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[1] The dynamics of vorticity motions forced by wave groups incident on an
alongshore-uniform barred beach are analyzed. For both normally and obliquely incident
wave groups, the potential vorticity and enstrophy equations reveal that the temporal
variability of wave group–forced vortices is directly linked to the variability in the
incoming wave groups rather than bottom friction, as previously hypothesized. Analysis
of the lifespan of individual vortices further shows that the wave group forcing is
responsible for not only the temporal variations of the vortices but also their eventual
demise. Vortices in the simulations persist for 5 to 45 min, which is consistent with recent
field observations. For oblique wave groups, the resulting vortices are advected by the
mean current, yielding a signature in the frequency–wave number spectrum that is similar
to that usually attributed to shear instabilities of the alongshore current. These results
may explain previous observations of alongshore-propagating vorticity motions in the
presence of a stable alongshore current. For simulations involving an unstable alongshore
current, we find that the inclusion of wave group forcing results in velocity spectra that are
much broader compared to the simulations that neglect wave grouping, which could
explain discrepancies between previously observed and modeled spectral widths of
propagating vorticity motions. Finally, the potential enstrophy balance shows that vorticity
production due to wave groups may be as important as that due to the instability
process and that not all low-frequency vortical motions observed during oblique wave
incidence should be attributed to shear instabilities of the alongshore current.
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1. Introduction

[2] Vorticity motions in the nearshore ocean contribute to
mixing and dispersion, thus affecting the alongshore current
distribution [Bühler and Jacobson, 2001] and the fate of
nearshore pollutants [Spydell et al., 2007]. Moreover, if
vortices persist at the same location for a sufficiently long
time, they can cause bathymetric change, potentially leading
to rip channel development [Reniers et al., 2004]. A
primary generation mechanism for vortices in the surf zone
was proposed by Peregrine [1998] and involves short-
crested wave breaking with vortices developing where
alongshore gradients in wave height exist. A long-crested
incoming wavefield can develop such alongshore wave
breaking variability if the surf zone bathymetry is along-
shore variable, e.g., when a shore-parallel bar with incised
channels is present. Such a situation has been analyzed by
numerous researchers for normal or near-normal wave
incidence in the laboratory [e.g., Haller et al., 2002], under
field conditions [e.g., MacMahan et al., 2005], and theo-

retically [e.g., Brocchini et al., 2004; Kennedy et al., 2006;
Terrile et al., 2006].
[3] Alternately, similar alongshore wave breaking vari-

ability can also result (even over alongshore uniform
bathymetry) if the incident wave spectrum includes a range
of wave frequencies and directions. In this case, the inter-
actions between individual wave components creates an
incident wavefield with spatially and temporally varying
wave heights indicative of wave groups. Under conditions
involving normally incident (in the mean) but directionally
spread waves, recent field observations indicate the presence
of energetic eddy fields with spatial scales of 5–50m [Spydell
et al., 2007], and some vortex pairs can manifest themselves
as transient rip currents [Johnson and Pattiaratchi, 2004].
These observations, as well as recent model simulations
[e.g., Reniers et al., 2007; Spydell and Feddersen, 2009;
Johnson and Pattiaratchi, 2006; Reniers et al., 2004], also
suggest that the resulting vorticity motions evolve slowly at
time scales greater than 200 s, providing energy that
populates the low-frequency range ( f < 0.005 Hz) of the
velocity spectrum. Further, numerical simulations for along-
shore uniform bathymetry suggest that some vortices may
even persist for durations of up to 25 min [Reniers et al.,
2004; Johnson and Pattiaratchi, 2006], even though the
wave group time scales are much shorter. Such a long
lifespan allows these vortices to potentially trigger incipient

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, C08004, doi:10.1029/2008JC004894, 2009
Click
Here

for

Full
Article

1College of Oceanic andAtmospheric Sciences, Oregon State University,
Corvallis, Oregon, USA.

Copyright 2009 by the American Geophysical Union.
0148-0227/09/2008JC004894$09.00

C08004 1 of 21

http://dx.doi.org/10.1029/2008JC004894


sediment motion leading to the formation of bathymetric
features such as rip channels [Reniers et al., 2004].
[4] Although models predict that the vortices are persis-

tent, a simple physical explanation for such behavior has yet
to be identified. Reniers et al. [2004] analyze simulations
for normally incident wave groups and propose that vortices
generated by large wave groups are unaffected by subse-
quent less energetic wave groups. In that case, temporal
variations in the velocity signal over many wave group
periods would be characterized by a slow, steady frictional
decay [Ryrie, 1983], rather than exhibit fluctuations on the
scale of individual wave groups. However, this hypothesis
was not tested as part of the Reniers et al. [2004] study and
is not entirely intuitive. Herein, we propose an alternate
explanation. We hypothesize that generated vortices respond
to every incoming wave group and that their long-term
behavior is strictly controlled by the exact sequencing of the
wave groups. We utilize the potential vorticity balance to
isolate the dynamics of the vorticity motions and show the
correspondence between the wave group forcing and the
response of individual vortices. We then expand our anal-
ysis by addressing the repercussions of these findings for
cases that involve obliquely incident wave groups.
[5] Under oblique wave incidence an alongshore current

is forced and energy present in the low-frequency ( f <
0.005 Hz) range of the frequency spectrum is usually
attributed to instabilities of the alongshore current. While
model-data comparisons have shown that shear instability
theory provides the correct alongshore propagation speed
and magnitude of the observed energy, some consistent
discrepancies between the theory and observations exist
[see Noyes et al., 2005; Özkan-Haller and Kirby, 1999].
For example, the modeled low-frequency motions occupy a
narrow ridge in the frequency–wave number spectrum,
whereas the observed spectrum is much broader. Also,
some previous observations of vorticity motions in the surf
zone cannot be explained by shear instability theory because
the measured current shear on the seaward side of the
alongshore current peak is too weak and the alongshore
current is therefore stable [Dodd et al., 1992]. A few
alternate mechanisms for the generation of low-frequency
vorticity motions for oblique waves have been suggested.
For example, Fowler and Dalrymple [1990] considered
groupy waves that are a result of two intersecting wave

trains at slightly different frequencies and directions. They
found that a slowly migrating circulation system with a low-
frequency signature can result. Haller et al. [1999] consid-
ered the effect of wave group forcing on the linear instability
of the alongshore current and suggested that vortical
motions generated by wave groups may either provide the
necessary initial perturbation for instabilities, or act as a
source of low-frequency vorticity energy when the along-
shore current is otherwise stable. Both of these studies
explore an aspect of wave group forcing in oblique wave
cases, but the theoretical treatment in both studies is highly
simplified. Further, nonlinear model simulations analyzing
forced vortex dynamics for obliquely incident directionally
spread waves have, to date, not been discussed in the
literature. Here, we will analyze such simulations under
conditions involving both stable and unstable wave-induced
alongshore currents. The analysis also shows that when
multiple coexisting mechanisms for vorticity generation in
the surf zone exist, the potential enstrophy balance proves
valuable in separating their individual contributions.
[6] In summary, in this study we concentrate on cases

involving directionally spread waves incident on an along-
shore uniform beach and theoretically address three questions.
[7] 1. What controls the lifespan of vortices? Are the

temporal variations of the vortices controlled by wave
forcing or bottom friction?
[8] 2. What is the effect of wave group–forced vortices

on the low-frequency range of the spectrum in the case of
obliquely incident wave groups?
[9] 3. What is the relative importance of vorticity gener-

ation due to shear production versus wave group forcing in
cases of obliquely incident wave groups?
[10] We begin with a brief description of the numerical

models (section 2) and analysis techniques (section 3) used
in this study. Vortex dynamics are examined using simpli-
fied cases in section 4 to provide a baseline understanding
of vortex behavior under controlled conditions. We then
present simulations using both normally and obliquely
incident random wavefields in section 5. A summary of
our conclusions and implications of this research are then
provided in section 6.

