time-derivative a t  each step and is thus 
twice as time-consuming as A.B.M. 

7 .  C H E C K S O F  A C C U R A C Y  

The accuracy of our numerical solution to the integral equation (4.5) was tested 
by calculating, a t  each time-step, the value of 

This represents the total 'outflow ' across C in the <-plane, or across C' in the z-plane, 
and i t  is clear from Green's theorem, or from considerations of continuity, that  
R should vanish identically. The numerical value of R was found by writing 

and integrating by Simpson's rule. 
As further checks we calculated in a similar way the mean level 

which also should vanish, and the potential and kinetic energies 

1v = % J o 2" 
i y i d x = -jx/;" ( ~ nr)l do 

and 



12 M. S. Longuet-Higgins and E. D. Cokelet 

(the last step follo\vs from Green's theorem). When there is no input of energy by 
normal pressure at  the surfase, then E = (T+ V )should remain constant. 

All lhese tests verified the accuracy of our solutions, generally to an acceptable 
number of decimal places (see below, S§ 9 and 10). 

The maximum allowable step At should ideally be determined by considerations 
of accuracy and stability. There being no theory directly applicable to the system 
(4.6) we have adopted a practical criterion similar to that of Chan & Street (1970) 
(though their method of dividing the fluid region into cells is quite different from 
ours). Thus At is restricted so that a t  each step no fluid particle moves more than 
a distance (As),,,, the minimum arclength from a particle to its nearest neighbour 
on C. If during the calculation this limit is exceeded, then At is halved, and the 
time-stepping is restarted with three R.K. steps follotved by A.B.M. steps as before. 

8. INSTABILITYS B I O O T R I N GA K D  

I11 nearly all computations, the wave profile, after a sufficiently long time, 
developed a saw-toothed appearance, in which the computed positions of the 
particles lay alternately above and below a smooth curve (see, for example, figure 4). 
The cause of the instability is unlinown. Tests showed that, once started, the rate of 
growth of the instability, per unit time, was independent of the number of time- 
steps. Hence i t  is not due simply to rounding errors. The growth may bc partly 
physical, being similar to the growth of short gravity-waves by horizontal compres- 
sion of the crests of longer waves (see Longuet-Higgins & Stew-art 1960;Phillips 6: 
Banner 1974). In  reality these instabilities are partly damped by viscosity, which 
we have neglected. 

The instability was effectively removed by the follo~ving procedure. A function 
f(x) defiled a t  equally spaced points x, ( j = t , 2,3, ...), and in which alternate points 
lie on a smooth curve, can be locally approximated by two polynomials, say 

The first bracket represents a smooth mean curve, the remainder a quantity svhich 
oscillates with period 2 in j. The coefficients a,, a,, ... and b,, b,, . . . may be chosen 
uniquely so that h(x) =f(x) exactly a t  (2n f 1)consecutive points xj, say ( j-.n) to 
(j+n) inclusive. As a smootlzed function we can then take the even part: 

In the case n = 2 this leads to the 5-point smoothing fo rm~~la  

and when 9% = 3 we find in a similar way 
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FIGURE4. Comparison of the profile of a steady progressive wave in deep water (6 = 0.80) 
computed by Pad6 approximants from Stokes's series (smooth curve) and the corre- 
sponding time-stepped profile (unsmoothed) represented by the circles. N = 30. The 
profiles are compared at  times (a) t = 0, (b )t = +n,(c) t = in,( d )t = n. Note the growth 
of the instability at  t = x .  
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Both formulae were tried for snloothing the functions aj, Bj and Qj, a t  every 5, 10 or 
20 time-steps. Both worked well and gave a smooth profile with no appearaalce of 
the small-scale oscillations. For certain reasons, as stated in the following section, 
the formula (8.3) was generally preferred. 

An importailt and esseiltial test of the method was as follows. For initial coliditioiis 
we took a symmetric, progressive wave of finite amplitude in deep water (see 
fignre 4). A very accurate method of computing the wave profile, based on Stokes's 
expansion ( I880 6) has recently been developed by Schwartz (1972, I 974). This 
uses Pad6 approximants to sum otherwise divergent series. In  fact we adopted 
a nlodification of Schwartz's method due to Cokelet (1975) in which the expansion 
parameter is taken as 

(r = -qzrost q?;.c~ugb/~~, (9 .1)  

where qCrestand qlroughdenote the particle velocities a t  the n7ave crest, and the 
wave trough, in a frame of reference moving with the phase-speed c. 

