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An open problem of along-track interferometry (ATI)

for synthetic aperture radar (SAR) sensing of ocean surface

currents is the need of ancillary wind information for inversion

of Doppler centroid measurements, that have to be compensated

for the propagation velocity of advancing and/or receding Bragg

scatterers. We propose three classes of estimators which exploit

multibaseline (MB) ATI acquisition and Doppler resolution

for robust data inversion under different degrees of a priori

information about the wind direction and the value of the

characteristic Bragg frequency. Performance analysis and

comparison with conventional ATI show that the proposed MB

estimators can produce accurate velocity estimates in the absence

of detailed ancillary data.
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I. INTRODUCTION

Along-track synthetic aperture radar interferometry
(ATI-SAR) for ocean surface velocity sensing is a
relatively new technique for remote sensing introduced
in 1987 by NASA-JPL researchers [1]. It is currently
recognized that ATI-SAR is a very promising tool
for microwave active ocean sensing, with the same
night-and-day, all-weather operational capability
of SAR, but capable of producing much richer
information. However, theory and experiments of
interferometric ocean sensing are still evolving and
the technique is not in a mature operational status,
yet. To contribute to its spreading, a special session on
interferometric applications over the ocean has been
organized in the 2001 IEEE International Geoscience
and Remote Sensing Symposium; a specific session
has been also dedicated to ATI-SAR within the 2002
NASA AIRSAR Earth Science and Application
Workshop [2]. The basic concepts of ATI are recalled
in what follows.

The original ATI technique uses a two-antenna
SAR system, as shown in Fig. 1. Despite Doppler

Fig. 1. Configuration of ATI-SAR acquisition (x, flight axis;
y, ground range; z, altitude; B, baseline between the two-way

phase centers; v, platform speed; µ, off-nadir angle; r, slant range
distance).

information being virtually lost during SAR
processing, Doppler shifts can be detected if the
signal is acquired and processed a second time. The
along-track baseline between the two elements of
the interferometer produces the required short time
lag ¿ between the two complex SAR images formed
by the returns received at each antenna. These are
focused through proper motion compensation and
coregistered [3–4]. Estimation of the interferometric
phase difference ' between the two images allows us
to measure the mean short-term Doppler shift !̄ of the
scattering from the ocean surface on a pixel-by-pixel
basis, through the relationship '= !̄¿ [5]. To get
absolute Doppler measurements, the interferometric
phase has first to be calibrated. This can be carried out
by exploiting a patch of terrain in the imaged scene,
for which !̄ = 0. If land is not imaged together with
the ocean, one can exploit for calibration velocity
measurements of ships in the scene, obtained through
the azimuth misplacement effect between the ship and
its wake in the SAR image [6]. After obtaining the
Doppler measurements, one has to compensate for the
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net velocity of the short radar-wavelength resonant
wind waves, i.e. the Bragg waves that are responsible
of the scattering itself [7–8]. This results in the radial
(slant-range) surface velocity. It can be converted to a
ground-range velocity by projection according to the
off-nadir illumination angle [3]. The measured surface
velocity is composed of translational motions and long
(resolved) wave orbital motions [7, 5]. Therefore, ATI
systems have the potential to directly measure ocean
surface currents, tidal currents, and other surface
dynamical features, at large scale and with high spatial
resolution [1, 5, 9, 3]. Additionally, directional sea
wavenumber spectra can be derived from the ATI
phase map by two-dimensional Fourier transform
[1]. In fact, long wave orbital motions directly
produce signatures in the phase map, and line-of-sight
velocities are related to height of the ocean waves
via linear wave theory. The ATI wavenumber spectra
exhibit higher azimuth wavenumber bandwidth
and linearity than inversion methods based on
single SAR amplitude image [10–11]. When a full
velocity field has to be measured, instead of only the
ground-range component, successive measurements
from crossed flight paths can be integrated, or
vector-ATI systems may be used which are being
envisaged for simultaneous ATI acquisition with
different squint angles [12–13]. The coherence time
of the backscattered radar signal is also measurable
by ATI through the correlation coefficient between the
two complex SAR images [3]. It provides information
on subresolution scale processes of the ocean surface.
In fact, the scatterer ensemble coherence time is
mainly determined by modulation of the velocity of
Bragg waves from medium (non-resolved) waves,
which results in a distribution of slant-range velocities
in the given SAR resolution cell [7].
Concerning ATI system design, the most important

parameter is the time lag ¿ , which is chosen as a
trade-off among interferometer sensitivity, signal
decorrelation, Doppler unambiguous estimation
range, and azimuth wavenumber bandwidth in the
retrieval of sea wave spectra [3, 10]. In particular, for
a given coherence time, an increase of the time lag
produces higher velocity sensitivity of the along-track
interferometer, but this is obtained at the cost of
increased decorrelation and so larger phase noise.
How the resulting velocity estimation accuracy is
affected by the time lag depends on the trade-off
between the two effects, that is particularly important
when the signal to noise ratio or the number of looks
in the SAR images are low [3]. A more extended
description of the basics of ATI can be found in [8],
[14], and [4].
The existing and potential applications of these

ATI capabilities are various: scientific, environmental,
and commercial. ATI can provide rich information
about surface currents and waves, internal waves,
eddies, shears, upwelling processes [8], which are of
considerable interest in oceanographic investigations,
hydrology, meteorological forecasts, environmental

management, coastal protection, fishery, off-shore
industry, and ship transportation. In order to exploit
its potentiality, the basic technique of ATI has been
recently evolved in the direction of multibaseline
(MB) ATI, that employs more than two phase centers
displaced along-the-track [3, 15–17]. A brief overview
of the research on advanced MB-ATI processing
to reduce data noise and blurring that can affect
conventional ATI can be found in [18].

A basic problem of ATI sensing concerns the
extraction of maps of physical parameters from the
maps of estimated radar parameters. In particular,
for reliable inversion of surface velocities from
Doppler maps, accurate ancillary data of local
surface wind direction (and possibly speed) are
necessary to evaluate a reference spectrum of speckle,
determined by Bragg waves [5]. In fact, surface
velocity from translational and orbital motions is
proportional to the shift (advection) of the speckle
spectrum from the zero-velocity (ambient) situation.1

Alternatively, for coastal applications one might
resort to a zero-current reference Doppler centroid,
obtained by extending the flight path over a reservoir
of standing water with similar wind conditions [9].
However, this is a very particular situation. In both
cases, velocities are estimated from the shift of the
estimated Doppler centroid with respect to that of
the reference spectrum [19]. In general, the reference
spectrum can be bimodal when both advancing and
receding Bragg waves are present in the resolution
cell, for a geometry different from up or downwind.2

This is due to the directional spread of wind-generated
Bragg waves, and the power distribution between
the two possible Bragg components depends on
the wind aspect. This is often not well known and
highly varying over the scene. Conventional ATI is
“blind” to the spectrum shape and can only measure
the Doppler centroid. Therefore, it produces highly
biased estimates of surface velocities if the local
wind direction is not a-priori known and accurate
compensation for the phase velocities of the Bragg
wave components is not possible [5, 20, 19, 21]. In
fact, an unexpected power split ratio between the
two Bragg components results in an unmodeled shift
of the Doppler centroid (see Fig. 2). This prevents
ATI-SAR from being a flexible, reliable, and fully
automatic remote sensing technique.3

1Advection is a radar-oceanography jargon referring to the
translational motion superimposed by a current flow or by the
instantaneous value of a wave orbital velocity to the propagation
velocity of a smaller wavelength wave in the steady medium (see
e.g. [5, p. 10,262]. In this paper, we use the same term also for the
corresponding spectral shift of the spectrum of the backscattered
signal, caused by the superimposed translational motion.
2The jargon for this dual Bragg component condition, when the
components are resolved, is “Bragg splitting.”
3It is worth noting that the presence of a dual Bragg component
can also affect the variance of the surface velocity estimate, which
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Fig. 2. Bragg uncertainty issue. (left) Short-term Doppler
spectrum for upwind, advection from surface velocity !a,

characteristic Bragg frequency from Bragg propagation velocity
!B , Doppler centroid !̄. (right) Crosswind, note different offset

between Doppler centroid and spectrum advection.