2. Model Description

[11] We utilize the conservation of wave energy principle
to model the evolution of incident wave groups and employ
a wave-induced circulation model based on the phase-
averaged, depth-integrated Navier Stokes equations. Our
approach is similar to the modeling scheme employed by
Reniers et al. [2004] and follows the work of Özkan-Haller
and Li [2003]. The governing equations are discussed only
briefly, and emphasis is given to aspects that differ from
those of Özkan-Haller and Li [2003].
[12] The model domain is characterized by an alongshore

uniform barred bathymetry as given by Reniers et al. [2004]
(Figure 1). The bathymetry is composed of a submerged bar
superimposed on a power law beach profile. The bar crest is
located 110 m offshore (x = 200 m) with a local water depth
over the bar crest of 1.2 m. The model grid and boundary
conditions vary slightly between simulations and are indi-
vidually defined in sections 4 and 5. The model uses a time

Figure 1. Alongshore uniform barred beach profile used
as model bottom boundary condition.
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step of 0.05 s, and modeled quantities are saved at 10 or 20 s
intervals, depending on the total length of the simulation.

2.1. Wave Model

[13] The evolution of the incoming wave group energy is
modeled using a phase-averaged wave model based on the
conservation of wave energy principle.

@E

@t
þ @ðEcg cos qÞ

@x0
þ @ðEcg sin qÞ

@y0
¼ ��b ð1Þ

The reference frame is such that x0 is positive shoreward and
y0 follows a right-handed coordinate system. Wave energy is
denoted by E and is allowed to vary spatially and
temporally because of the presence of wave groups. The
incident wave angle, q, is measured counterclockwise from
the x0 axis and is computed over the entire domain using the
irrotationality of wave number principle, thus accounting
for depth-induced refraction. The wave group velocity (cg)
is computed using the linear dispersion relation accounting
for the total water depth, d = h + h, where h is the still water
depth and h is the surface elevation associated with the
wave-induced circulation.
[14] Several formulations are available to parameterize

the dissipation due to depth-limited wave breaking (�b). One
such formulation involves the consideration of a saturated
surf zone and would, therefore, involve a moving break-
point with sharp spatial gradients in breaking dissipation
and no wave grouping inside the surf zone. However,
observations show that waves in fact display groupiness
in the surf zone [e.g., List, 1991], indicating that the use of
saturated wave breaking is not appropriate. Alternately,
wave breaking dissipation can be parameterized using a
bulk wave dissipation formulation for a random wavefield
[e.g., Thornton and Guza, 1983; Battjes and Janssen,
1978]. Such a formulation produces spatially smooth break-
ing dissipation and is hence not strictly applicable to the
situation of wave groups, but generally reproduces the
reduction (but not complete extinction) of wave grouping
in the surf zone. The dissipation formulation of Roelvink
[1993] also produces a smooth dissipation function and has
been applied by Reniers et al. [2004], whose work, in part,
motivated this paper. Herein, we incorporate the wave
breaking dissipation formulation of Thornton and Guza
[1983] and produce results that closely correspond to the
simulations of Reniers et al. [2004].
[15] In contrast to Özkan-Haller and Li [2003] but in

accordance with Reniers et al. [2004], we neglect all other
effects of the circulation on the incident wavefield. Hence,
in its present form, the model accounts for the effects of
wave shoaling and refraction due to bathymetric variations
and depth-limited wave breaking but neglects wave diffrac-
tion and wave height variations due to wave-current inter-
action. We have performed some basic tests to evaluate the
effect of wave-current interaction on the low-frequency
characteristics of the wave group–forced vortices. While
some of the flow velocities were modified when wave-
current interaction is considered, the results presented here
regarding the temporal characteristics of these vortical
motions were unchanged.

2.2. Circulation Model

[16] The circulation model solves the time-averaged non-
linear shallow water equations which include the effects of
unsteady incident wave forcing (radiation stress gradients),
bottom friction, and lateral momentum mixing.

@h
@t

þ @

@x
u hþ hð Þ½ � þ @

@y
v hþ hð Þ½ � ¼ 0 ð2Þ

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ �g

@h
@x

þ twx
þ tmx

� tbx ð3Þ

@v

@t
þ u

@v

@x
þ v

@v

@y
¼ �g

@h
@y

þ twy
þ tmy

� tby ð4Þ

In the above set of equations, u and v are the cross-shore
and alongshore components of velocity in the x � y right-
handed coordinate axes. Positive values of x point offshore
in this reference system. Model velocities are a combination
of the wave induced drift velocity uS

! and the Eulerian
particle velocity uE

�!,

~u ¼ uS
!þ uE

�!; where uS
!¼ Qw

�!
hþ hð Þ ð5Þ

and Qw
�!

is defined as the shoreward directed mass flux due
to the waves. The wave forcing, tw, is computed using
radiation stress gradients as expressed by Longuett-Higgins
and Stewart [1964]:

twx
¼ � 1

rd
@Sxx
@x

þ @Sxy
@y

� �

twy
¼ � 1

rd
@Sxy
@x

þ @Syy
@y

� �
ð6Þ

where Sxx, Sxy and Syy denote the components of the
radiation stress tensor and are computed using linear water
wave theory. Lateral momentum mixing (tm) is parameter-
ized using an eddy viscosity term with nt = Md (eb/r)

1/3. In
this parametrization, eb represents the breaking wave
dissipation, r is the water density, and M is the lateral
mixing coefficient [Battjes, 1975]. One modification to the
model over previous versions [e.g., Özkan-Haller and Li,
2003] is the inclusion of a nonlinear representation for the
bottom friction that does not rely on either a weak- or
strong-current assumption. Following the work of Feddersen
et al. [2000], the nonlinear bottom friction dissipation is
parameterized using

tb!¼ cf

d
h~uj~uji ¼ cf

d
sT~u 1:162 þ ð~u=sT Þ2

h i1=2
: ð7Þ

The depth-dependent spatially variable friction coefficient cf
is expressed by the Manning-Strickler equation cf =
0.015(ka

d
)1/3 [Sleath, 1984]. In this formulation, h i represents

the time average and we use linear wave theory to compute
the wave-orbital velocity variance, sT. We use a roughness
value of ka = 0.022 which corresponds to cf = 4.0  10�3
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over the crest of the bar. This is consistent with measured
values of cf [e.g., Garcez Faria et al., 1998], although we
acknowledge that there are uncertainties and considerable
variability in the appropriate friction coefficient. We have
tested the sensitivity of our conclusions to the size of the
bottom friction coefficient, increasing and decreasing it by a
factor of two and found that in all cases where waves are
continually present, the bottom friction component, while
important, does not dictate the temporal variability of
vortical motions.
[17] Feddersen et al. [2000] tested the form given in

equation (7) for only the alongshore component of the
bottom shear stress. However, the original expression by
Wright and Thompson [1983] was formulated for a bottom
shear stress vector that was aligned with the direction of the
flow, and it is in this spirit that the parameterization is used
here. We note that we also incorporated several different
bottom stress parameterizations including a linear weak-
current parameterization and a nonlinear strong-current
parameterization in addition to the hybrid parameterization
of Feddersen et al. [2000]. In all cases, our conclusions
regarding longevity and temporal characteristics of the wave
group–forced surf zone vortices remain unchanged.

3. Analysis Methods

[18] We utilize several analysis methods to assess the
different characteristics of the surf zone vortices. In partic-
ular, we use the potential vorticity balance as a diagnostic
tool to assess the nature of the forcing and dissipation of
wave group–forced vortices. The potential vorticity balance
has been used successfully by previous studies to highlight
similar dynamic relationships. For example, Johnson and
Pattiaratchi [2006] used this balance to show that the main
forcing of vorticity due to wave grouping occurs inside the
surf zone. Also, Bühler and Jacobson [2001] used the
potential vorticity balance to describe the life cycle of an
isolated vortex from its generation to its eventual demise.
Herein, we integrate the potential vorticity balance over the
area of a vortex in order to isolate the relative importance of
wave forcing and bottom friction in dictating the temporal
evolution of the isolated vortex. This analysis is helpful in
examining a previous hypothesis by Reniers et al. [2004]
that suggests that bottom friction should be responsible for
the temporal evolution of a given vortex.
[19] An area-averaged or vortex-tracking balance by

default minimizes the role of advective changes in potential
vorticity because the area of interest always contains the
moving vortex. To determine the relative importance of
local and advective changes in potential vorticity, we
analyze the balance of potential vorticity at isolated spatial
locations. In the vicinity of the bar, such balances indicate
when a ‘‘forced’’ balance exists (where the total time rate of
change of vorticity is balanced largely by wave forcing) or
when the vortices are ‘‘free’’ (characterized by nearly
conserved potential vorticity and, therefore, a balance
between the local and advective acceleration of potential
vorticity). Further, consideration of point balances at a
particular cross-shore location (as a function of alongshore
location and time) also enables us to look at the dynamics of
individual vortices over the bar and assess reasons for their
longevity.

