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The acoustic source density given by Ribher's vetoion of the Lighthill theory is calculated for a stochastic 
surface gravity wavefield. A Green function gives the acoustic fnrfield, as a volume integral. The method 
eliminates some of the complications involving the movin;; ocean surface. For a homogeneous ocean, the 
farfield acoustic spectrum agrees with the spectrum of Hughes [J. Aconst. Soc. Am. 60, 1032-1039 (1976}], 
and at low frequencies with the spectrum of Brekhovsldl:h [lzv. Atmns. Ocean Phys. 2, 582-587 (1966}], after 
certaht corrections are applied to their results. At high frequencies, the Brekhovskikh spectrum is larger by a 
factor {5/4} 2. 

PACS numbers: 43.30.Nb, 43.28.Ra, 43.20.Bi ' 

INTRODUCTION 

The. production of underwater sound by a surface 
gravity wavefield has been treated by a number of 
authors. •'• In each treatment there is a perturbation 
series expansion in the wave-height amplitude, and 
from the fields at the surface a part is picked out which 
represents a propagating acoustic field. An acoustic 
wave is produced by gravity waves interacting via the 
nonlinear terms in the hydrodynamic equations. 

Lighthill ? develops a theory of sound production in a 
fluid in which quadratic nonlinearities in the hydrody- 
namic equations are isolated as a sourceterm in an 
acoustic wave equation. In a modification of the Light- 
hill theory, Ribner • works with the overpressure rela- 
tive to the pressure Po in a hypothetical incompressible 
flow, and obtains an acoustic source density 
0•. This has a very simple interpretation: A pressure 
fluctuation 5po produces a density fluctuation õp = (1/ 
c•)SPo in the actual compressible ocean, so the Ribner 
source density -•Zp/•t2 is that of a distribution of mon- 
opoles; antireflection at the free ocean surface gives an 
overall dipole effect in the farfield. 

We model the surface gravity wavefield as a tinear 
stochastic superposition of plane gravity waves of the 
usual theory, we calculate the Ribher acoustic source 
density for this potential flow, and then we apply an 
acoustic Green function for the moving ocean to obtain 
an acoustic farfield. Our derivation has the advantage 
that it represents sound production as a volume effect; 
indeed, we must exercise considerable care to elimi= 
nate considerations involving the moving ocean surface. 
With this we are able to understand the effects of neg- 
lected terms, e.g., vorticity, bigher order terms in the 
perturbation series, etc. 

In Fig. 1 of Hughes 4 the various theoretical spectra 
lie 10-20 dB below the observations (1-8 Hz) in a 
representative case. His formula [Ref. 4, Eq. (33)] is 
larger than our formula (35) by a factor of 2 (the dis- 
crepancy is discussed at the end of Sec. V), so we ex- 
pect our formula (35) to be 15-25 dB below the ob- 
servations at these frequencies. 

I. THE HYDRODYNAMIC EQUATIONS 

The kinematic, dynamic, and thermodynamic equa- 
tions of the ocean water are all of a piece, and describe 
all of the various motions identifiable as wave motions, 
as well as the hydrostatic behavior. 9 It is feasible and 
useful, however, to separate out the acoustical part of 
the pressure fluctuation, i.e., the part whose presence 
is due to the water compressibility. Such a separation 
necessarily involves discarding number of interac- 
tions. The method we use is derived from the Light- 
hill 7 theory, as modified by Ribher. 9 It gives an in- 
tuitively appealing model for the generation of sound by 
the gravity wave motion near the surface, and the phy- 
sics of the approximations is more or less transparent. 
We give the derivation for completeness, since there 
are certain differences from the jet noise case con- 
sidered by Lighthill and Ribner. 

Various notations will be employed for Cartesian 
components, as convenient, e.g., the coordinates x,y,z 
may be denoted vectorially by r or tensorially by 
r= 1,2, 3, with the summation convention. The surface 
of the quiescent ocean is {z = 0}, and z increases up- 
wards. The unit vectdr in the positive z direction is 
denoted by e. The equation of the instantaneous ocean 
surface 8, at time t is of the form • -h(x,y,t)--O, 
<x, y <•o, where h is single valued and as smooth as 
necessary. The depth of the ocean does not appear in 
our calculations, and at time t, the ocean water oc- 
cupies the cegion 

= - <z 

The velocity field of the ocean water is defined in 
and is denoted by (u,•,w), or by v or %, z=1,2,3; 
arguments are usually suppressed. The water density 
being p, the continuity equation is 

ap + v- (pv) = O, in •t, (1) at 

where V is the gradient operator. The water compres- 
sion rate is denoted by •: 

(=-V'V, 

and the continuity equation can be rewritten as 
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1 DD = - -- (2). 
p Dt' 

where D/•t= O/at+ V-v is the usual m•terial deriva- 
tive. 