This paper addresses the possibility of exploiting
MB acquisition in a new way, to cope with the Bragg
uncertainty issue. Exploitation of MB-ATI data is
investigated to produce estimate of ocean surface
velocity that is autonomous from detailed in-situ
ancillary information and intrinsically robust to
possible bimodal spectrum scenarios, as originally
hinted in [5]. The goal here is to develop this
concept relying on the advanced MB functionality of
resolution in the Doppler shift domain [15–17], and
resorting to high- or superresolution spectral analysis
and proper “locking” onto the estimated Bragg peaks.
The rest of this paper is organized as follows. An

MB statistical data model is presented in Section II,
based on classical assumptions of radar oceanography.
The spectral advection estimation problem under
uncertain Bragg situation is also stated. In Section III,
a robust advection estimation technique is proposed
which is based on a two-step procedure. For both
steps, different solutions are proposed and analyzed.
For MB ATI Doppler analysis, we investigate the
application of the multilook periodogram and of the
adaptive Capon filter. Superresolution autoregressive
(AR) and combined multiple signal classification
(MUSIC)-least squares (LS) spectral estimation is
also considered. Then, different locking methods
are proposed coupled with the above mentioned
spectral estimators, producing three different classes
of MB robust velocity estimators, which exploit
different degrees of a priori information about the
wind direction and the value of the characteristic
Bragg frequency. In Section IV, the accuracy of
the proposed MB robust estimators is investigated
through Monte Carlo simulation and Cramér-Rao
lower bound (CRLB) analysis, and compared with
conventional ATI. Some concluding remarks can
be found in Section V. The derivation of the CRLB
for MB advection estimation is outlined in the
Appendix.

can be higher than in the single Bragg component condition. This
is because the mixing of the two Bragg components lowers the
overall coherence time, for a same modulation effect from medium
waves [18]. Higher variance negatively affects also the wavenumber
spectra estimate, whose noise floor is raised.

Fig. 3. Dual baseline ATI-SAR (K = 3).

II. DATA MODEL AND PROBLEM STATEMENT

Consider MB-ATI data from a uniform linear
array of K two-way phase centers with overall
baseline B, onboard a platform moving at speed
v. This along-track array can be obtained by using
K antennas with an overall baseline 2B, with one
transmit/receive antenna and the other antennas only
used on reception (see [1, 22–23] for K = 2, 3, and
4, respectively). Alternatively, for K = 3 one can
resort to transmitter “ping-ponging” between just two
antennas with a baseline B, effectively synthesizing
three different equispaced two-way phase centers
[3]. The MB along-track array acquires K complex
SAR images at K 1 time lags l¿=(K 1) K 1

l=1 ,
where ¿ = B=v is the overall time lag. As an example,
Fig. 3 shows the space-time location of the phase
centers for K = 3; x is the flight axis and PRI is the
SAR pulse repetition interval. Note that although
the PRI is an integer submultiple of ¿ in Fig. 3, this
condition is not necessary, image alignment can be
performed in the coregistration stage [23]. From the
three synthetic apertures, three SAR images of the
same area can be obtained in identical geometry and
with time lags ¿=2 and ¿ . The complex amplitudes
of the pixels corresponding to a same given patch
of sea can be arranged to form the K 1 vector
y(n) = [y1(n) yK (n)]

T, for n= 1,2, : : : ,N , where N
is the number of available independent and identically
distributed looks [3].

The statistical model of the MB SAR-processed
echoes adopted here is based on the classical
two-scale electromagnetic model of ocean
backscattering [7]. Accordingly, each data vector is
modeled as [24]:

y(n) = ¾1A(!1¿ )x1(n) +¾2A(!2¿)x2(n) + v(n) (1)

where A(!¿) is the K K diagonal matrix having on
the main diagonal the elements of the steering vector
a(!¿) = [1 ej!¿=(K 1) ej!¿ ]T; !i is the Doppler shift
of the backscattered signal from the advancing (i= 1)
or receding (i = 2) Bragg component considered in
isolation, and ¾2i is the corresponding mean power.
Note that taking account of the typical small ¿
values (5–100 ms [3]), the large scale variation of

LOMBARDINI ET AL.: MULTIBASELINE ATI-SAR FOR ROBUST OCEAN SURFACE VELOCITY ESTIMATION 419



ocean structure can be neglected in the temporal
multichannel model (1). This corresponds to treat
deterministically orbital velocities of long waves
[19, p. 450], and this is why the powers ¾2i and
the short-term Doppler shifts !i are assumed to be
constant over the ATI observation interval ¿ . The
two cisoids corresponding to the Bragg components
are corrupted by complex multiplicative noise
arising from modulation by medium waves. The
multiplicative noise is modeled by the K 1 complex
vectors xi(n) ; it takes into account the random phase
and amplitude changes of the backscattered signal
during the ATI observation interval. In the radar
imaging jargon, xi(n) is the speckle term for the nth
look, for the ith Bragg component in isolation. It is
modeled as a circular Gaussian distributed random
vector. Considering freely-propagating Bragg waves,
which are typical for L- and C-band systems, the
autocorrelation sequence of each speckle component
can be assumed to be real and Gaussian-shaped for
light to gentle wind and large to moderate off-nadir
incidence angle [5, 19]. Therefore, the elements of the
covariance matrix of xi(n); i = 1,2 are given by

[Cx]l,m = [E xi(n)x
H
i (n) ]l,m

= exp [(l m)¿=(K 1)¿c]
2 ,

l,m = 1,2, : : : ,K, n (2)

where ( )H denotes conjugate transpose and ¿c is the
coherence time. In what follows we refer to ¿̃c = ¿c=¿
as the normalized coherence time. Note that here we
refer to the coherence time of each Bragg component
considered in isolation, not to the conventional overall
ocean coherence time. Under the above-mentioned
assumptions, the contribution of ith Bragg source to
the power spectral density (PSD) is Gaussian-shaped
and centred on !i.