[20] In addition to the potential vorticity balance, we also
evaluate the potential enstrophy balance (potential vorticity
squared) to identify the dominant sources (positive definite
quantities) and sinks (negative definite quantities) of vorti-
cal motions over the whole domain [e.g., Terrile et al.,
2006; Zhao et al., 2003]. The potential enstrophy balance
also separates the contribution of vortices generated by
multiple mechanisms. The relationship between vorticity
and enstrophy is analogous to the relationship between
velocity and kinetic energy. Some previous studies have
used a kinetic energy balance that employs a rigid lid
assumption to evaluate the dynamics of nearshore vortical
motions [e.g., Dodd and Thornton, 1990; Allen et al.,
1996]. In our case, the incident wave groups force gravity
motions in addition to the vortices of interest. The kinetic
energy balance includes a substantial contribution from
these gravity motions (for which a rigid lid assumption is
not appropriate), and, therefore, does not clearly elucidate
the dynamics of the vorticity motions. Separating the
dynamics of the gravity and vorticity motions in the kinetic
energy balance is possible but not trivial. Instead, the
enstrophy balance elegantly isolates the dynamics of the
vorticity motions and enables an analysis of the contribution
of shear production and direct forcing to the generation of
the simulated vorticity field.

3.1. Potential Vorticity Balance

[21] The vorticity balance is derived by cross differenti-
ating and subtracting the depth-averaged momentum equa-
tions (equations (3) and (4)). We divide the resulting
equation by the total water depth (d = h + h), and invoke
the continuity equation to simplify the expression. After
rearranging, we arrive at an equation for the conservation of
potential vorticity.

�DV
Dt

þ 1

d
rh  tw�!þ tm�!� tb!½ � ¼ 0 ð8Þ

In this equation, the potential vorticity is given by V = q
d
,

where q is the vorticity defined as q = @v
@x � @u

@y and rh

represents the horizontal gradient operator.
DðÞ
Dt

denotes the
total derivative which we will refer to as the total time rate
of change of potential vorticity and the components of the
material derivative, @V@t and u@V@x + v@V@y , correspond to the local

and advective changes of potential vorticity, respectively.

3.2. Potential Enstrophy Balance

[22] We follow the derivation of Zhao et al. [2003] but
begin with the conservation of potential vorticity rather than
the conservation of vorticity considered by them. We first
separate the potential vorticity balance into alongshore
mean and fluctuating components denoted by an overbar
and prime, respectively:

V ¼ �V þ V 0; u ¼ �uþ u0; v ¼ �vþ v0;

1

d
rh  tb ¼ 1

d
rh  tb

� �
þ 1

d
rh  tb

� �0
; ð9Þ
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where b is used to represent the wave forcing, turbulent
mixing, and bottom stress. We alongshore average this full
potential vorticity equation to define the local mean
potential vorticity balance. The assumption of periodicity
in the alongshore direction simplifies the derivation by
eliminating y derivatives of alongshore averaged quantities.
The potential enstrophy perturbation equation is then
derived by subtracting the alongshore averaged potential
vorticity equation from the full potential vorticity equation
and multiplying by the perturbation potential vorticity and
alongshore averaged total water depth (V 0d). The resulting
equation is alongshore averaged and cross-shore integrated
from the bar trough (xt) to the offshore boundary (Lx) and
simplified by invoking the mean and perturbation continuity
equations. While Zhao et al. [2003] integrate over the entire
cross-shore domain, we exclude the area near the shoreline
in the integration because a separate set of vortices are
forced there because of renewed wave breaking, and our
simplified shoreline treatment inhibits realistic treatment in
that region. Vortices generated on the bar and near the
shoreline are clearly separated by the presence of the bar
trough where the vorticity is minimal and can therefore be
neglected. Hence, by assuming zero vorticity in the bar
trough and at the offshore boundary, the cross-shore integral
of the two x derivative terms in the equation that describe
the advection of enstrophy will be identically zero, as they
were for Zhao et al. [2003]. We have verified, by computing
the advection terms in the enstrophy balance, that our
assumption of zero vorticity in the bar trough is valid and
that they do not contribute to the balance of enstrophy. The
perturbation enstrophy balance (equation (10)) derived in
this manner describes the balance of enstrophy associated
with vortical motions generated by the wave group forcing
and shear instabilities, if present.

Z Lx

xt

�@

@t

1

2
V 0V 0�d

� �
dx�

Z Lx

xt

V 0u0�d
@�V
@x

dx

þ
Z Lx

xt

�d V 0
1

d
rh  tw�!� �0

dx

þ
Z Lx

xt

�d V 0
1

d
rh  tm�!

� �0
dx

�
Z Lx

xt

�d V 0
1

d
rh  tb!

� �0
dx ¼ 0 ð10Þ

[23] Here, the first term represents changes in the local
rate of change of perturbation potential enstrophy (ENSt).
The second and third terms define the production of
potential enstrophy by the shear in the mean alongshore
current (PRODshear) and the perturbation wave forcing (i.e.,
wave groups) (PRODwave), respectively. The fourth term
accounts for turbulent mixing of the perturbation potential
enstrophy (MIX) and the last term represents the contribu-
tion due to the curl of the bottom stress (FRIC). This is
similar to equation (B10) given by Zhao et al. [2003] except
it was derived in terms of potential vorticity; hence vortex
stretching terms are absent. Analysis of this balance will
identify those components that act as sources or sinks of
potential enstrophy as well as establish the ratio of potential
enstrophy production from both the wave group forcing and

the shear production due to the mean alongshore current.
Hereinafter, reference to the potential enstrophy balance
will pertain to the perturbation potential enstrophy equation
given in equation (10).

3.3. Vortex Tracking

[24] In the simplified cases that follow, the wave groups
have a fixed alongshore structure. Therefore the vortex
generation location is dictated by the alongshore nodal
positions of the wave groups. In these cases a control area
that encompasses one half of a rip current cell and extends
from the bar crest to the offshore boundary is used. Our goal
is to evaluate, in a controlled situation, the relative impor-
tance of wave forcing and bottom friction in dictating the
temporal variations of the wave group–forced vortices. The
simplicity of using an area integral must be abandoned
when stochastic nearshore flows are considered, and instead
we adopt the vortex tracking algorithm developed by
McWilliams [1990] for use in the study of coherent vortices
in 2-D turbulence. With this we can follow each vortex
through space and time and evaluate the integrated potential
vorticity balance for any given vortex. This analysis helps
us evaluate the forces that affect any chosen vortex as it is
generated, propagates and degenerates.
[25] For each model output time, the algorithm first

identifies all extrema (Ve) in the domain that exceed a
chosen threshold value. The algorithm then searches for
all the boundary points surrounding each extremum. The
boundary is defined as

V=Ve ¼ D ð11Þ

where D = 0.25 for this study. Vortices with boundaries that
are not identified as closed curves are rejected.
[26] After identifying the boundary of each vortex, over-

lapping or redundant vortices are combined or eliminated.
We also neglect any vortices positioned at the lateral
boundaries and restrict the analysis to vortices seaward of
the bar trough. The acceptable values used for shape
parameters in this study are much less stringent than those
used by McWilliams [1990] because that study was
concerned with axisymmetric circular vortices, whereas
we allow vortices of practically any shape to be included
in the analysis. For this study we use only two of the shape
tests, the first of which requires that the vortex area (A)
exceed 750 m2. The second test evaluates the circularity (R)
of the vortex boundary where R = C/(2

ffiffiffiffiffiffi
pA

p
) and C is the

circumference of the vortex. A value of R = 1 corresponds to
a perfect circle and increasing values of R indicate more
complex boundary shapes. For this study we use a value of
R = 2.5 as our upper bound. Changing the parameters we
use in the vortex tracking algorithm will only change the
number of vortices identified or slightly alter the size of the
vortices (dictated by equation (11)). Because neither of
these (number or size) are related to the results of the
study, these subjective components of the method are
inconsequential.
[27] We tested both control area methods using one of the

simplified cases, and the potential vorticity balances dif-
fered by less than 0.5%. Therefore, the vortex tracking
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method will be employed for the analysis of a stochastic
field of nearshore vortices in section 4.