The Euler equation is 

0,,, +[ al, +• (gz) • a•/, 0, (3) 

where g is the cons•t acceleration of gravity, •d 
where the v•scous deceleration is given by (Ref. 10, 
p. 49): 

1 3•r• = • Avr _ (•/3) + • •. (4) 
pax s p p ax, ' 

A= V' V denotes the Laplaci•. Terms involving the 
gradients of the dynamic viscosity coefficients 
have been omitted in (4). We t•e the divergence of (3) 
•d use 

• + •Vs •Vr 
• •x r 

to obt•n 

•-v' (-V' Vp -•x r •x,' 
where 

v' = (4/3)v+ g/9 (with v= gto), 

is a total eompression• •inematie viscosity; terms 
•e gr•ients of v •d v • have •en o•tted in (5). Now 
wo substitute from (2) for • •d multiply through by p: 

where we have intr•uced 

Ov• Or, (7) A = p •x, 
FisHy, we m•e the usu• specification of •e com- 

pressibility relation, •mely 

p/m = ( / ) , ) 
where c= c(x,y,z,t) •s •e local velocity of sound. Thg 
is the assumption t•t ff •e pressure chants • ß ma- 
terial element it •dergoes •i•atic compression; 
of. (ReL 11, Eq. 4.2.32) or (•L 9, Eq. 5.4) (for 
•e case el no accession of heat). We substitute this 
(•) •d have a p•li•na• form of the Lighthill equa- 
tion: 

p -W -pV' V :Ain•, (9) 
pc • • 

with 

avs 

A=P•x• •x s 
The o•y approximation in (9) is •e discar•ng of the 
gr•ients o• the v•scos• c•fficients, both dynamic 
a• kinempac. 
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II. THE LIGHTHILl' AND RIBNER EQUATIONS 

In discussing (9), we borrow from the usua• linear 
theories as necessary; we look for a linear equation 
for an acoustic overpressure. Equation (9) could be 
regarded as an inho•hogeneous linear wave equation for 
p if the other quantities were known functions. The 
left-hand side would be a linear wave operator acting 
onp, the waves having material phase velocity ½, and 
linear viscous damping. The right-hand side, quad- 
ratic in the velocity gradients Vv, would represent an 
acoustic source density. Actually, of course, A, the 
coefficients, and D/Dr, all depend on all of the mo- 
tions, so a variety of nonlinear interactions is involved 
in (9). We waq. t to disentangle the acoustic pressure, 
but before this we will specify our model in more de- 
tail. 

We assume that the quiescent ocean is stratified, and 
that phenomenological profiles po= po(z) and co= co(z) 
are given. We assume that both of these functions 
have the constant surface' values p., c4, respectively, 
in the mixed region where the surface gravity wave 
motion is nonnegligible, .say, tens of meters below •,. 
[Below the thermocline a value -(1/co)dco/dz •' (85 kin) -• 
is representative. The variation of Po is specified by 
its logarithmic derivative 

y: _ ap__o = + g__ (lO) 
Po dz g Co z ' 

where N (tadfans/s) is the-V•is'•tli-Brunt frequency 
limit. At great depths, y=g/c2=(230 kin) ~', and N-- 0, ' 
(1/N)d•/dz --(1 kin) '• (Ref. 12, p.4). In the thermo- 
cline values N = (60 s) '• and y= (45 kin)" are possible; 
(1/y)(dy/dz) can be large locally, with either sign 
(Ref. 11, p. 303.)] 