4 The spectral Gaussianity is a
well-known result arising through the Central Limit
Theorem from the large number of modulating
medium waves, which locally advect the Bragg waves
in the resolution cell by their orbital motion [19].
Generally speaking, an offset ±!B may arise between
the centroid of the Bragg spectral component and the
frequency !i of the unperturbed Bragg component.
This is due to the so-called tilt modulation effect,
which produces correlation between amplitude and
frequency modulation of the backscattered signal
[5, 25]. In fact, both reflectivity and instantaneous
velocity are functions of the position along the
modulating wave phase, through the local surface
tilt and orbital motion, respectively. However, as it
is discussed after completing the description of the
model, the tilt modulation effect from medium waves

4As in [5, 3, 16], this model does not take into account possible
azimuth blurring from velocity bunching [9, 19]. This may be
reduced by MB methods, as well [15, 16, 18]. For the meaning,
scope and limitations of this modeling framework see also [16].

in ATI is negligible under our system band, incidence
angle, and wind speed assumptions; this is why the
Bragg spectral components in our model are centred
on !i. The K 1 complex vector v(n) in (1) models
the thermal noise, which is additive white Gaussian
with power ¾2v . Vectors x1(n) and x2(n) are assumed to
be independent, because they model the backscattered
echoes from different sources, and independent of
v(n). The Doppler frequencies of the two Bragg
components are related to spectrum advection !a by

!1 = !a+!B , !2 = !a !B (3)

where !B is the Bragg frequency [5, 19]. Given
the radar operative parameters carrier wavelength
¸ and off-nadir angle #, the wavelength of the
Bragg waves is determined by the condition of
constructive interference to the radar sensor. Under
the free-propagation assumption, their own consequent
propagation velocity is determined by the dispersion
relation of the medium. As an example, for L-
and C-band systems, where the Bragg waves are
gravity waves, the corresponding characteristic
Bragg frequency is !B = 4¼g sin(#)=¸, where
g = 9:81 ms 2 is the constant of gravity acceleration
[21].

Some remarks on the tilt modulation effect are
now in order. Tilt modulation is a radar-oceanography
jargon used in the context of the coupling of radar
reflectivity variations along the profile of a modulating
wave with variations of the instantaneous modulation
velocity. The coupling arises because both reflectivity
and velocity are functions of the position along the
modulating wave phase. The modulation velocities
associated with stronger reflectivities have larger
weight in the spectrum over the others. As a result,
the Bragg Gaussian spectral component can be offset
from the theoretical frequency of the unperturbed
Bragg line component, an expression for this offset
is represented by the integral in [19, eq. (10)],
±!B =Re D (k)M1 (k)k

2ª (k)d2k , where ( )
denotes conjugate. It depends on the so-called
Doppler modulation transfer function (MTF) D(k),
the directional wavenumber spectrum ª(k), and
the (amplitude) MTFs M1 (k) for the advancing
and receding Bragg waves, respectively, where
k is the wavenumber of the generic modulating
wave, and k = k [19]. The Doppler MTF is used
to express the instantaneous Doppler variations
which are linear in the surface slope. It depends on
the carrier wavelength, off-nadir angle, and wind
aspect. The amplitude MTFs describe the oscillations
of the mean signal intensity which are linear in
the slope variations of the modulating wave and
hence in the variation of the Doppler frequency. The
two amplitude MTFs M1+(k) and M1 (k) can be
considered to be equal neglecting the effect of the
so-called hydrodynamic interaction, which varies
the Bragg wave intensity along longer waves, yet
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producing only small deviations from simpler models
[19, p. 451–452]. Thus, the possible offset from
the theoretical Bragg frequency can be assumed to
be equal for the advancing and the receding Bragg
component. This Doppler offset can be observed in
some plots reporting numerical and experimental data
in [5, 25, 19] (in [25], Doppler information can be
derived from the interferometric phase information
in the plots thanks to the relationship ! = '=¿).
The offset tends to increase with wind speed and
carrier frequency, and for decreasing off-nadir angle
and wind aspect approaching upwind or downwind
[5, p. 10,261–10,262]. In certain critical situations,
tilt modulation can also make the Bragg spectral
component become skewed non-Gaussian, see [5,
top right plot in Fig. 1] (10 m/s wind speed-fresh
wind, C-band, 20 deg off-nadir angle-steep incidence,
downwind).
However, this Doppler offset and possible

skewness are produced by tilt modulation when
observation time is long and/or the backscattering
ocean patch is large compared with the dominant
wave period or length, respectively.5 Conversely, our
ATI model has to account for the statistics of the
backscattered signal from a finite little ocean patch
over a short time window. The patch size is given
by the area of the SAR pixels, possibly accounting
for defocusing typical in ocean imaging [3] (see
again footnote 4). As observation interval we can
assume the time lag ¿ , whose order of magnitude is
100 ms in L-band and 10 ms in C-band [3]. Thus,
model (1)–(3) has to account for the short-term
Doppler spectrum from a limited area, not for the
long-term and/or spatially averaged Doppler spectrum
in [5, 19]. In our framework, the long waves are
treated deterministically, as already noted in the
beginning of this section, and their instantaneous
orbital velocity becomes part of the measured surface
velocity. Thus, the possible significant tilt modulation
effect by long waves does not affect the signal in the
ATI framework.
In this sense, we can use the results in [19] and

[5] to draw a few conservative limits to our statistical
model. It is in very good agreement with the physical
model in [19, eqs. (10)–(13)] for low wind speed,
when the tilt modulation effect is surely negligible
even when long waves are accounted for, at least
for wind aspect close to crosswind [5, p. 10,262].
See, e.g., [19, top plot in Fig. 1] (3 m/s-light wind,
L-band, 30 deg off-nadir angle, wind aspect 15 deg
away from crosswind) and [5, bottom left plot of

5The backscattering patch size assumed for numerical evaluation in
[19] is infinite (see at p. 450 and p. 456), and the Doppler spectrum
is averaged over all the long-wave phase locations for numerical
evaluation in [5] (see at p. 10,262). The Doppler spectrum is
averaged over a 5 min time window for measurements in [25] (see
at p. 16,295–16,296).

Fig. 1] (crosswind, the other parameters similar to
the above-mentioned). From these examples, where
the spectral peaks are centered at the frequencies
!i of the unperturbed Bragg components, we can
draw a sample condition of wind speed, carrier
frequency, off-nadir angle, and wind aspect range
for which our model surely matches the expected
behavior from Bragg scattering-based composite
surface models [19] and Maxwell-based fundamental
backscattering models [5]. Noteworthy, these limits
for the validity of our ATI model are conservative,
since only tilt modulation from the medium waves
could actually produce a Doppler offset not accounted
for in (1)–(3). Detailed evaluation of the effective
limits for our model would require computation of
the Doppler offset integral equation in [19, eq. (10)]
for the pertinent wavenumber spectrum, integrating
just down to a minimum wavenumber dictated by
the SAR resolution cell, thus excluding longer waves
than the medium waves. In this framework, a relaxed
more useful sample condition of wind speed, carrier
frequency, and wind aspect range for which our model
is still a good approximation of the real short-term
spectrum can be drawn from some results in [25].
Analyses of data in Ka-band (35 GHz) are reported
there, from a limited ocean patch (scatterometer
footprint dimension significantly smaller than that of
the dominant long wave), with off-nadir angle 45 deg,
almost upwind wind aspect, and wind speed around
5 m/s (gentle wind). The corresponding short-term
spectra in [25, Fig. 4], computed with a 250 ms
time window, do not show any sensible skewness
effect. Still, this does not rule out a possible offset
of the Gaussian-shaped short-term Doppler spectrum
with respect to the theoretical Bragg frequency. Yet,
indications can be derived from [25, Fig. 9] that the
possible offset due to the light tilt modulation effect
from medium waves is negligible, indeed. There,
estimators of the centroid of the short-term Doppler
spectrum, which are sensitive to possible offset due
to tilt modulation, are compared with the estimated
mean of the instantaneous frequency which is not
affected by possible tilt modulation. The comparison,
for the 250 ms time window, shows that the offset in
the short-term spectrum must be negligible (see at p.
16,300). Thus, our model (1)–(3) is still a very good
approximation of reality also for Ka-band, 5 m/s wind
speed, upwind. Consider now that offset from tilt
modulation in the long-term spectrum is less sensible
for lower carrier frequencies (e.g. L-band) than for
Ka-band [25, p. 16,295]. Therefore, it is reasonable
that the possible offset in the short-term spectrum,
which is negligible in Ka-band, is negligible also
for typical bands employed in ATI and on which our
paper is focused (L- and C-band), for the same 5 m/s
wind speed.