4. Idealized Wave Groups

4.1. Single Wave Group

[28] We begin by looking at a case with an alongshore
variable, single wave group impulse, similar to the work of
Ryrie [1983] who showed that an isolated oblique wave
group would excite two primary motions: (1) edge waves
propagating alongshore and (2) a steady vortex pair located
at the wave group breaking location that would decay on a
frictional time scale. Consequently, when considering more
realistic conditions, if an existing strong vortex is unaltered
by subsequent weaker wave groups, a similar frictional
decay would control the temporal evolution of the vortex
and manifest itself as a low-frequency signal in a spectral
analysis. To illustrate this effect, we use shore-normal
incident waves with a period of 10 s with 12 waves in a
single wave group.
[29] The spatial grid is 1000 m  1000 m (cross-shore 

alongshore) with variable cross-shore spacing of 1.25–7.3 m
(grid points are more concentrated at the onshore/offshore
boundaries) and an alongshore spacing of 7.81 m. Walls are
specified at the lateral boundaries and an open offshore
boundary condition is employed. A wall boundary is also
used at the shoreline, hence swash zone excursions are not
included. For the case involving a single wave group, an

alongshore length scale is imposed by the incident wave-
field such that three rip currents are generated at alongshore
positions that correspond to the nodal locations of the
incoming group. The control area used to analyze the
vorticity balance is shown in Figures 2a and 2b. Because
of symmetry, the results apply to the other vortices in the
system as well.
[30] The potential vorticity balance for the isolated vortex

(Figure 3) shows that, in this simplified case, the arrival of
the wave group drives the total time rate of change of
potential vorticity. Once wave forcing ceases, this total time
rate of change is balanced by frictional effects. The potential
vorticity balance is computed as an integral quantity, but the
potential vorticity extremum in the control area (Ve) is also
given for reference. The resulting potential vorticity time
series indicates that the vortex decays slowly under the
influence of bottom friction with an e-folding time scale of
14.33 min. The decay rate is directly related to the size of
the bottom friction term, and hence the bottom roughness. A
fivefold increase in the bottom roughness results in a
decrease in the e-folding time scale to 2.67 min. We note
that for this case the term associated with lateral momentum
mixing does not contribute significantly.
[31] The chosen control area allows us to isolate the

relative importance of wave forcing and bottom friction in
dictating the total rate of change of potential vorticity, but it
does not allow us to assess the relative role of the local and
advective potential vorticity changes. For this purpose, we

Figure 2. Single wave group. (a) Incoming wave height distribution at t = 7.5 min. (b) Potential
vorticity [ 1

ms
] over the entire domain at t = 25 min. White and black lines denote the control area used in

computing the potential vorticity balance for idealized simulations. Snapshots of the potential vorticity
field at (c) t = 8.17 min, (d) t = 14 min, and (e) t = 19.83 min. In Figures 2c–2e, the black line outlines the
same vortex identified with the tracking analysis.
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also analyze the balance computed at a single point just
offshore of the bar crest (Figure 4). As the wave group
approaches the bar and begins to break, the curl of the wave
forcing is balanced by the local change (i.e., strengthening)
of potential vorticity. This balance is indicative of a forced
motion. Advective changes are small at first because the
vortex is relatively stationary, but they become important
once the vortex begins to move because of mutual advection
with its neighboring vortex. As the tail of the wave group
propagates through, the associated negative cross-shore
gradients cause a reversal in the sign of the curl of the
radiation stress gradients. This effect results in the active
weakening of the generated vortex. After the passage of the
wave group, the total rate of change of potential vorticity is

balanced by frictional effects, although both of these terms
are small and potential vorticity is nearly conserved. There-
fore, as the vortex continues to move offshore, the local and
advective potential vorticity changes are nearly in balance
which is indicative of a free motion. We note that the size of
the local and advective terms at this location are represen-
tative of their size at any point in the domain.

4.2. Wave Group Sequences

[32] An initial objective of this research is to illustrate
how wave groups arriving at later times will affect vortices
that were generated by preceding wave groups. Hence, we
conducted a series of idealized simulations aimed to analyze
the vortex characteristics resulting from sequences of wave

Figure 3. Single wave group. (a) Time series of the offshore wave group height at y = 335 m. (b) Cross-
shore velocity time series observed at x = 222 m, y = 500 m. (c) The potential vorticity balance for a
control area between 335 < y < 500m. Solid line,�DV

Dt
; dashed line, 1

d
rh tw�!; dash-dotted line,�1

d
rh tb!.

(d) The potential vorticity extremum in the control area (Ve).

Figure 4. Single wave group. Potential vorticity balance computed at a single point (x = 223 m, y =
406 m). Black solid line, �DV

Dt
; gray dashed line, �@V

@t; gray solid line, � (u@V@x + v@V@y); black dashed line,
1
d
rh  tw�!; black dash-dotted line, �1

d
rh  tb!.
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groups with varying magnitude. Mainly, is a vortex that was
driven by an energetic wave group unaffected by subse-
quent smaller incoming wave groups, as previously sug-
gested, or does it respond to all additional forcing? The grid
and computational time step are the same as those used in
the previous case. We conducted a number of numerical
experiments involving individual wave groups with a period
of 2 min and a long-term modulation function that defines
the ‘‘shape’’ of the sequence (e.g., sawtooth, exponentially
decaying sawtooth, sine-squared function, etc.) which
repeats every 10 min. For brevity, we show the results from
only one case but we note that the results were consistent
among all simulations.
[33] The incoming wave groups are modulated using a

sine-squared function and the alongshore structure of the
wave groups is the same as that shown in the single wave
group case. Figure 5 shows the time series of the offshore
wave group height along with the integrated potential
vorticity balance over the same area as in section 4.1. The
temporal variability of the total time rate of change of
potential vorticity is directly linked to the curl of the wave
forcing while the curl of bottom friction has a more constant
influence. The vortices respond to each subsequent breaking
wave group, regardless of size, meaning there is not
sufficient time for significant frictional decay to take place.
Of course, given that waves must break for radiation stress
forcing to be present, if a wave group is so small that it does
not break over the bar, the vortex is unaffected. This is
evident by the two smallest wave groups (e.g., t = 14 and

16 min in Figure 5) that are separating larger groups of
waves. During this time, the dominant balance is between
the curl of bottom friction and the total time rate of change
of potential vorticity. A long separation between breaking
wave groups (O(5 min)) would be required for a frictional
decay to become significant, and whether or not such a long
absence of energetic waves exists in a realistic wave
spectrum will be addressed in section 5. We note here that
the vorticity balance at a point (not shown) leads to
conclusions similar to those described in the previous case.
Namely, the advective changes in potential vorticity are
small at first, but gain importance as the vortices begin to
move under the influence of mutual advection and self-
advection due to the sloping bathymetry. During the short
periods of low wave group forcing, local and advective
changes are nearly balanced. The remainder, which is the
total time rate of change of vorticity, is balanced by the
frictional effects.
[34] At this point we introduce the perturbation potential

enstrophy balance to gain familiarity under simplified con-
ditions. Unlike the potential vorticity balance that was
integrated over a predefined control area, the potential
enstrophy balance is integrated over the entire alongshore
domain and from the bar trough to the offshore boundary. In
this case, the mean potential enstrophy balance is trivial,
and the perturbation balance essentially describes the full
enstrophy budget. The potential enstrophy balance is shown
in Figure 6 and elucidates the sources and sinks of ens-
trophy (and therefore vorticity) in the domain. We see that

Figure 5. Simplified wave group sequence. (a) Time series of the offshore wave group height at y =
335 m. (b) Cross-shore velocity time series observed at x = 222 m, y = 500 m. (c) The potential vorticity
balance for a control area between 335 < y < 500 m. Solid line, �DV

Dt
; dashed line, 1

d
rh  tw�!; dash-dotted

line, �1
d
rh  tb!. (d) The potential vorticity extremum in the control area (Ve).