The appearance of the material derivative operator 
in (9) is a reflection of the fact that a wave undergoes a 
Doppler shift when it propagates in the flowing water 
(Ref. 11, Sec. 4.6) (Ref. 8, Ch. III); the fractional fre- 
quency shift is bounded by •M if the flow has Mach 
number M. We are going to drop from (9) the advective 
part v ß V of D/Dr, per the following considerations. 
The nonlinear sound-sound terms are completely neg- 
ligible for us, since the actual water flow involved in 
an acoustic wave at level 100 dB/• Pa (rms amplitude 
0.1 N/m •) has Mach number < 104ø. The Mach num- 
ber in a gravity wave flow is of order (wave height)/ 
(acoustic wavelength at same frequency), e.g., M 
< 1/200 for 20 m swell of frequency 0.1 Hz. We would 
expect the advection effects to be localized; in the far- 
field the angular distribution and phase of the sound' 
might change to order M, but the relative change in the 
power spectrum should be smaller. The only nonlinear 
gravity wave interactions of interest are those respon- 
sible for the production of sound--our gravity wavefield 
will be a linear superposition of the waves of the usuaI 
theory. 

Terms in the derivatives of the coefficients appear 
when (9) is expanded, and the coefficients themselves 
need to be expressed as (static + first-order fluctua- 
tion). In a linear treatment of the left-hand side of (9), 
at frequencies above 0.1 Hz, only one of these terms is 
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retained, to give the correct static behavior. [In th e 
full linear treatment of (1)-(8) the terms in v' V are 
first order when applied to a static quantity, and must 
be retained at internal wave frequencies. Also, a gra- 
vity wave with a phase velocity g/(2frf) would be super- 
sonic for frequencies f <g/(2•rc) • O. 001 Hz. Compres- 
sional and buoyancy effects are strongly coupled at 
these frequencies, and the order of the system changes 
from 2 to 4 (Ref. 11, Sec. 4.2).] 

In the right-hand side of (9) we replace A by 

Aø = P• ax r ax• ' 
arguing that p--p• near the surface where Vv is not 
negligible; the difference 

A - A o = (p - p,) •v• 
•X r •X s 

(acoustic pressure) av• 
~ C 2 •X• •X a ' 

is Of the same order as terms already discarded. Our 
approximation of (9) now takes the form 

A plane acoustic wave is attenuated by the viscosity 
term according to 

p ~ ex[•i(wt - k. r)] exp[-•ot/(2Q)] , 
where Q •c2/(v'w) varies inversely with frequency. (Q 
is not really a Reynolds number, since w•k is not a 
material velocity.) From (Ref. 13, p. 102) the empiri- 
cal value of c2/u ' is =9.5x lO s s 'L, and the v' term in 
(9) will produce negligible effects at acoustic frequen- 
cies of interest. (E.g., at 100 Hz the power relaxation 
time Q/w exceeds 40 min.) We drop the v' term, and 
then have a dissipationless wave equation 

8P= 1 8up-Ap-y Ao, in(R t (11) co 2 •t • • ' 
The pressure p in (11) is the total water pressure, 

and includes the static part. We need to introduce 
some sort of refecence pressure pf, defined in (•!t, such 
that p -p' away from the gravity wave flow represents 
the acoustic overpressure, i.e., p' should tend to the 
static pressure at great depths. As will become ap- 
parent in Sec. IV, it is also very desirable to have 
p -p'= 0 on ,st, and the complications from this Occupy 
the rest of the present section. 

The static pressure in the quiescent ocean is 

p,=p•+g po(z')dz', -•o<z <0, 

where p. is atmospheric pressure at the ocean sur- 
face, assumed uniform. The formula serves to extend 
the definition to 61 t if We take po(z') = p• in the crests 
• tq.{z >• 0}. The extended p, has the properties 

ap ffat • 0, 
VP,=-gpo e, • in at,, (12) 
p,+v =oJ 
p•=p•-gp,,h on S t . 

It follows from this that p, satisfies the homogeneous 
equation in (11), so if we use p, as the reference pres- 
sure we have 

p-p,=O(1), as z---•o. 

We call this the Lighthill equation for ocean acoustic 
waves. It suffers from the disadvantage that the boun- 
dary values ofp -p, are nonvanishing on ,s t. 