Summarizing, from the above-mentioned trends
and examples we can infer that our model, in which
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spectral offsets from tilt modulation are assumed
to be negligible, is valid at L- and C-band for ATI
multilook patch smaller than the dominant wave
length, light to gentle wind, any wind aspect, and
large to moderate off-nadir angles greater than or
equal to 45 deg (note that these limits may still
be conservative). Of course, some offset might
arise even in the short-term spectrum in extreme
wind conditions, steeper incidence or higher carrier
frequencies, but this can be quantified by proper
computation of integral [19, eq. (10)] for the specific
situation at hand, and is left as matter for future
research. When one trespasses these effective limits,
the unmodeled offset results in a bias to be added
to the residual bias of the robust velocity estimators,
designed for robustness to unknown power split ratio
only, which is analyzed in Section IV. However, note
that when wind speed increases system operation
may be impaired simply by large estimation variance
from low coherence time, before the unmodeled bias
becomes a real problem.
The velocity inversion problem considered

here can be cast as the problem of estimating the
spectral advection !a from MB data y(n) N

n=1, with
unknown deterministic nuisance parameters: the
power split ratio (or differential signal-to-noise ratio)
¢SNR= ¾21=¾

2
2; the total signal power ¾

2
T = ¾

2
1 +¾

2
2;

the coherence time of the multiplicative noise ¿c;
the thermal noise power ¾2v . The lack of detailed
knowledge of ¢SNR is the most troublesome for
the inversion problem. As discussed in Section III,
in some circumstances also the characteristic Bragg
frequency !B should be modeled as an unknown
deterministic parameter.

III. ROBUST VELOCITY ESTIMATION

The general approach to the estimation of
unknown deterministic parameters is the maximum
likelihood (ML) method, because of its desirable
statistical properties [26, ch. 7]. ML estimation could
be applied to our problem to estimate !a. This would
require maximization of the nonconvex likelihood
function with respect to all the unknown parameters,
leading to a too high computational burden [16].
Hence, ML estimation of !a is not feasible in
practical applications and has to be abandoned for
computationally simpler alternatives.
In the work presented here we solve the estimation

problem by means of a two-step procedure. The two
steps can be termed: 1) MB Doppler analysis, and
2) locking. In step 1, we resolve the two spectral
peaks of the bimodal spectrum. In MB systems, the
availability of a signal temporal history, K > 2 time
samples, offers to ATI the advanced functionality of
resolution in the Doppler frequency domain. This has
been proposed in [15] and [17] for deblurring the
intensity image and for clutter filtering, respectively.
Here, we exploit the Doppler resolution capability

in a different way. After proper Doppler analysis of
the MB data, in step 2 we retrieve unambiguously
!a, using the locations of Bragg peaks as stable
markers of the advection. In fact, the offset between
the Bragg peak locations (3) and the value of !a is
independent of the unknown power split ratio ¢SNR,
differently from what happens for the conventionally
used Doppler centroid. Step 2 is composed of a
“labeling” stage, in which the two frequency estimates
are associated to the advancing and receding Bragg
components, and a “locking” onto the Bragg peaks
stage. Locking the advection estimate onto the Bragg
peaks is possible assuming that the ambient spectrum
peaks at the frequency of the advancing and receding
free Bragg components. This condition is valid for
light to gentle wind, large to moderate incidence
angle, and low carrier frequency (L-, C-band), as
discussed above. Proper MB spectrum resolution and
identification by the proposed two-step procedure
should result in a surface velocity estimate that is not
heavily hampered by a change of the signal power
split ratio between the two Bragg components.

A. MB Doppler Analysis

The MB spectral estimation task is challenging
because of the typically short time span ¿ of the data,
that can result in insufficient resolution. Also, spectral
leakage can mask a Bragg component when weak.
For this reason different spectral estimation methods,
either nonparametric or parametric, have been applied
to the ATI problem at hand and compared. The
Doppler analysis step has to provide two pieces of
information that will be used in the second step of the
procedure: a) an estimate of the location of the Bragg
peaks, and b) the indication of which one of the two
peaks is the strongest.

The multilook version of the classical
nonparametric periodogram method, beamforming,
can be applied to this aim. Beamforming filters
the N data vectors with a complex finite impulse
response (FIR) filter of length K designed to pass
undistorted the signal component at frequency ! and
minimize the output interfering power from all the
other frequencies, assuming a white spectrum [27].
The spectrum estimate, neglecting a scaling factor
unnecessary in our application, is obtained from the
estimated mean output power and is given by

P̂BF(!) = a
H(!¿)Ĉya(!¿)=K

2 (4)

where Ĉy is an estimate of the data covariance
matrix. When Ĉy is the sample covariance matrix,
estimator (4) coincides with the periodogram of the
data vector y(n) averaged over the N looks [27].
Therefore, the resolution properties of beamforming
are analogous to those of the periodogram method.
This sets the conventional Fourier resolution limit at
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¢!BF = 2¼(K 1)=(K¿ ). The “unlabeled” frequency
estimates !̂I and !̂II of the two Bragg components
are derived as the locations of the two highest peaks
of P̂BF(!). The corresponding powers ¾

2
I and ¾

2
II of

the two components are estimated as the values of
P̂BF(!) at these locations. The estimates !̂I, !̂II will
be associated in step 2 to the frequencies !1 and !2 of
the advancing and receding components. It is worth
noting that in practical applications the number K of
complex SAR images is usually between 3 and 5 [22,
3, 16–17, 28], and spectral estimation from a very low
number K of time samples has peculiar characteristics,
independently of the number N of available looks.
The discrete squared-sinc-shaped spectral response
of periodogram to a line component has a very low
number of high sidelobes in the unambiguous Doppler
range 2¼(K 1)=¿ . For K = 3, a single sidelobe is
present and numerical analysis shows that when two
components of similar power are unresolved, the
spectral response can exhibit a unique peak with
a negligible sidelobe. If the beamforming spectral
estimate is unimodal, we allow for step 1 to return a
flag for those locking methods of step 2 which require
both Bragg components to be estimated, as will be
described in the sequel.
To get better resolution than the Fourier limit and

reduce leakage problems, we applied modern spectral
estimators to the ATI problem as an alternative to
beamforming. The first method is the high-resolution
nonparametric adaptive Capon’s filter. It is derived
under the same condition of minimum interfering
power as beamforming, but considering the general
case of nonwhite spectrum [27]. The Capon power
spectrum estimate is

P̂CP(!) = [a
H(!¿)Ĉ 1

y a(!¿)]
1: (5)