We selected a wave corresponding to 6 = 0.80, whose crest-to-trough height is 
about 90 % of that of the highest wave in dcep water. As initial values for the 
numerical integration, we inserted the computer coordinates of the wave profile 
(see figure 4) and the corresponding values of the velocity potential $, in the f~nvze 
of refeaence foa zohich the deep water was at aesf, and therefore the motion generally is 
time-dependent . 

I n  figure 4 the initial wave has its crest a t  x = 7c, and the wave progresses from 
left to right. At time intervals of in, two wave profiles are plotted: the coi~tinuous 
curve represents the PadB-approximated profile, and the plotted points represent 
the positions of surface particles found from numerical time-stepping by the present 
method (with N = 30). 

The plotted points in figure 4 are without smoothing, and the growth of the 
saw-toothed instability from the third to the fourth profile is apparent. Actually, 
the unstable wave is found to conserve total energy to one part in 100 up to t = n, 
when the computations break down. 

Figure 5 now shows the computed points, compared with the steady-wave profile, 
a t  time t = 2n, when smoothing has been applied after every 5 time-steps. As can 
be seen, the profiles are illdistinguishable except to the sharpest eye. For this 
particular plot the 7-point smoothing formula (8.4) was used. The Aux L?of equation 
(7.1) varied between 5 x and 4 x hovering aro~uld for most of the 
calculation and showing no tendency to increase. The mean surface displacement gs 
varied from 3 x lW5 to 1x The total energy E lay between 0.06938 and 
0.07007 (the value from Pad&-approximants is 0.06995). The wave energy decreased 
by 0.14 % at  each smoothing with the 7-point formula, coinpared with 0.06 % using 
the 5-point forlnula. Although asymptotically less accnrate, the 5-point formula 
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seemed to perform better in practice. When the number N of integration points was 
raised to 60, only 0.003 % of the energy was then lost a t  each smoothing. 

The numerically calculated profile also remained very closely in-phase with the 
Pad6-approximated profile, using the calculated phase speed of the steady wave. 

These checks suggest strongly that the numerical method remains accurate over 
the time-scales in which we are interested, which are of the order of one wave period. 

FIGURE5. Comparison of the profile of a steady wave calculated from Stokes's series (smooth 
curve) and the corresponding time-stepped profile, with smoothing, represented by 
circles, a t  time t = 2n. (This is twice the maximum duration in figure 4.) N = 30; 7-point 
smoothing every 5 time-steps. The two profiles are indistinguishable. 

So far we have described a numerical method of calculating the form of periodic 
gravity waves in deep water, when these are subjected to an arbitrary application 
of pressure % a t  the surface; and we have shown that in the special case of free, 
progressive waves (p ,  = 0) the method gives results in very close agreement with 
known1 theory. I n  this section, we shall show that the method can also yield an 
accurate description of highly nonlinear and unsteady waves. 

There is one feature of the fluid motion which is beneficial to our numerical 
solutions. As mentioned in $ 8  in connection with the instability, the straining 
motion in the primary wave results in horizontal convergence near the wave crest. 
Two adjacent fluid particles will move closer together as they pass up the forward 
face towards the crest of the wave. This causes a bunching of the marked particles 
used in the computation, which has the desirable effect of improving the resolution 
near a region of sharp curvature. This will be evident in some of the profiles to 
be shown. 

Unlike the situation for steady, symmetric waves, in which the flows are described 
by a restricted range of parameters corresponding to wave height, wavelength and 
mean depth, unsteady waves have a much larger diversity, corresponding to various 
initial wave profiles and particle velocities, and to various distributions of applied 
pressure a t  the surface. 

We present here the resuIts for waves developing from one initiaI condition and 
with one particular form of pressure forcing. As initial conditions we take the 
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symmetric progressive wave of § 9, for w-hich 6 = 0.80. The energy E, of this wave 
is 94 % of the nzsximum possible energy En, of a progressive wave of the same 
length in deep water (which corresponds to 6 = 0.92; see Lor~guet-Higgias 1 9 7 5 ~ ;  
Colrelet 1975).At time t = 0, a wave crest is a t  z .= rc, and the wave progresses from 
left to right (see figure 8). The pressure applied a t  the surface is taken to be 

Thus 23, consists of a simple sine-wave progressing with the phase-speed c, in 
quadrature wit11 the surface elevation, The amplitude of % illcreases from zero 
when t = 0 top,  a t  t = in,and then falls to zero when t - IE, remaiililig zero there- 
after. The forcing is thus limited to one-hdf of a FviLve period, after ~vliich the wave 
runs free. 