C08004 LONG AND ÖZKAN-HALLER: TEMPORAL RESPONSE OF WAVE GROUP–FORCED VORTICES

8 of 21

C08004



bottom friction is a negative definite quantity always acting
to dissipate the enstrophy in the domain. The perturbation
wave forcing (i.e., wave groups) primarily acts as the source
of vorticity motions, however, when the wave group forcing
term opposes the rotation direction of an existing vortex, it
actively slows it down and, therefore, appears as an ens-
trophy sink. As discussed during the single wave group
case, this can be observed during brief times when the tail of
each breaking wave group reverses the sign of the wave
forcing term, thereby causing a corresponding decay in the
perturbation enstrophy. Similar to the analysis of the poten-
tial vorticity equation, there is a general correspondence
between the time variations of the incident wave group
forcing and the time rate of change in potential enstrophy.
[35] We note that, like those given by Reniers et al.

[2004], the time series of offshore wave height and cross-
shore velocity in the surf zone (Figure 5) show little
correspondence. Our results indicate that such a lack of
correspondence is not indicative of the absence of a direct
dynamical relationship between the wave forcing and
response as previously interpreted by Reniers et al.
[2004]. Instead, other motions such as edge waves are
present in the velocity signal in the surf zone that inevitably
mask this relationship. It can, however, be demonstrated
when the potential vorticity or potential enstrophy balance
is considered.

5. Random Wave Groups

[36] In the previous cases, the nodes and antinodes of the
successive wave groups occurred at fixed alongshore posi-
tions. Hence, the generated vortices were repeatedly
strengthened by each successive wave group. In a random
wavefield we expect vortices to be generated at random
alongshore positions, and the effect of subsequent wave
groups (with nodes and antinodes at different positions than
the previous groups) would provide both constructive and
destructive forces.
[37] For these cases, a random wavefield is generated

from a TMA spectrum [Bouws et al., 1985] with a signif-
icant wave height of 1.4 m (Hrms = 1 m) and a peak period
of 10 s. We use a spectral spreading parameter (g) of 7,
resulting in a relatively narrow spectrum. The peak direction
of the spectrum varies as described for each case. Following
Reniers et al. [2004], we derive the time-dependent offshore

wave group envelope using the procedure described by Van
Dongeren et al. [2003]. According to this representation, the
incident water surface elevation (hs) at each offshore grid
point is expressed as the summation of wave components,
each with a given frequency ( f ), amplitude (B), direction
(q), and random phase (f). We utilize 420 wave components
and hs is given by

hsð0; y0; tÞ ¼
XN¼420

i¼1

Bi cos ki sin qið Þy0 � 2pfi t þ fið Þ: ð12Þ

In this equation, the wave number, k, is computed using the
linear dispersion relationship and y0 corresponds to the
alongshore direction in the wave model coordinate system
discussed in section 2.1. Following Van Dongeren et al.
[2003], the wave components used in generating the water
surface elevation time series are restricted to those that
contain at least 10% of the peak energy density. Each
chosen frequency bin is subdivided into ten smaller
segments resulting in a frequency resolution of 10�4 Hz.
A directional component corresponding to each frequency
within a bin is chosen using a probability density function
that follows a directional spreading function given by

PðqÞ ¼
Z p=2

�p=2
cos q� qpeak

	 
13:5
dq ð13Þ

Therefore, components closer to the peak direction are more
likely to be chosen. Note that equation (13) results in a
spectrum with a directional spread equivalent to test 002 of
Reniers et al. [2004]. Finally, the amplitude associated with
each component is found by integrating the spectral density
within the given frequency and direction bin. To obtain the
offshore wave envelope used to initialize the wave model
we take a Hilbert transform of this instantaneous water
surface elevation time series at each location along the
offshore boundary and low pass the signal at f = 0.02 Hz.
We measure the amount of groupiness in the wave
amplitude time series according to a groupiness factor
(GF) defined by List [1991] as

ffiffiffi
2

p
sA/A where sA and A

are the standard deviation and mean of the time series,
respectively. The generated time series have GF values of
0.6–0.63. For reference, a quick analysis of wave height

Figure 6. Simplified wave group sequence. Enstrophy balance integrated over all alongshore positions
and from the bar trough to the offshore boundary. Thick solid line, ENSt; dashed line, PRODwave; dotted
line, MIX; thin solid line, FRIC.
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time series from the Sandyduck experiment in Duck, North
Carolina, indicates that a GF = 0.7 can be common. Here,
the spatial grid is 700 m  1000 m (cross-shore 
alongshore) with variable cross-shore spacing of 1.25–
4.90 m and an alongshore spacing of 7.81 m.

5.1. Normal Incidence

[38] As anticipated, the field of vortices generated by a
normally incident random wavefield is much more compli-
cated. A space-time plot (or time stack) of the offshore wave
height is given in Figure 7 and indicates that wave groups
will break (and consequently force either positive or nega-
tive vorticity) at variable alongshore positions. Figure 7 also
shows a time series of the incident wave height at the
offshore boundary along with a time series of the resulting
cross-shore velocity inside the surf zone. Like Reniers et al.
[2004], we observe a low-frequency signal in the velocity
time series that is not easily identified in the offshore wave
signal at the same alongshore position. We note that a
comparison using the local wave height in the surf zone
yields a similar disparity. Instead, the potential vorticity
balance at any point on top of or seaward of the bar crest
(see Figure 8, top) indicates that the total time rate of change
of potential vorticity is dictated by the curl of the radiation
stress forcing.
[39] The relative importance of the local and advective

changes of potential vorticity can be more easily identified
if we apply a lowpass filter (using a running boxcar
averaging window of width 200 s) to each term in the
potential vorticity balance. In this case, several types of

balances can be identified (see Figure 8, middle). At times
(e.g., t � 45 min) the local time rate of change of vorticity is
balanced by the wave forcing, and the advective contribu-
tions to the change in potential vorticity are small. This
occurs when a vortex is strengthened by an incoming wave
group but remains stationary in space. At other times (e.g.,
t � 35 min), a free balance between the local and advective
changes of potential vorticity is evident. This occurs at
times when the wave forcing term is weak, and the situation
is indicative of a vortex moving across the point of interest.
Any small remainder in that balance is accounted for by the
bottom stress. Finally, the wave forcing term can also be
primarily balanced by the advective change in the potential
vorticity (e.g., t � 15 min), with only small local changes of
vorticity. This indicates a situation where a vortex moves
across the point of interest while changing if it encounters a
breaking wave group. Overall, the time series reveal that
there is a low-frequency component in the curl of the wave
forcing that gives rise to the low-frequency signal observed
in the total changes (local and advective) of potential
vorticity, and hence in the vorticity itself.
[40] The perturbation potential enstrophy integrated over

all alongshore positions from the bar trough to the offshore
boundary (Figure 9) indicates that the wave forcing is the
only source of potential enstrophy because shear production
is zero in the absence of any mean vorticity. Both the
instantaneous and the low-pass-filtered balances indicate
that the temporal variations in the time rate of change of
potential enstrophy are caused by the variations in the wave
group forcing. Bottom friction still maintains an active role

Figure 7. Normally incident random wave group sequence. (top) Time-space plot of root-mean-square
wave height at the offshore boundary with GF = 0.63, where the white line denotes the location of
(middle) the time series at y = 344 m. (bottom) Time series of cross-shore velocity (solid line) and low-
pass-filtered (T > 200 s) cross-shore velocity (dashed line) at x = 223 m, y = 344 m (inside the surf zone).
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Figure 8. Normally incident random wave group sequence. (top) Potential vorticity balance computed

at a single point (x = 223 m, y = 344 m). Black solid line, �DV
Dt
; gray dashed line, �@V

@t; gray solid line,

� (u@V@x + v@V@y); black dashed line, 1
d
rh  tw�!; black dash-dotted line, �1

d
rh  tb!. Also shown is (middle)

the low-pass-filtered (T > 200 s) potential vorticity balance and (bottom) potential vorticity, V, at the same
location.