Estimates !̂I, !̂II, ¾̂
2
I , and ¾̂

2
II are obtained as the

locations and the amplitudes of the two highest peaks
of P̂CP(!). A flag is returned if only one peak is
found.
Beamforming and Capon methods can be

used without any knowledge of the data statistical
properties. On the other hand, their performance
is expected to be lower than that achievable by
parametric viz. superresolution methods, provided
that the assumed model fits well the data. Based on
this fact, we also investigate the use of the popular
MUSIC frequency estimator coupled with the LS
amplitude estimator. MUSIC is a parametric method
for estimating sinusoidal signals embedded in additive
white noise; it relies on the data covariance matrix
eigendecomposition [27]. In our application, in the
absence of multiplicative noise we can assume two
sinusoidal components, corresponding to the two
Bragg lines in the PSD. Denoting by ¸1, : : : ,¸K
the eigenvalues of the data covariance matrix Cy
arranged in nonincreasing order, these can be split

into two subsets, ¸k
2
k=1, and ¸k

K
k=3, with the

elements of first and second subset being greater than
and equal to ¾2v , respectively. Denote by s1,s2 the
“signal” eigenvectors which correspond to the first
two eigenvalues, and by n1, : : : ,nK 2 the “noise”
eigenvectors which correspond to the remaining
K 2 eigenvalues. Then, let S= [s1 s2] and N=
[n1 nK 2] be the matrices collecting the signal and
noise eigenvectors, respectively. MUSIC exploits the
property that the steering vector a(!¿), evaluated at
the frequencies !1 and !2, is orthogonal to the noise
subspace spanned by N. The polynomial version
of MUSIC, root-MUSIC, is employed here [27]. It
determines the two frequency estimates from the
angular position of the two roots, which are located
nearest the unit circle, of the polynomial

aT(z 1)N̂N̂
H
a(z) = 0 (6)

where N̂ denotes the matrix comprising the noise
eigenvectors derived from the eigendecomposition
of the estimated covariance matrix Ĉy, and
a(z) = [1 z z(K 1)]T is the steering vector with
exp[j!¿=(K 1)] replaced by z. Estimates !̂I and
!̂II are obtained as the angles of the roots times
(K 1)=¿ . MUSIC does not produce a true PSD, thus
it does not allow us to identify the strongest Bragg
component. Therefore, we evaluate the power of the
Bragg components by resorting to the LS method.
This is a parametric algorithm for amplitude analysis
of sinusoidal signals in additive noise. It is adopted
here in its multilook version [27]. If the frequencies
!I and !II were known, the amplitudes of the two
sinusoidal components could be jointly estimated by
minimizing the squared error between the model and
the data:

JN[®I(n),®II(n)]

=
N

n=1

y(n) ®I(n)a(!I¿ ) ®II(n)a(!II¿)
2

(7)

with respect to ®I(n),®II(n)
N
n=1. ®I(n) and ®II(n)

are the two unknown complex amplitudes for the
nth look, and 2 denotes the Euclidean norm.
Minimization with respect to the complex amplitudes
leads to the pseudoinverse linear solution:

®̂I(n)

®̂II(n)
= [(¤H¤) 1¤H]y(n) =

bHI (!I,!II)

bHII (!I,!II)
y(n)

(8)

where ¤= [a(!I¿) a(!II¿)]; b
H
I and b

H
II are the first

and second row of the 2 K matrix (¤H¤) 1¤H ,
respectively. In practice, matrix ¤ is replaced by ¤̂=
[a(!̂I¿) a(!̂II¿)], where !̂I and !̂II are obtained using
MUSIC; similarly, bHI and b

H
II are replaced by the

corresponding b̂HI , b̂
H
II . Once the complex amplitude
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estimates are derived for each look, we can estimate
the mean power of the two Bragg components as the
sample variance:

¾̂2l =
1
N

N

n=1

®̂l(n)
2 = b̂Hl Ĉyb̂l, for l = I,II

(9)
where Ĉy is the sample estimated covariance matrix.
Note that the method based on root-MUSIC and
LS always produces two estimates of frequencies
and powers, conversely from beamforming
and Capon. However, this method operates
under model mismatch when the speckle
term affecting the Bragg components is not
completely correlated, i.e., ¿c is finite. Nevertheless,
it should outperform beamforming and Capon
when ¿c is significantly larger than the observation
time ¿ [29].
In the attempt to get better model matching

with the nondiscrete spectrum arising from speckle
decorrelation, AR spectral estimation has also been
investigated. An all-pole rational spectrum model
has been assumed with the order P selected in the
range [2, : : : ,K 1]. In this work, the Yule-Walker
(YW) method is employed to estimate the AR
polynomial coefficients [27]. This method exploits
the linear relationship between these coefficients
and the autocovariance values. We obtain the AR
coefficients from the solution of a nonoverdetermined
YW system of equations. The estimates !̂I, !̂II, ¾̂

2
I ,

and ¾̂2II are obtained as the locations and amplitudes of
the two highest peaks in the AR estimated spectrum.
A flag is returned if only one peak is found, as
for beamforming and Capon. Note that also the
continuous spectrum model of AR estimation is not
perfectly matched to the data model (1)–(2), where the
two spectral components have Gaussian shape.

B. Locking Methods

The aim of step 2 of the proposed procedure is to
retrieve the spectral advection !a from the spectral
parameters extracted in the MB Doppler analysis
step:

!̂I, !̂II, ¾̂
2
I , ¾̂

2
II !̂a: (10)

Three different techniques are proposed and
investigated here for the mapping (10). They are
conceived for application to three different scenarios.
These correspond to different degrees of a priori
information about wind direction and the value of
the characteristic Bragg frequency !B . Starting from
a condition where some information is available, the
assumptions will be progressively relaxed reaching the
case where no ancillary data are available.
In the first scenario, the characteristic Bragg

frequency is assumed a priori known. This is

reasonable for low sea state, when the local incidence
angle is known from system geometry. It is also
assumed to know which of the two Bragg components
is dominant. This second assumption corresponds to
know if the wind direction lays in the front or rear
half-plane determined by the platform track, which
is only a partial information about wind aspect. The
locking method that we propose for this scenario is
termed the most powerful peak (MPP) method. MPP
aims to lock onto and compensate for the assumed
dominant Bragg component, independently of the
presence of a weaker component with opposite
motion. The latter can arise when the actual wind
aspect is not exactly upwind or downwind, in the
front or rear half-plane assumption, respectively.
Without loss of generality, in this work we refer to
MPP designed for dominant receding Bragg waves,
i.e., assuming that the wind direction lays in the rear
half-plane defined by the track. First, the frequency
estimates are labeled to identify the Doppler shift of
the receding Bragg component, !2. This is obtained
as

!̂2 =
!̂I if ¾̂2I ¾̂2II

!̂II if ¾̂2I < ¾̂
2
II

(11)

or, !̂2 = !̂I when only one frequency estimate
is available from step 1. Note that in both cases
the information that the dominant component is
the receding one is exploited. Then, locking onto
the assumed dominant receding component and
consequent compensation is obtained from (3) as:

!̂a = !̂2 +!B: (12)

In words, the MPP method for the rear half-plane
assumption finds the strongest peak in the estimated
spectrum, and estimates the advection !a as the
sum of the frequency of the strongest peak and !B .
The dual version of MPP for the front half-plane
assumption can be found following a similar
reasoning. The MPP is a very simple algorithm. It
does not allow to obtain fully autonomous velocity
estimates. Yet, it is suited to work in single as well as
in dual Bragg component conditions while the wind
aspect lies in a 90 range around downwind (or
crosswind).