Following Ribnet, let us use as reference pressure 
the pressure Po that would exist in a dynamically in- 
compressible ocean. The stratification Po stays the 
same, but we replace the compressibility condition (8) 
by Dp/Dt = 0. (Imagine turning Dp/Dt off and following 
the motion for a short time.) The equation correspond- 
ins to (9) would be 

but we use instead the approximation corresponding to 
(11), namely, 

--Apo-yaPø=Ao, in•t t. az ' 

The source term should be formed from the velocity 
gradients of the incompressible flow. However, fhis 
will differ from the compressible A 0 by terms of the 
order of those already heglected. We make this ap- 
proximation, and find that p• =p -Po satisfies the 
Ribner-Lighthill equation: 

1 at, 1 a2o ins,. (13) cø at at 

The excitation term can be interpreted as a density of 
monopole sources: A pressure fluctuation 5Po produces 
a density fluctuation (1/½•)5Po in the actual compres- 
sible 0cean, so the right-hand side can be viewed as a 
monopole source density -8•p/3t z (Ref. 11, p. 33). 
The idea is due to Ribnet? 

The boundary condition for p on 'st is, say 
p=p• -gp•TA2h on,s t , (14) 

where Aah = {aeh/ax •) -• (aah/ay•) is the usual curvature 
approximation of the linear theory. (The geometrical 
surface tension is T •7.4 x 10 '• m•.) The air above the 
ocean is q•et, as a first approximation; wave energy 
has propagated from remote sources. • We assume 
that Po satisfies the same condition: 

po=p• -gp•T•.ah on ,St, (15) 

.4o we will have p• = 0 On ,s't. At depths there will hold 
P -Pa =O(1), P.o-P• = o(!) [or O(1) pseudosound], and 
p•=p -po = O(1) will represent the acoustic 0verpres- 
sure. We show later that the pseudosound term inpo 
vanishes under assumptions we make involving the sur- 
face waves. 

The nuisance term 7(3•/3•) is needed in (11) to give 
the correct static behavior. Since • has no static 
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part, we can eliminate this term in (13), if necessary, 
as follows. We define a function B = B(g) in St, by B 
= [p,/po(z)] •/•, with the extended definition of Po- The 
value s 0f B will differ from unity by at most 2% at 
depths of interest. The coefficients 

B'/B = «•(•g/½*) , 

b = B"/B = • •' + • 2[= (g/c2)•], 

will be of the order indicated and will be slowly varying 
(except in the thermocUne, where b can be larger, 
with either Sign). 

Now we put 

p•(x,y,z,t)=A•(•,y,•,t)/B(z) in •; 
this is the Lighthill transformation of (Ref. 4, Sec. 
4.2). It has the property 

so that in terms of A•, Eq. (13) becomes the selfad- 
joint 

The effect o• the 5 term is to change the local acoustic 
dispersion relation to 

•/c = (• + 5)•. 

The fractional ½lmnge in the phase velocity is of order 
(1/•-)[(•½)/•z; this is 0.5 x 10 '• at 0.1 Hz. H we dis- 
card the 
simplified version of the Ribner-Lighthill equation: 

Cø 2 Ot • Ap•=-½o 2 •t •_ , 

p•=O(1), as z• • (16) 

III. THE GRAVITY WAVEFIELD 

We will model the reference pressure Po as that of an 
irrotationni incompressible flow: There is a velocity 
potential • such that ?= •. •he incompressibility 
condition •*¾=0 becomes the familia• b•=O. As a 
Bernoutli integral we take 

O• v'v 1=•o(•-+ 2 )+Po-P•' 
This does not quite satisfy •1= 0 •Ref. 9, Chap. IV); 
instead, 

•I= -ypo(• + v•--)e ß 
However, we can argue that F will vanish in the mixed 
region, ahd the other factor in VI will have become 
n•gligible at depths where 7 > 0 must be considered. 
We shall thus impose the normalization I= 0 on •, 
which is to say 

_ [a•,+v'v\ ' po=p,-po•- --•--] in•. 

The excitation term in (13) takes the form 

1 •-Po _Po •e (•+v v) . 
The boundary values of•o , p. bein• •iven by (15), (1•), 
respectively, we find th• • sh•d s•isfy 

We •e going to_•e ß •rturb•ton series e•sion 
• = • + • + ... in which the e•sion •ameter is 
essenti•ly •e rms w•ve amplitude. First, however] 
we •tr•uce •e basic stochastic element. We assume 

•at • is ß stoch•tic process which is wide-sense st•- 
tiona• in •, •, t, •d that h is a linear supe•osition 
of pl•e su•ace waves of the usual linear th•. That 

+ e•[-i(• - •' r•(d•)]}, (18) 

where r= •,•,z) is the position vector, • = (•, •, 0) is 
the horizont• wave .vector of a surf•e wavelet, wiffi 

determined by the dis•rsion relation oa=g•(1 + T•). 