Figure 9. Normally incident random wave group sequence. (top) Enstrophy balance integrated over all
alongshore positions and from the bar trough to the offshore boundary. Thick solid line, ENSt; dashed
line, PRODwave; dotted line, MIX; thin solid line, FRIC. (bottom) The low-pass-filtered (T > 200 s)
potential enstrophy balance.
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in the system but it varies over longer time scales and does
not control the temporal variations present in the enstrophy
signal.
[41] In order to address the reasons behind the longevity

of any given vortex, we use the vortex tracking method
(potential vorticity threshold = 0.002 m s�1) to identify all
the vortices and follow their initiation, evolution, and decay.
The potential vorticity balance for a representative vortex
(integrated over the vortex area) is shown in Figure 10. We
also include three snapshots of vortex position in the model
domain at arbitrary times. In this case, and all others
examined in detail, a correspondence between temporal
variations in the total time rate of change of potential

vorticity and the temporal variations in the curl of the wave
forcing exists. This again indicates that vortices do respond
to all subsequent group forcing they encounter.
[42] Although the location of the vorticity extremum

migrates spatially and the vortex shape exhibits some
variations, the example vortex has a lifetime of approxi-
mately 40 min, which is much longer than the time scales
associated with the individual wave groups. From the
potential vorticity balance we see that, as expected, when
a vortex encounters wave forcing of the same sign (i.e.,
forcing that rotates the water column in the same direction as
the existing vortex) the vortex is strengthened. Alternately,
when a vortex experiences forcing of opposite sign (rotating

Figure 10. Normally incident random wave group sequence. Snapshots of the vortex position at (a) t =
8.2 min, (b) t = 24.8 min, and (c) t = 41.5 min. The magenta circle marks the location of the cross-shore
velocity time series plotted in Figure 7. (d) The integrated potential vorticity balance for a vortex tracked
through its lifespan. Solid line, �DV

Dt
; dashed line, 1

d
rh  tw�!; dash-dotted line, �1

d
rh  tb!. (e) The low-

pass-filtered (T > 200 s) potential vorticity balance shows the long-term positive wave forcing
characteristics. (f) The potential vorticity extremum (Ve) is given. (g) The cross-shore position of the
vortex extremum (Ve) (solid line) relative to the bar crest (dashed line).
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the water column in the opposing direction) it acts to
weaken the vortex. It is important to note that this period
of dissipation of potential vorticity does not necessarily
mean that the vortex will no longer exist. The length of time
the vortex persists is directly related to the cumulative effect
of successive strengthening and weakening and is, there-
fore, a strong function of the sequence of wave groups
incident on the beach.
[43] In this case (Figure 10e) the initiation of the vortex is

associated with a strong positive stirring of the water
column by the low-frequency curl of the wave forcing. This
quantity remains positive for over 35 min and causes the
vortex to persist for the same duration. We note that there
are periods within this time history (e.g., at t = 24 min)
where the low-frequency time series of the curls of bottom
friction and wave forcing are of equal importance; however,
these periods are short-lived and last only 1–2 min. The
identified vortex strengthens during times of strong wave
forcing and persists until the wave forcing term changes
sign and causes a significant reverse stirring of the water
column (t = 40 min). This causes a rapid dissipation of the
vortex until it can no longer be identified by the vortex
tracking algorithm. Interestingly, this is also the time when
the vortex migrates shoreward of the bar crest (Figure 10g)
where wave groupiness has been reduced because of wave
breaking over the bar and wave forcing of vorticity is small
because of a lack of breaking in this region. For all the
vortices analyzed, we did not observe situations when the
curl of the wave forcing remained small for sufficient time

such that bottom friction could become responsible for the
decay and eventual demise of a vortex. Instead, vortex
demise occurred when the low-frequency stirring effect of
the wave forcing reversed in sign for a sufficient amount of
time.
[44] In order to illustrate the range of conditions observed

in the results, we show time-space plots of the terms in the
low-frequency potential vorticity balance at an alongshore
transect just offshore of the bar crest (Figure 11). In essence
this shows point balances of the potential vorticity equation
at each alongshore position for the given cross-shore
transect. The contour lines outline instances when the
potential vorticity is above the threshold used in the vortex
tracking algorithm. Hence, these closed lines indicate the
temporal and alongshore extent of an identified vortex at
this cross-shore position. Although we use a nonlinear
bottom friction parametrization, the curl of the bottom
friction is representative of the potential vorticity. Vortex
1 (as labeled in Figure 11) is the vortex previously dis-
cussed. Vortex 3, which develops around t = 22 min,
illustrates a situation where a vortex is generated, but exists
for only approximately 5 min because the low-frequency
curl of the wave forcing reverses sign (from positive to
negative) soon after vortex generation and destroys the
vortex. Vortices 2 and 4 exhibit the same dynamic balance
between curl of the radiation stress forcing and total
changes of potential vorticity and are examples of positive
and negative vortical motions existing in the domain for
O(10 min). Overall, vortices exist for periods of time

1

1

1

2
3

4

2

2

3

3

4

4

Figure 11. Normally incident random wave group sequence. (top) Time stack of low-pass-filtered
(T > 200 s) 1

d
rh  tw�! at an alongshore transect taken at x = 223 m. (middle) A time stack of low-pass-

filtered �DV
Dt

at the same transect. (bottom) A time stack of low-pass-filtered �1
d
rh  tb!. Black lines

correspond to contours of V = ±0.002 [ 1
ms
] (vortex tracking threshold), and bold contours refer to vortices

discussed in detail.

C08004 LONG AND ÖZKAN-HALLER: TEMPORAL RESPONSE OF WAVE GROUP–FORCED VORTICES

13 of 21

C08004



ranging from 5–45 min. Their alongshore position during
this time can be quite stationary, or they can migrate
alongshore for distances up to 100 m.

5.2. Oblique Incidence

[45] In section 5.1 we show that under normally incident
wave conditions the vortices can exist for O(10 min) or
more because a low-frequency component of the curl of the
radiation stress gradients exists. It is not clear, however if
the potential vorticity balance changes when wave group–
forced vortices are superimposed on an alongshore current,
or if they have characteristics that can be distinguished from
other low-frequency motions in the surf zone such as shear
instabilities of the alongshore current. The following model
simulations address these questions by considering oblique
wave groups with varying degrees of groupiness coexisting
with both stable and unstable alongshore currents. For these
cases the model domain is 700 m  2000 m with a variable
cross-shore resolution of 1.25–4.90 m, and an alongshore
grid spacing of 7.81 m. This alongshore extent is twice that
used by Noyes et al. [2005] in their model-data comparisons
of shear instabilities and should therefore ensure that these
motions are adequately resolved. We also impose periodic-
ity at the lateral boundaries.
5.2.1. Stable Alongshore Current Profile
[46] First, we consider a situation where the mean along-

shore current is expected to be stable. The mean wave
height and peak period of the offshore wavefield are 1 m
and 10 s, respectively (resulting in a time series with GF =
0.6). The peak wave angle is �8 which forces a mean along-
shore current in the positive y direction. Themean alongshore
current profile is obtained by averaging the alongshore
velocities over the last half of the simulation and over all
alongshore transects. A stability analysis of this alongshore
current profile indicates stability.
[47] Time series of potential vorticity over the bar (not

shown) are very similar to the balances analyzed for the
normally incident random waves. The perturbation potential
enstrophy balance is also similar (Figure 12) indicating the
dominant role of the wave group forcing in generating and
controlling the temporal variations in potential vorticity.
However, in this case a shear production term is also present
even though the underlying mean alongshore current is
stable. This is because the alongshore current is sheared

in the cross-shore direction, hence the cross-shore gradient
of the associated alongshore-averaged potential vorticity is
nonzero. Coupling this with the nonzero potential enstrophy
fluctuations associated with the wave group–forced vortices
gives rise to a nonzero shear production term. Despite the
presence of this additional source term, we note that the
temporal evolution of the time rate of change of potential
enstrophy still closely resembles the time variability in the
wave group–forcing term. Bottom friction and momentum
mixing continue to act as enstrophy sinks.
[48] In order to analyze the fate of individual vortices,

time-space plots of the terms in the low-frequency potential
vorticity balance at an alongshore transect just offshore of
the bar crest (Figure 13) are analyzed. The time stack of the
curl of the bottom friction (Figure 13, bottom) is a close
proxy for a time stack of potential vorticity, and a few
vortices are selected for closer examination. Once vortices
are generated, they propagate in the alongshore direction.
Note that the curl of the wave radiation stress gradients
(Figure 13, top) does not display a propagating nature,
although the waves themselves arrive obliquely. Hence,
the alongshore propagation of the vortices is not dictated
by the wave groups; instead, the vortices are advected by
the mean background current. As a vortex is advected
alongshore it encounters stirring that either strengthens or
weakens it and the vortex ceases to exist only when it is
affected by sufficiently strong forcing that stirs in an
opposing direction.
[49] Reniers et al. [2004] already evaluated the frequency–

wave number signature of vortices caused by normally
incident wave groups. Here, we analyze the signature for
obliquely incident groups by constructing the spectrum
from time series of vorticity. This approach exploits the
filtering of gravity motions inherent in the quantity of
vorticity [Kirby and Chen, 2002] which is evident by the
comparison of frequency–wave number spectra computed
using vorticity and both components of velocity shown in
Figure 14. The computed spectra have been band averaged,
resulting in a frequency and wave number resolution of df =
0.0017 Hz and dk = 0.0025 m�1, respectively. The cross-
shore and alongshore velocity spectra show the presence of
gravity wave motions (e.g., edge waves) that are absent in
the potential vorticity signal because these motions are
irrotational. However, the signature of the wave group–