In the second scenario, the Bragg frequency is
again assumed known, but any assumption about wind
direction is relaxed. We term the technique proposed
for this scenario the high dual peak (HDP) method.
HDP aims to lock onto, and properly compensate
for, an automatically identified dominating Bragg
component, whether it is advancing or receding.
Labeling of the two frequency estimates needs now a
little care. Since the frequencies are measured modulo
the unambiguous range, a simple algebraic ordering
to identify which estimate has to be associated with
the receding and the advancing component, can be
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misleading.6 The circular nature of the frequency
values has to be accounted for. To handle this problem
we assume here, without loss of generality, that 2!B
is less than half the unambiguous range, ¼(K 1)=¿ .
Consequently, labeling is obtained as follows:

[!̂1, !̂2] =

[max !̂I, !̂II ,min !̂I, !̂II ]

if !̂I !̂II < ¼(K 1)=¿

[min !̂I, !̂II ,max !̂I, !̂II ]

if !̂I !̂II ¼(K 1)=¿:

(13)

¾̂21 and ¾̂
2
2 are obtained consequently. Note that both

the components are exploited to automatically identify
which is the advancing and which the receding
component. This makes non trivial the role of this
labeling stage. If one of the two Bragg components is
very weak, its frequency estimate becomes erratic, or
driven by the sidelobes of the spectral response from
the dominating component. Consequently, labeling
error can occur, and the resulting wrong association
causes large “catastrophic” errors in the estimate !̂a.
Also, note that when two peaks have not been found
in the beamforming, Capon, or YW spectrum because
of leakage (one component masked) or resolution
problems, HDP cannot perform labeling and returns a
“nonoperative” flag. Conversely, MPP, as well as HDP
with MUSIC-LS, is always operative. After labeling,
HDP locks onto the peak with the higher estimated
amplitude, since frequency is more reliably estimated
for the most powerful component. Compensation is
carried out according to the estimated label of the
dominant component, i.e., advancing of receding, as
follows from (3):

!̂a =
!̂2 +!B if ¾̂22 ¾̂21

!̂1 !B if ¾̂22 < ¾̂
2
1 :

(14)

Roughly speaking, the HDP method estimates the
location of both the Bragg components by finding
the two highest peaks in the estimated spectrum.
Then, the two estimates are ordered modulo the
unambiguous Doppler range. The strongest of the two
peaks is selected, and the advection !a is estimated
as the difference between the selected frequency
and !B , where the sign depends on the advancing
or receding component being selected for locking,
respectively. HDP does not require any a priori
knowledge on the wind direction, and aims to obtain
fully autonomous velocity estimates. However, in
practice it is expected that it cannot operate, or
operates with large errors, in close to single Bragg

6As an example, the lowest negative frequency estimate does not
necessarily correspond to the receding Bragg component, if a large
negative advection is present making the estimate of this component
fold over becoming positive. In this condition, the negative estimate
actually corresponds to the advancing component affected by the
large negative shift.

component conditions. This case arises when the wind
aspect is close to upwind or to downwind.

In the third scenario, it is not even assumed an
exact a priori knowledge of the Bragg frequency. This
makes sense, e.g., for high sea state where the local
incidence angle can change around the nominal one
(#) because of the tilt of long waves [19]. The method
conceived for this scenario is termed the averaged
dual peak method (ADP). ADP has no labeling stage
and exploits both peaks for locking. Under the mild
assumption that 2!B is less than half the unambiguous
range, ADP estimates the advection !a as the mean,
modulo the unambiguous Doppler range, of the
frequencies of the two highest peaks. This circular
mean can be obtained as

!̂a =
K 1
¿

arg exp(j!̂I¿=(K 1))+ exp(j!̂II¿=(K 1)) :

(15)
ADP, as the HDP method, sometimes may be
non-operative.

IV. PERFORMANCE ANALYSIS

We now numerically investigate the performance
of the different estimators of !a using data model
(1)–(3). All the spectral estimation methods that
we investigated rely on an evaluation of the data
covariance matrix Cy. For beamforming and Capon
methods we used a Toeplitz estimate, for the
root-MUSIC method we used the forward-backward
(FB) averaging approach7 [27]. The same approach is
used also for LS, replacing the sample estimate with
its FB counterpart in (9), and for the YW method.
Beamforming and Capon have been implemented
by using the fast Fourier transform (FFT) for a first
coarse search of the peak locations and the chirp zeta
transform (CZT) for a local refined search.

Where not otherwise stated, all the numerical
results were derived for N = 32 looks, total
signal-to-noise ratio SNRTot = ¾

2
T=¾

2
v = 24 dB,

normalized coherence time ¿̃c = 4, normalized Bragg
frequency !B¿ = 3¼=8 rad, K = 3 channels. In
particular, these parameters are representative of
the L-band AIRSAR system [3]. In this platform,
K = 3 equispaced phase centers are available through
transmitter ping-ponging between two antennas, with
overall time lag ¿ = 94 ms [3]. The choice K = 3 also
allows to get a flavor of achievable performance for
planned spaceborne distributed MB interferometers
based on a cluster of three mini-satellites [28]. In
L-band AIRSAR, ¿̃c = 4 corresponds to ¿c =

7The Toeplitz estimate is used to keep the structure of the true
covariance matrix arising from uniform sampling and signal
stationarity. However, this approach is inadequate for root-MUSIC.
In fact, the “Toeplitz-ized” covariance matrix estimate keeps a full
rank also in the ideal case of totally correlated speckle and infinite
signal-to-noise ratio, when it should have rank equal to the number
of sinusoidal components [27], which in our case is two.
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376 ms, which is a favorable condition arising for
light wind; !B¿ = 3¼=8 corresponds to the Bragg
propagation velocity for typical moderate off-nadir
incidence angle.8 With this choice of parameter
values, the Fourier resolution limit is ¢!BF =
2¼(K 1)=(K¿) = 4¼=3¿ . Thus, the distance between
the Bragg components is 2!B = 3¼=4¿ < ¢!BF.
Without loss of generality, we set !a = 0 (performance
is circularly-invariant). Being K = 3, the AR model
order for the YW method is set to its maximum P = 2.
The performance of the three locking techniques
coupled with beamforming, Capon, YW, and
MUSIC-LS were evaluated by Monte Carlo simulation
(104 trials). We derived bias, standard deviation
(STD), and root mean square error (RMSE) of the
spectral advection estimate !̂a, evaluated modulo
the unambiguous range and normalized to the
Bragg frequency !B . Note that the normalized error
equals the error of estimated ocean surface velocity
normalized to the Bragg propagation velocity, thus
it gives straightforward indication of absolute values
of velocity errors. Performance of conventional ATI
(K = 2), for which velocity estimates are based on
estimation of the Doppler centroid [5, 3], has been
also evaluated for comparison. The time lag was set
equal to the overall time lag of the MB system, and
operating conditions are identical. Thus, N , SNRT, ¿̃c,
and !B¿ are the same as for the MB system.

A. Conventional and MPP Performance

In a first set of simulations, we investigate the
effect on performance of varying power distribution
between the two Bragg components: ¢SNR= ¾21=¾

2
2

is varied from 30 dB, corresponding to a practically
single receding Bragg component (downwind), to
30 dB, corresponding to a single advancing Bragg
component (upwind). The resulting normalized bias
is reported in Fig. 4 for conventional ATI designed to
operate under the downwind assumption (Conv. d-w).
For increasing ¢SNR, an unexpected advancing Bragg
component grows, and conventional ATI develops
increasing bias. The bias limit value is twice the
Bragg frequency when the advancing component
is dominating. Note that for L-band AIRSAR with
moderate incidence angle, this normalized bias
corresponds to a velocity bias of about 120 cm/s. This
is very troublesome, given that the accuracy typically
required in applications is on the order of 10 cm/s
[19]. Such large bias can actually occur when local
wind direction is not accurately known, since the latter
can be highly varying over the imaged scene [5, 21].
Conversely, MPP locking generally exhibits higher

8The assumed set of values for the normalized parameters can also
represent a possible modified L-band AIRSAR system with halved
overall baseline, operating at large off-nadir angle. In this case,
¿ = 47 ms and ¿c = 188 ms [18].