Tbe overbar on• denotes co•lex conjugate, •d tbe 
spectral process • is assumed to • centered wi• 
complex o•h•on• increments. That is, • we denote 
by { ) the stochastic e•ec•d value 

(•(d•)) = 0, 

where •(dr)• 0 is •e spectra measure of the h pro- 
ces8: 

The wave • •tenti• ener• in a sq•re meter 
colu• of oce•, P.E. = •pa/2)(h(h -T•)) (see Ref. 
11, p. 228), is equa to the corresponding k•ic en- 
er• densi• 

K.E. =(p,/2) (v-•da, namely, 

Convergence of v•ious integr•s involv•g •(•) will 
be t•en for grated. Later we will •sume t•t there 
is a continuous spectra density: •(d•)=•)d• where - 
d• = d• is •s•e measure in •e wave vector 

The ac•stic intensi• will •volve •gher-brder mo- 
ments of the• process. We assume •at • •rd mo- 
men• v•ish, •d •at •e only nonv•ish•g fou•h 
moment is 

(•o) 
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In other words, the moments up to order four satisfy 
the same relations that the moments of a centered 

complex orthogonal increments Gaussian process satis- 
fy. 

We expand the velocity potential • = • + •: + ... in 
powers of •,•; only the first two terms are obtained. 
The first order term • is the potential of the usual 
linear theory, satisfying ' 

A•l=0 in.•t, a•t•=-g(h-TAah) on{z=0}, (21) 
(•x•Or as z•-eo, 

Explicitly, 

x {i exp[i(o• - ,. r) + •z]•(d•) 4- c.c.} in (gt, (22) 

f (1/•)•t(aK) 
converge at the origin. 

The second order term •b: has the properties e 

A•:=O in • 

a•:=_&au•z_lv4 h.vOx on{z=0}. (23) 
We sort out the contributions to Po according to their 
degree in the'• process. We put Po =P• +P • +P 2 + .. ß, 
where the first-order term is 

= f 
where c.c. within braces will always mean the complex 
conjugate of the preceding term within the braces. 
For • to exist it is necessary that 

x (exp[i(•t - ,' r), •z] ql(dg) + cm.) 

and the second-order is (omitting the algebra) 

(24) 

x (exp{i[a x - %)t - (r• - ge)' r]}•t(dg,• (dg•) + c •c.) , (25) 

the coefficient abbreviations being 

/c, = ( c,x + •)• - •a[ll'q + 'qll • - (K, - 2KiK 2 ' 

/C, = - •'•a[(•z + •*)s - I1• + •dl ' ] 2KtK 2 ' 

•KiK 2 

•xo•[(•x + •)• - IIg, - g•11 • ] 
K•- 2•x• • 

The corresponding forcing terms in the Ribner-•gh•- 
hfil equation are 

1 o•p• 
J•=-c• •t e ' 

• • • (26) 

The following kinematic considerations are import• 
for •derstanding the so•d pr•uction mechanism. 
•t k= (k•, k•,k•) be the wave vector of a pl•e acoustic 
wave, of frequency w=ck with k= fikl•. It is convenient 
to separate out the horizontal projection g = (k•, k•, 0). 
so that k = (•a + •)x/a. The forcing •erm • (25) with 
horizontal ph•or 

e•[(• + •)t - (• + •). r• 

cannot excite • acoustic component 

e•i[•t -• ' r] - 

I 

unless 

w=Ox +O a , 

K=•+K:;' 

this is a consequence of the assumed homogeneity in 
x,y,t. From 

and 

• - •=• - •,)[1 ß z(4+ •,+ •)], (2•) 
we obtain 

[• -•[• (g/e)[• + r(4+ •+ •)]. (28) 

That is, two gravity waves at frequencies •, • below 
the ripple region, say 13 Hz, will not interact to pro- 
duce • acoustic wave at the sum •equency •less their 
frequency difference is less th• 0.001 Hz. ff the sur- 
face waves are each about 50 Hz, the difference is 
bonded by 0.03 Hz, so the constraint is still severe at 
higher frequencies. 