Figure 12. Random wave groups with stable alongshore mean current. Low-pass-filtered (T > 200 s)
potential enstrophy balance integrated over all alongshore positions from the bar trough to the offshore
boundary. Thick solid line, ENSt; thick dashed line, PRODshear; thin dashed line, PRODwave; dotted line,
MIX; thin solid line, FRIC.

C08004 LONG AND ÖZKAN-HALLER: TEMPORAL RESPONSE OF WAVE GROUP–FORCED VORTICES

14 of 21

C08004



forced vortices is evident in all three spectra and lies along a
linear ridge indicative of nondispersive alongshore propa-
gation. Hence, while we use vorticity as a measure in this
numerical study, field measurements of velocity would
record the low-frequency oscillations described here. The
resulting frequency–wave number spectra are similar to
those measured in the presence of shear instabilities of the
alongshore current, even though the alongshore current in
this case is stable.
[50] We quantify the alongshore phase speed at all cross-

shore locations by determining the slope of a best fit line of

the spectrum over the entire positive frequency range
following Özkan-Haller and Kirby [1999] and compare this
estimate to the mean alongshore current profile (not shown).
We find that the phase speed over and seaward of the bar
corresponds to the local value of the alongshore current.
This is consistent with the notion that the vortices are
directly forced by the wave groups and advected alongshore
by the mean alongshore current. Any differences in the
phase speed and mean alongshore current velocities are
likely due to several factors. For example, the advection
speed is likely affected by mutual interactions with neigh-

Figure 14. Random wave groups with stable alongshore mean current. The frequency–wave number
spectrum of (left) cross-shore velocity and (middle) alongshore velocity at x = 223 m with contour levels
corresponding to [10, 30, 100, 300, 1000, 3000, 10,000, 30,000, 100,000] (m3 s�1). (right) The
frequency–wave number spectrum of vorticity with contour levels [1, 10, 25, 50, 75, 100, 250, 500, 750,
1000, 10,000] (m�1 s�1). Only the half of the spectrum corresponding to the direction of mean
alongshore current is shown. The estimated best fit dispersion line (solid line) and local mean alongshore
current (dashed line) are also shown.

Figure 13. Random wave groups with stable alongshore mean current. (top) Time stack of low-pass-
filtered (T > 200 s) 1

d
rh  tw�! at an alongshore transect taken at x = 223 m. (middle) A time stack of low-

pass-filtered �DV
Dt

at the same transect. (bottom) A time stack of low-pass-filtered �1
d
rh  tb!. Black lines

correspond to contours of low-pass-filtered V = ±0.002 [ 1
ms
] (vortex tracking threshold), and bold

contours are shown to better highlight phenomena discussed in the text.

C08004 LONG AND ÖZKAN-HALLER: TEMPORAL RESPONSE OF WAVE GROUP–FORCED VORTICES

15 of 21

C08004



boring vortices and self-interaction processes due to the
barred bathymetry as discussed in detail by Kennedy et al.
[2006]. These results suggest that when wave group vortices
coexist with a stable alongshore current, the temporal
variability of the vortices is once again controlled by the
curl of the wave forcing, and advection by the mean flow
dominates vortex transport.

5.2.2. Unstable Alongshore Current Profile
[51] A larger angle of incidence of �20� results in a

stronger alongshore current that is moderately unstable. For
these cases the mean wave height of the groupy time series
is 1 m and wave period remains at 10 s. If no groupiness is
included, the resulting vorticity field (Figure 15) shows the
characteristics of a fluctuating eddy regime identified by
Slinn et al. [1998]. The length scale associated with the
shear instabilities is 265 m, and the propagation speed is
35 cm s�1. The inclusion of groupiness (GF = 0.6) results in
a vorticity field with similar length scales, although the
vortices are not as well defined and variability at smaller
length scales is evident (Figure 15). We note that the
simulation using a steady wavefield (no groups) is forced
using the mean forcing associated with the simulation
including wave groups. This ensures that the mean quanti-
ties associated with the momentum balances of both simu-
lations are consistent. Time series of the potential vorticity
balance computed at a single point just seaward of the bar
crest (Figure 16) highlight the different dynamics associated
with the two cases. When groups are not present (Figure 16,
top), the curl of the wave forcing is approximately constant

because of the lack of alongshore wave variations; however,
very minor oscillations develop because of small changes in
the total water depth caused by the shear waves. Prior to the
development of the shear waves (t = 30 min), the wave
forcing is balanced primarily by the lateral mixing and
bottom friction. A balance computed close to the peak in
the alongshore current profile rather than offshore of the bar
crest shows a dominant balance between the wave forcing
and bottom friction as is traditionally expected. However,
because the location of this point balance is further offshore,
mixing is the dominant process responsible for spreading
the alongshore current profile to this cross-shore position.
After the shear waves have developed, temporal variations
in the local changes of potential vorticity are mainly
balanced by the variations in the advective changes of
potential vorticity. Any local imbalance between these two
terms is the total time derivative of potential vorticity, and it
is balanced by the curl of the bottom friction. This is true for
all cross-shore positions from the bar trough to offshore of the
bar crest and is characteristic of a free motion as previously
discussed. The potential enstrophy balance (Figure 17, top)
confirms that shear production is the primary source of
enstrophy and, after some initial adjustment, the time rate of
change of enstrophy remains zero.
[52] In contrast, when wave groups are included, temporal

variations in the material derivative of vorticity (Figure 16,
bottom) are balanced by the curl of the wave forcing rather
than the bottom friction. Separation of the total time
derivative into local and advective components reveals that

Figure 15. Oblique random wave group sequence. Snapshots of the vorticity field in two cases: (left) no
offshore wave groups and (right) a wavefield with the same offshore peak characteristics (Hmean = 1 m,
Tp = 10 s, q = �20�) and an offshore groupiness factor of GF = 0.6. The snapshot is taken at t = 75 min.
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the magnitudes of these terms are now larger than the total
derivative. This is in contrast to all the wave group cases
analyzed so far where the magnitude of the total derivative
formed a general upper bound for the local and advective
terms. The enstrophy balance (Figure 17, bottom) confirms
that in addition to wave forcing, shear production plays an
important role in generating vorticity which can explain the
increased prominence of the local and advective effects.
Further, we find that the time rate of change of enstrophy
over the entire domain varies significantly in time, and these
fluctuations mimic the variability in the wave forcing. This
indicates that the temporal behavior of the vortices is
dictated by the wave forcing even in a situation where half
of the vorticity is generated by an instability process. The
turbulent mixing component and the bottom shear stress
remain as important dissipative quantities.
[53] We note here, that the vorticity and enstrophy bal-

ances in the presence of wave grouping revert back to the
free balance in the bar trough, where waves are not breaking
and no wave forcing is present. Near the shoreline, however,
when waves begin to break again, the balance is the same as
that shown in this analysis.
[54] We also show the frequency–wave number spectrum

of alongshore velocity and potential vorticity for both cases at
a transect just seaward of the bar (x = 223 m) in Figure 18.
The local mean alongshore current and the alongshore phase
speed of the vortical motions are also shown. Note that for
the case where groups are considered, increased mixing

occurs which broadens the mean alongshore current profile.
This broadening reduces the peak magnitude of the along-
shore current as indicated by the difference in local mean
alongshore current speed (slope of dashed lines) shown in
Figure 18. Interestingly, including wave group variations
causes a substantial broadening of the frequency–wave
number spectrum. This offers an explanation for why the
shapes of modeled spectra in previous research have con-
sistently been much narrower than observed in the field.
Our findings suggest that accounting for wave group forcing
may improve data-model comparisons.
[55] Finally, we examine the effect of incrementally

decreasing the amount of groupiness present in the offshore
wave conditions. We construct two additional time series
(GF = 0.3 and GF = 0.1) that contain exactly the same set of
groups; however, the magnitude of the spatial and temporal
gradients of radiation stress gradients are adjusted, while
maintaining the same mean quantities. Not surprisingly, in
simulations where the amount of wave groupiness is de-
creased, the contribution of enstrophy production from the
perturbation wavefield is less important and the production
by the shear in the mean alongshore current dominates.
However, the temporal variability in the wave forcing still
affects the time rate of change of enstrophy. To assess the
effect on thewidth of the frequency–wave number spectra, we
compute the half-power bandwidth of the frequency spectrum
of potential vorticity (integrated over all wave numbers) at
each cross-shore location for each case (Figure 19). Note