Fig. 4. Bias of estimated advection, MPP.

Fig. 5. RMSE of estimated advection, MPP.

robustness while the wind direction lays in the rear
half-plane relative to platform track (¢SNR< 0 dB),
at the cost of a little loss around downwind (¢SNR=
30 dB), except MPP coupled with beamforming

or MUSIC-LS. The former does not exhibit higher
robustness than conventional ATI, while the latter has
nonnegligible bias around downwind. When RMSE
is considered, see Fig. 5, MPP-Capon performs best,
and advantage over conventional ATI is obtained up to
¢SNR = 2 dB. MPP is always operative, since it can
work when both a single and two Bragg components
can be estimated from the data.

B. HDP Performance

Conversely from MPP, HDP locking requires that
both components can be estimated. In Fig. 6, the
probability of operation (Pop) is shown. It is defined as
the probability of finding two peaks in the estimated
spectrum. It gives an indication of the percentage
of pixels for which the robust HDP advection
estimate can be produced. HDP-beamforming is often
nonoperative for ¢SNR around 0 dB (crosswind),
when neither the two components can be resolved
(2!B <¢!BF) nor a sidelobe appears in the estimated
spectrum. Conversely, it is always operative when
a single component is dominating. However, it has
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Fig. 6. Probability of operation for HDP and ADP. Probability of
operation is unitary when MUSIC is employed.

to be noted that in this case one of the two peaks
found is just a sidelobe, i.e., a spurious frequency
estimate [24]. As expected, Capon’s spectrum exhibits
better resolution. HDP-Capon is often operative for
¢SNR around 0 dB, while if one component is too
weak or too strong compared with the other, two
peaks can be rarely found because of some leakage
effect. HDP-YW generally exhibits higher Pop than
HDP-Capon, thanks to the model-based spectral
estimation producing further better resolution and
reduced leakage compared with Capon. As mentioned
in Section III, HDP-MUSIC-LS is always operative
(Pop = 1).
In principle, HDP locking is conceived to work for

any wind aspect, without any information about its
direction. Since performance of conventional ATI for
varying ¢SNR depends on the wind aspect for which
it has been designed, we compare HDP performance
with conventional ATI designed for operation in
downwind, and for operation in crosswind. This is a
significant comparison, although not exhaustive.
The normalized bias of conventional ATI

operating under the crosswind assumption is shown
in Fig. 7 (Conv. c-w); it equals the normalized bias
of downwind-designed ATI minus one. Note the
high sensitivity of conventional ATI designed for
crosswind to deviations from the nominal wind
aspect (¢SNR= 0 dB). The bias of HDP methods
is also reported. It is apparent that a very strong bias
reduction over crosswind-designed ATI is generally
achieved by HDP when wind aspect deviates from
the nominal direction assumed for conventional ATI.
Performance of HDP-beamforming is not satisfactory
around crosswind, taking also into account its low Pop.
Interestingly, gain in terms of STD is also produced
around crosswind, except by beamforming. It is worth
recalling that in crosswind the total ocean coherence
time is significantly lower than the coherence time ¿c
of each component, for a same modulation effect from
medium waves (see footnote 3). This can result in an

Fig. 7. Bias of estimated advection, HDP.

Fig. 8. RMSE of estimated advection, HDP.

increased STD for conventional ATI, by about 7 times
compared with the single Bragg component situation,
for the assumed parameters [30]. Conversely,
HDP-MUSIC-LS processing can produce a STD close
to that of conventional ATI operating with a single
Bragg component, compensating for the loss of total
coherence time around crosswind. For ¢SNR= 0 dB,
STD is reduced by about 5 times compared with
conventional ATI. This is because locking onto only
one of the two peaks, not onto the centroid, virtually
cast the problem in a single-component scenario,
which is a serendipitous result. Consequently, a very
good RMSE reduction compared with conventional
ATI is obtained by HDP for a very large range of
¢SNR , as shown in Fig. 8. HDP-MUSIC-LS can
be globally considered the best performing method,
taking account also of its unitary Pop. When HDP
performance is compared with conventional ATI
designed for the downwind assumption, strong bias
reduction is again observed. Bias of 18% at ¢SNR=
6 dB is reduced to 5:5% by HDP-MUSIC-LS, and

bias of 100% at ¢SNR= 0 dB is canceled. However,
a loss in terms of bias results for ¢SNR< 10 dB,
see Fig. 7. This is because HDP needs two significant
components being present to correctly identify the
right one for locking. Consequently, large gain in
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Fig. 9. Bias of estimated advection, ADP.

Fig. 10. RMSE of estimated advection, ADP.

terms of RMSE is now obtained for all wind aspects
except for close to downwind, where the “matched”
conventional ATI is better;9 see Fig. 8.

C. ADP Performance

Bias and RMSE of ADP locking, which can
operate with unknown !B , is reported in Figs. 9 and
10, and compared with conventional ATI designed
for crosswind. The probability of operation Pop for
ADP is the same as for HDP (Fig. 6). Interestingly,
bias control capability around crosswind is still good
despite the lack of information of Bragg frequency
!B , although some degradation compared with HDP
can be noted for large ¢SNR . Conversely, a slight
RMSE accuracy gain over HDP is even obtained for
¢SNR 0 dB, thanks to the averaging effect coming
from exploiting both peaks for locking. However,
RMSE gain over crosswind-designed conventional
ATI is reduced for large deviations from crosswind.
ADP-MUSIC is the best performing method. The

9It is worth noting that the catastrophic errors from wrong labeling
are impulsive. Thus, they may be significantly reduced by spatial
median filtering of the estimated velocity map.

Fig. 11. RMSE of estimated advection, HDP, ¢SNR= 0 dB.

other ADP methods have close performance,
except ADP-beamforming, whose RMSE is out
of scale.

D. Analysis of Statistical Efficiency, Threshold Effect,
and Bragg Component Resolution

In a second set of simulations, we focus on HDP
locking, which is particularly effective in overcoming
the troublesome sensitivity of conventional
ATI designed for crosswind. We investigate its
performance in terms of asymptotic efficiency,
threshold effect, robustness to multiplicative noise,
and resolution problems. The CRLB on the advection
estimate !̂a has been also evaluated, assuming
that !B is known. The derivation is reported in the
Appendix. This CRLB is the extension of the classical
interferometric CRLB in [31] to the case of MB data
and dual Bragg component condition. It is used in
the sequel to judge the statistical efficiency of HDP
estimators, and may be also exploited for analytical
performance prediction and system optimization. In
the following, ¢SNR is set to 0 dB (crosswind) and
the other parameters are set as above. Performance is
also compared with crosswind-designed conventional
ATI.