JTTe slzo~v the results for four different pressure amplitudes: p, = 0.0729, 0.100, 
0.126 and 0.146. To resolve the fiow near the crest, the number of points A' was 

-1 


Fscux~6a-c, Foxs description see opposite. 



The deformation of steep surface waves. 1 

FIGURE 0,6. A time-sequence of profiles for the pressure amplitude po = 0.146 at times (a )t = 
( b )  t = +n, (c )  t = %n,(d )  t = n, (e) t = $n, (f)t = zn, ( g )  t = $?c.N = 60; 5-point 
smoothing every 5 time-steps. The surface pressure po is applied till t = n;then the wave 
runs free. 

increased to 60, since 30 points proved too few. The 5-point smoothing formula was 
used every 5 time-steps. 

Figure 6 shows a sequence of wave profiles a t  various times for p,  = 0.146. The 
dinlerlsionless time interval between plots is Qn, except for the last three plots, 
which are separated by a time interval of +n. The wave begins a t  (a )( t  = 0 )  as a 
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steady wave and slowly increases i11 amplitude as it moves to the right. Tlie pressure 
forcing is removed at  (d)and the ware is thenceforth free. The front face quickly 
steepens, and a t  (g) the crest is overhanging. 

Figure 7 is a comparison of the profiles of the waves corresponding topo= 0.0'729, 
0.100, 0.126,0.146 a t  the same time t = 5.066 after applyiiig the pressure. It is clear 

FIGURE7 . A comparison of wave profiles at tlze same time t = 5.066 after first applying t,he 
surface pressure. (a)p, = 0.0729, ( 6 )p, = 0.100, (c) p, = 0.126, ( d )PO= 0.146. 
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that the larger the pressure forcing, the farther towards breaking are the waves. 
Notice that the profiles remain smooth and free from instability. 

Figure 8 shows a close-up of the overturning crests, in the case p, = 0.0729. This 
is a series of plots of a small region near the crest of the wave, as seen by an observer 
moving horizontally with the speed of an infinitesimal wave of the same wavelength 
(i.e. (x- t) is plotted). The positions of the particles have been marked with small 
circles, and each profile drawn by connecting adjacent particles with straight lines. 

FIGURE8. Close-up of the wave-crest a t  successive times, with a plotting interval of n/160. 
p,  = 0.0729; 5.596 < t < 5.890. 

On the other hand the imaginary lines joining consecutive positiolis of each small 
particle give an idea of the particle trajectories, in tliis frame of reference. 

Similar profiles for the casesp, = 0.100,0. 126 and 0.146 are shown in figures 9-1 1. 
Perhaps the most remarkable feature of figures 8-11 is that the crest does not 

tend to develop a sharp angle, as for the highest steady wave, before overturning 
2-2 
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takes place. Instead, a smooth jet of fluid is ejected from the forward face of the 
wave. 

Our method of computation appears valid till well after the surface is vertical. 
However, the curvature at  the forward tip of the wave appears to increase in time, 
so that the computations cannot be continued beyond a certain point. 

Pigure 12 shows the complete wave profile corresponding to the last wave crest 
plotted in figures 8-11. We notice a tendency for the more highly fbrced waves 
(12c) and (12 d),which are also more energetic, to &art breaking a t  lower values of 
the wave height. 

Finally in figures 13-15 we show the time-variation of the kinetic, potential and 
total energies, respectively, for each value of the forcing pressure p,. The oscillations 
between kinetic and potential energy suggest that there are standing-wave com- 
ponents in the motion. The total energy, however, increases smoothly to a constant 
value. Also indicated in figure 15are the values of the final energy E divided by the 

(LL'- t )  

FIGURE9. As figure 8, but with p, = 0.100; 5.046 < t < 5.282. 
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energy, B,, of the most energetic progressive wave, that is Em = 0.07403, for 
8 = 0.92. 

We mention the results of the checks listed in § 7. The flux Q remained a t  about 
to for most of the calculation, iiicreasiiig to near the end. The mean 

level g, was of order for all the calculations, except near the last profile for 
p0 = 0.146, when i t  reached I x The total energy E remained very constant 
after t = n for all runs, its largest fluctuation being a decrease of about 0.2 %. 

The above calculations were programmed in FORTRAN m double precision, and 
carried out on the I.B.M. 3701165 a t  Cambridge. The computer time needed for each 
pressure forcing to achieve overhanging waves was typically 35 min for 270 time- 
steps a t  169 K bytes of storage. 