Figure 16. Random wave groups with unstable alongshore mean current. Low-pass-filtered (T > 200 s)
potential vorticity balance for oblique incident waves (Hmean = 1 m, Tp = 10 s, q = �20�) (top) without
wave groups (GF = 0) and (bottom) with GF = 0.6. Black solid line, �DV

Dt
; gray dashed line, �@V

@t; gray

solid line, � (u@V@x + v@V@y); black dashed line,
1
d
rh  tw�!; black dash-dotted line, �1

d
rh  tb!. Both balances

computed at x = 223 m and y = 344 m.
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that estimates of the frequency–wave number spectrum
offshore of the surf zone contain significantly less energy
and are not entirely meaningful. We find that as the group-
iness decreases, the broadness of the frequency–wave
number spectrum just seaward of the bar (x � 250 m) also
decreases. Wave breaking over the bar crest reduces the
amount of groupiness in all of the time series (large waves
break, while adjacent small waves do not) and from the bar
crest shoreward, the spectral width does not vary between
the time series.

6. Summary and Conclusions

[56] In this study, the temporal response of wave group
induced vortices on an alongshore uniform barred beach
was evaluated using both simplified and realistic random
wave conditions. The persistence of the vortices was inves-
tigated to determine the mechanism by which they can
continue to exist over many wave group periods. We
utilized a vortex tracking algorithm used in the study of
2-D turbulence to follow the evolution of individual vortices
and also evaluated the vorticity balance at fixed locations.
[57] For both normally and obliquely incident waves, the

temporal variations in the total derivative of potential
vorticity are dictated by the curl of the radiation stress
forcing. The latter quantity characterizes the ability of the
wavefield to ‘‘stir’’ the fluid in a particular direction. We
find that low-frequency modulations in the curl of the wave

forcing are responsible for dictating the lifespan of a
particular vortex. Given this strong control by the wave
forcing, wave group vortices over the bar are generally not
free motions that decay in time because of the effects of
friction, as previously suggested. Instead, once generated,
the temporal evolution of an individual vortex is dictated by
all subsequent rotational forcing contributions it experiences
because of breaking waves, with the vortex gaining and
losing strength depending on the sign of such ‘‘stirring.’’
Hence, a vortex persists until wave forcing of the opposite
sign decelerates it for a sufficient time. Therefore, the exact
sequencing of the wave groups controls the life span of any
vortex. In the simulations carried out here, vortices
exhibited lifespans between 5–45 min. Bottom friction,
while an important component, does not control the tem-
poral variability in potential vorticity or lead to the demise
of individual vortices located on top of and seaward of the
bar crest. Free motions are instead only observed during
brief periods when wave forcing is weak. In the bar trough,
however, we find that the total time rate of change of
potential vorticity in the model is balanced primarily by
bottom friction because waves are not breaking and there-
fore wave forcing is absent.
[58] We also evaluated the low-frequency spectral signa-

ture of the wave group–forced vortices when waves were
obliquely incident and a mean alongshore current was
present. In situations where this alongshore current is stable,
we find that energy due to these vorticity motions occupies

Figure 17. Random wave groups with unstable alongshore mean current. Low-pass-filtered (T > 200 s)
potential enstrophy balance integrated over all alongshore positions from the bar trough to the offshore
boundary for oblique incident waves (Hmean = 1 m, Tp = 10 s, q = �20�) (top) without wave groups
(GF = 0) and (bottom) with GF = 0.6. Thick solid line, ENSt; thick dashed line, PRODshear; thin
dashed line, PRODwave; dotted line, MIX; thin solid line, FRIC.
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a ridge in the frequency–wave number spectrum, very
similar to the spectral signal of instabilities of the along-
shore current. The potential enstrophy (vorticity squared)
balance clearly elucidates that the perturbations in the curl
of the wave forcing (i.e., wave groups) are the dominant

mechanism in the production of enstrophy. Previous obser-
vations of low-frequency energy during conditions where
the current is linearly stable have so far gone largely
unexplained (see, for instance, observations at Leadbetter
Beach, California, summarized by Dodd et al. [1992]). We

Figure 18. Random wave groups with unstable alongshore mean current. Frequency–wave number
spectra of (a, b) alongshore velocity and (c, d) vorticity for the alongshore transect at x = 223 m. Offshore
wave time series with no wave group variations (Figures 18a and 18c) and with GF = 0.6 (Figures 18b
and 18d) are shown. Both cases have an offshore wave angle of �20�, mean wave height of 1 m, and 10 s
peak period. Contour levels of [10, 30, 100, 300, 1000, 3000, 10,000, 30,000, 100,000] (m3 s�1) are
given for velocity spectra, and contour levels of [1, 10, 25, 50, 75, 100, 250, 500, 750, 1000, 10,000]
(m�1 s�1) are shown for vorticity. In all cases, only the half of the spectrum corresponding to the
direction of mean alongshore current is shown. The estimated vortex phase speed (solid line) and
modeled local mean alongshore current (dashed line) are given.

Figure 19. Unstable alongshore mean current. Half-power bandwidth of the frequency–wave number
spectra of potential vorticity (integrated over all wave numbers) versus cross-shore distance for GF = 0
(thick solid line), GF = 0.1 (thin dashed line), GF = 0.3 (thin solid line), and GF = 0.6 (thick dashed line).
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suggest here that such energy may be due to the presence of
a groupy wave train and the advection of resulting wave
group–forced vortices by the mean alongshore current.
[59] If the alongshore current is unstable, we find that the

shear instabilities and wave group–forced vortices occupy
the same range in the frequency–wave number spectrum.
However, when wave groupiness is accounted for, the
frequency–wave number spectrum displays a much broader
ridge, especially over and seaward of the bar crest. The level
of broadness is increased with the level of groupiness in the
wave height time series. In the bar trough, where groupiness
is reduced because of wave breaking over the bar, this
broadening effect is suppressed. In light of the fact that
previous model simulations of shear instabilities [e.g.,
Özkan-Haller and Kirby, 1999; Noyes et al., 2005] gener-
ally produce spectra that are often too narrow when com-
pared to observed spectra, our finding suggests that spectral
model-data comparisons may be improved if wave grouping
is taken into account.
[60] The balance of potential enstrophy in the domain

confirms the role that wave groups have in generating
vortical motions in the surf zone. We find that potential
enstrophy production due to wave grouping is the sole
source of vorticity in the domain for normally incident
waves, the primary source for obliquely incident waves in
the presence of a stable alongshore current, and an impor-
tant component (along with shear production) when an
unstable alongshore current is present. For the case of an
unstable alongshore current, as the amount of groupiness in
the domain increases, the production of enstrophy due to
wave groups becomes equally as important as the produc-
tion due to the shear in the mean alongshore current. While
previous observations of vorticity motions in the presence
of oblique waves have so far been interpreted exclusively as
shear instabilities, these findings suggest that a significant
portion of this energy may be directly forced by wave
groups.
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C08004 LONG AND ÖZKAN-HALLER: TEMPORAL RESPONSE OF WAVE GROUP–FORCED VORTICES

21 of 21

C08004