The influence of the number of looks is shown
in Fig. 11. For varying N , bias of all the methods
is almost unaltered [30], while STD decreases
with increasing N , as expected. RMSE ranking
among the methods does not change with N for the
given parameter set. HDP-MUSIC-LS is the most
statistically efficient method; it is also quite close
to the CRLB. However, it seems that it does not
asymptotically achieve the bound (for N = 256 its
RMSE is still 1.5 times the CRLB). This may be
attributed to the fact that MUSIC operates under
model mismatch and only a single component is used
for locking, thus part of the data information content
is not exploited. The influence of critical signal power
levels, possible for smooth ocean or far range [3], is
investigated in Fig. 12. The result is that HDP can
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Fig. 12. RMSE of estimated advection, HDP, ¢SNR= 0 dB.

perform well also for low SNRtot, still producing a
gain over conventional ATI. HDP-MUSIC-LS is quite
efficient for large SNRtot, while HDP-YW exhibits a
lower threshold effect, at the cost of the nonunitary
Pop. For SNRtot < 8 dB, it gets an RMSE lower than
that of any unbiased estimator, trading off bias for
variance [32]. HDP can perform well also under
critical coherence conditions, as shown in Fig. 13.
Notably, for decreasing ¿c, i.e., increasing bandwidth
of the speckle processes, the continuous AR spectrum
model of YW does not produce appreciable benefits
compared with the discrete spectrum model of
MUSIC-LS. HDP-MUSIC-LS is still the most
efficient among the HDP methods, followed by
HDP-Capon. However, keeping good performance
at low ¿c is increasingly difficult for large deviations
from crosswind (¢SNR= 0 dB), for the assumed
N and SNRtot [30]. The RMSE as a function of the
normalized frequency !B¿ is reported in Fig. 14.
For decreasing frequency separation between the
two Bragg components the gain of HDP tends to
decrease, because of the increasingly challenging
resolution problem. In particular, when operation
in C-band is considered [3], !B¿ is typically in the
range [0.3, 0.4] rad, i.e., around 1/4 to 1/3 of the
corresponding value for L-band, while ¿c=¿ can be
considered the same, being both the typical overall
time lag and coherence time lower than for L-band
[3, 5]. It is worth noting that the inversion problem
affecting conventional ATI is troublesome also at
C-band, where velocity bias up to about 60 cm/s is
possible. Unfortunately, in this condition the gain
of HDP over crosswind-designed conventional ATI
vanishes. However, room for future performance
improvement is shown by the CRLB at !B¿ =
0:4, corresponding to C-band AIRSAR operating
with large off-nadir angle. Moreover, gain over
“mismatched” downwind-designed conventional ATI,
whose normalized RMSE is 1.02, is still produced.
HDP-Capon now exhibits the lowest RMSE, at the
cost of a very low Pop = 0:1, followed by HDP-YW

Fig. 13. RMSE of estimated advection, HDP, ¢SNR= 0 dB.

Fig. 14. RMSE of estimated advection, HDP, ¢SNR= 0 dB.

(Pop = 0:3) and HDP-MUSIC-LS which trades off
accuracy for operational capability.

Despite focus in this work is on curing the effects
of lack of detailed wind direction information, it is
now worth stressing another potential of the robust
velocity estimators. Even when wind information
is available, it is not always possible to accurately
predict the Bragg power split ratio, because the
hydrodynamic modulation effect by current gradients
can change the relative intensity of the advancing
and receding Bragg waves compared with stationary
current areas [5]. As a result, the conventional ATI
current imaging can be locally nonlinear (especially at
L-band) [19, p. 453], since the relationship between
measured Doppler centroid and desired current
estimate can change with the current itself. In this
framework, MB acquisition and processing robust
to unknown Bragg power split ratio may be useful
also to get more linear ATI current imaging. This
potential is not investigated further here and is
left as matter for future research. It is also worth
recalling how one can postprocess the advection
(velocity) estimates to decouple the actual current
velocity from the total (orbital+ current) velocity
measured in the ATI framework, in which long
waves are treated deterministically. Decoupling
is based on the fact that the orbital velocity field is
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zero-mean, thus local spatial (incoherent) averaging
of the total estimated velocity over a number of wave
periods results in the current velocity only [20].10

V. CONCLUSIONS

In this work we considered the problem of
estimating ocean surface velocity when only partial
or no information from ancillary data is available to
compensate for the net Bragg velocity. A first step
has been taken towards making ATI sensing flexible
and possibly autonomous from wind information
by exploiting baseline diversity. Three classes of
robust MB surface velocity estimation techniques have
been presented to operate under different degrees of
availability of a priori information on wind direction
and Bragg frequency. Estimation accuracy has been
analyzed by simulation and CRLB calculation.
Interestingly, two baselines can be enough to get
velocity estimates that are not sensibly hampered by
the uncertain bimodal Doppler spectrum. None of
the estimators in each class is uniformly the most
efficient. Compared with conventional ATI, good
performance is provided by MPP-Capon, which
exhibits robustness to deviations from an upwind or
downwind assumption. HDP-MUSIC-LS generally
produces much better performance than conventional
ATI for a wide range of wind aspects around
crosswind. ADP-MUSIC can operate satisfactorily
even with unknown Bragg frequency.
The performance analysis reported is valid for

L- and C-band systems and light to gentle wind.
The effective limits of validity of the analysis for
stronger wind speed are the subject of future research
work. Validation with real airborne data is in order.
The results obtained can be used to develop a hybrid
technique adaptively selecting algorithms in the same
class, as well as integrating the HDP class with MPP
to further extend the range of wind aspects for which
good operation is obtained. System optimization of
the overall time lag for MB processing can be also
analyzed, some indications can be found in [18]. Both
airborne and future spaceborne ATI systems [28]
may benefit from the proposed MB technique. It can
be employed alternatively to or jointly with carrier
and off-nadir angle optimization to minimize ATI
sensitivity to uncertainty of bimodal spectrum [19],
obtaining a better overall system design in presence
of contrasting requirements. Moreover, synergy with
vector-ATI concepts [13] and multifrequency ATI [21]
can be considered.

10When the orbital velocity is not exactly zero-mean because
of the so-called Stokes drift (small net velocity in the wave
direction), the non-zero mean enters the current velocity obtained
by postprocessing. This is actually good from the measurement
perspective, since the Stokes drift can be considered as one of the
components of the surface current [20], besides those from wind
drift, tides, etc.

APPENDIX. CRLB FOR MB ADVECTION
ESTIMATION

In the following, we derive the CRLB on the
estimation of !a for the MB ATI signal model in
(1)–(3). Denote with Â= [¾21, ¾

2
2, ¾

2
v , ¿c=¿ , !a¿ ]

T

the vector of all the unknown parameters. The
normalized Bragg frequency !B¿ is assumed here to
be known. The elements of the Fisher information
matrix (FIM) for the zero-mean complex Gaussian
distributed data vector in (1) are [26]

[JFIM]i,j = tr C 1
y

@Cy
@Âi

C 1
y

@Cy
@Âj

(16)

where tr is the trace operator, and Âi = [Â]i. From
(1) the data covariance matrix is

Cy =
2

m=1

¾2mA(!m¿)CxA
H(!m¿) + ¾

2
v I (17)

with Cx given by (2), !1¿ = !a¿ +!B¿ , and !2¿ =
!a¿ !B¿ . The partial derivatives of (17) are

@Cy
@¾2m

=AmCxA
H
m ,

@Cy
@¾2v

= I

@Cy
@(¿c=¿)

=
2

m=1

¾2mAmCxA
H
m LT

@Cy
@(!a¿)

= j
2

m=1

¾2mAmCxA
H
m LA

(18)

where denotes the Hadamard product [27], and
Am =A(!m¿). LT and LA are two K K Toeplitz
matrices having elements:

[LT]i,j = 2
(i j)2

(K 1)2
¿c=¿ , [LA]i,j =

i j

K 1

1 (i,j) K: (19)

The bound on !̂a¿ is easily evaluated numerically as
N 1[J 1

FIM]5,5 [26], where JFIM is the FIM for a single
look which is readily obtained by plugging (17), (18)
and (19) in (16). In Figs. 11–14 CRLB(!̂a)=!B is

reported, which is obtained as CRLB(!̂a¿)=!B¿ .
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