There is a corresponding result for the difference 
terms. The notation •ing as before, 

•:[1--[2, 

requires 

(•x - •e)/c = w/c = • • •: •1• - •dl • •x - • 
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for the case ox > o2- This and (27) give 

=, + =2-< (g/c)[1 + T(4 + K,K= + 

This ca'not be satisfie d unless the sum is below 
0. 001 Hz or above 2 x 10 'a Hz. We omit the difference 

frequency terms after this. 

Consider now the first order term Jz of (26). A gra- 
vity wave with horizontal phasor 

exp[i((r•t - gl' r)l 

will excite a plane acoustic wavelet directly only if the 
horizontal phasors are the same, i.e., 

is the Previous notation. The z component of acoustic 
k is determined by 

and k, will be imaginary at all frequencies of interest. 
An acoustic wave decaying exp.onentiaily with depth c an 
be regarded as part Of a nearfield. This can be re- 
flected by the moving surface to produce a propagating 
field. We examine this at the end of Sec. IV; it is a 
small effect. 

There is one part of Po -P, which does not decrease 
exponentially with depth, formally. Namely, as 

P • -- -Po if •{exp(2i•t)'U(dg•)•l(d•.) +c.c.} (--), 
where (--) me•s that the limit •e= -• is to be t•en 
aKer the rms value has been calculated. (We c•ot 
put r• = --•1 directly in the double stockstic integral, 
in general, without careful examination.) The condi- 
tion g• = -g• is that two oppositely moving pl•e gra- 
vity waves interfere to produce a standing wave, of 
course. The deep water osciUatmn -exp(2i•t) in 
comes from the Bernoulli pressure drop at the sur- 
face, i.e., the surface average of -p•(v .v)/2, propa- 
gating instant•eously to all depths. This source oscil- 
lation drives a vertically propagating acøustic wave of 
velocity co. That is, •e resulting term in p =•0 +•l 
should • (the amplitude is correct for constant 

where we have used the abbreviation 

O,=2o,(t_• ø dz'• co(z') / ' 

for the phase of the vertically prop•ating wave. Then 

because the diagonal g• = -gx in four-dimensional Eu- 
clidean space E 4 has Lebesgue measure 0. The gist of 
this is that if therd is a, spectral density, then the 
probability is 0 that there' Will ever be any standing 
waves. Pseudosound will :be present only when there 
are Permanent stand/fig waves, k•., •(dg) cøntatns 
paired discrete Swell lines 0t,5(gt:g•)dg (this iS re- 
marked by Kadota and Labiancnb). In such a process 
there is alWaYs a standing wave •at the fixed (g•, -g•), 
the phase and amplitude being random. Note that the 
physical processesderived from h are not ergodic if 
•II (dg) has nonvanishing atomic part. 

W e will assume from now on that the ocean is homo- 
geneous, and D, c will denote the constant values of 
co. Our methods have generalizations in the stratified 
case, ,but we do not have closed form for the results. 
Moreover, the acoustic source intensity of the Surface 
wavefield will b e pretty much independent of the c o 
profile? 

We denote by El the D'Alembertian wave operator for 
acoustic waves in the homogeneous ocean: 

and we denote by G=G (r,t; W,t') an acoustic Green 

I 

function, 

ElG = r•'G = 5(r - r', t -t'), 

in a domain to be specified; primes denote arguments 
or operations on the primed variables in G. Propaga- 
tion is assumed to be from r', t' to r, t, so that 

lit - r'll 
G=0 if t <t'+-- 

c 

Further boundary conditions will be imposed later. 

We are interested in solving an equation 

[2u=J in 61,, 

u=O on St, 

u=O(!) asz---•; 

in particular, we want the rms values of u at a point 
well be:low the mixed region. Let [tg•t•] be a time in- 
terval containing the time t of interest; later to-- -*% 
tl-- •. Let • be that part of 43, contained in a large 
ball centered at the origin. The radius L of the bail is 
to satisfy L >> []r ][, and L--oo later. We denote by T 
the (r,t) region in E • whose t section is (R•, to•<t•<t •. 
We apply Green's second identity to 

u'([-I'G)- (•' u')G =u'5 -d'G , 

in the region T' c E •. The result is 
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u(r, t) = ff' G(r, t;r', t')J(r', t')dr'dt' 
+f v"F'cl•', (r, tkq'. (29) 