(x- 6) 


FIGURE = 0.126. 4.830 < t < 6.046.10. AS figure 8, but with p,, 
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11. D ~ s c u s s ~ o s  C O N C L U S I O ~ V SA R D  

We have developed a numerical technique to study nonlinear, unsteady, free- 
surface waves. Basically the method involves solving an integral equation along the 
fluid surface to deterniii~e the spatial dependence of the motion at  each time step. 
This has the advantage that the only variables which neecl be calculated and stored 
are those a t  the free surface, which is precisely where the flow inforination is most 
needed. The surface is represented by marked Lagrangian fluid particles, but our 
solution technique is neither exclusively Lagrangian nor Eulerian. It makes use of 
the powerful properties of potential theory by adopting an Eulerian form at  each 
instant of time, and it also makes use of the marked-particle quality of the 
Lagrangian description by following the fluid particles and their Eulerian velocity 
potential through time. 

I t  is now possible to follo~v the development of the surface numerically beyond the 

( 2- t )  

FIGURE11. ASfigure 8 ,  but with p, = 0.146. 4.712 6 t 6 4.028. 
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instant when the tangent first becomes vertical. Prom the results of 5 10we conclude 
that waves do not necessarily develop a sharp corner or singularity before the free 
surface overturns. Instead they can curl over and plunge towards the forward face 
of the wave, and there is nothing to suggest that the flow does not remain smooth 
(neglecting surface tension) up to the instant of impact. The Stokes 120" angle may 

FIGURE12. A comparison of overturned profiles, for different amplitudes of forcing. 
(a) p, = 0.0729, t = 5.890; (b) p, = 0.100, t = 8.282; (c) % = 0.126, t = 5.046; 
(d)p, = 0.146, t = 4.928. 
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not be a typical fluid flow but siinpIy a highly singular form, intermediate between 
a steady, symmetric wave and an unsteady, unsymmetric, plunging wave. In  the 
gravity-free flows investigated by Longuet-Kiggins ( I  972, I 975b) a mass of fluid is 
deformed into a coatinually elongated jet with a thin tip. A plunging breaker which 
is nearly free-falling may behave similarly. It is also possible that most spilling 

0.02 

0 4 ci 
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FIGCRE13. Tlle klnetic energy T as a function of tho titno t ,  for each pressure amplitude. 

(a)p, = 0.0729, (b) p, = 0.100, ( c )p, = 0.126, (d )po = 0.146. 

t 

FIGCRE14. The pot~ntial  energy V as a f~nct ion of the tirne t ,  for each pressure arr~pplitlxcle. 
(a)p, = 0.0729, (b) p, = 0.100, ( c )p,, = 0.126, ( d )p, = 0.146. 
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breakers begin by being similar in form to a plunging breaker, but on a smaller scale, 
close to the crest of the wave. 

In  practice, surface tension, air currents and the growth of instabilities may cause 
the plunging jet to break up into droplets or spray before the tip hits the front face 
of the wave. I n  this first study we have neglected surface tension, in order to 
concentrate on the simpler, large-scale features of the flow. 

FIGURE15. The total mean energy (E  = T+ V) as a function of the time t, for each pressure 
amplitude. (a)p, = 0.0729, EIE, = 1.37; ( b )p, = 0.100, EIE, = 1.55;  ( c )p, = 0.126, 
EIE, = 1.73; ( d )p, = 0.146, EIE, = 1.88 

Our computations, which are for deep water, show incidentally that for the 
breaking of irrotational waves a sloping bottom is not necessary. Indeed, by elimin- 
ating the bottom, one of the parameters of the problem, namely the ratio of the 
depth to the wavelength, has been eliminated. On the other hand, similar computa- 
tions can easily be done for periodic waves in water of any arbitrary uniform depth. 

By varying the magnitude and duration of the applied surface pressure, i t  should 
in future be possible to gain insight into the energy and momentum lost by sea waves 
by wave breaking, both in deep and shallow water, as a function of the energy input, 
and hence to gauge the transfer of momentum from the waves to surface currents. 

For simplicity we have assumed that the waves are initially progressive. Here 
again this assumption can be generalized and we can apply the method either to 
standing waves, or to waves that are a mixture of opposite but unequal progressive 
waves. These and other possible applications will be studied in future papers. 

This computation was begun in March 1972 by one of us (M.S.L.-H.)on the 
I.B.M. 360150 a t  the Institute of Theoretical Astronomy, Cambridge. For the first 
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U.S. Natiol~al Scielzce Bo~mdation, and for a third year by a Research Studentship 
from the Cambridge Philosophical Society. During a h a 1  year, research fees were 
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