The surface terms on the right-hand side are as follows. 
The boundary •' consists of ends 

(•'o' to) 
and 

and the sides (•,, t o • t • t•)and (Yt, •o • • • t•), with 
the •art o• 8a wimtn the b•l of radius • and Yt the part 
of •e spherical surface of the ball wtt•n •a. The 
tegral over the part 

(•t•, t•) 
of Og is noncausal md em be omitted. The outward 

unR normal u to Or in Ea has (x,y,•, t)components 

r= (O, O, O, -1) on(•%,to) , 

v= -•,-•, 1,-• K on•,t), 
wRh 

txax/ kay/ k•/ J ' 

• = (n, 0) on (y•, t) wRh n the •if normal in E • to •e 
spherical cap 

The components of the four-dimensional fl• vector 
F = (F, F,) appearing in (29) are 

•'= -[u'(v'm - (v'u')c], 

ri = ( i /e•)[u'(a• /at') - (a.'/at')•]. 

The three-dimensional surface element da of • can 
be parametrized as follows: 

da'=dx'dy'dz' on (&•0, to), 
da'=K'•'dy'dt' on (•,, to•t• •t•), 

da•= Le•dt • on(y,,,to•U•t•). 
(Note •at K' cancels out.) 

It is evidently ve• desirable to have the surface 
terms vanish. The •gral over 

(&*o' 
represents the i•uence of the remo•e past, •d should 
v•ish as t o-- -•. (E.g., turn the system on slowly 
wRh • e•onential parameter which goes to 0.) The 
•tegral over y•, represents acoustic ener• entering 
ß • from the sides •d bel•, •d shouid v•ish • L 
-- • if the •eory is convergent. •y static •d 
pseudosound terms are picked up by the y,, terml •e 
c•cula•on is straightforward, but c• • done just as 
well by the meth• of •e preceding section, •d we 
omit the details. 

The bo•a• .condition u = 0 on $, is a fairly registic 
condition on • acoustic field. (A refinement •ght 
the water/air impeduce ratio •d radiation loss into 

the air into account.) If we impose the boundary condi- 
tion 

G=0 on 

we will have F'=O on $,. This eliminates the last of 
the surface terms, and we are left with 

u =/r GJ'dr'dt' . 
Scattering of acoustic waves in the water by a moving 
ocean surface has been treated by Labianca and Harper 
in a series of papers. •6-2ø Their results may be re- 
phrased for our purposes as follows.. The Green func- 
tion has the form G=Go+Gx+G2+ ... where G o is the 
Green function for the quiescent ocean and where 
j >- 1, is of degree j in a wave-height perturbation pa- 
rameter (h•) •/2. (In-our setup, Gl is of degree j in d•t 
or dR.) The first-order term Gx represents Bragg re- 
flected by the moving spatially periodic components of 
8,. We are going to calcuiate pressures only to order 
two in d•t. Since the source density J2 of (26) is already 
of degree two in a•lt, i.e., it lakes two gravity waves to 
generate a propagating acoustic wave, it is consistent 

with our approximation to omit the G•, j>• 1, terms for 
excitation J•. 

In the homogeneous case, the Green function for the 
quiescent ocean is 

-t' -n/c) 5(t -t' -•/c) Go = 6(t 4•rR 4•r• ' 
where 

R=llr-r'll, 

with 

r• =(x',y ',-z') ifr'=(x',y',z'). 

W e calculate J• from expression (26), and denote by 
the contribution to p• from J,_: 

p• = f GoJ• dr•dt'= P 16•c • 

x[(-e"•/' e"•-• •") expi[wt-(g,+g•)-r', 
x •t(d•,)•t(ae,) + e. c.] dr', (30) 

it being understood that co is an abbreviation for co = 
+ c 2. The dr' integration is over a retarded time ver- 
sion of(g,, which we will not try to give explicitly. The 
corresponding integral over the quiescent ocean differs 
from the exact value by higher-order terms, however, 
since the integrand vanishes on (z'= 0} and the differ- 
ence region has thickness O(h). In other words, we 
may take (z' < 0} as the integration region in (30). 

The z' integration can be done in (30) as it stands, but 
the following technique extends to the nonhomogeneous 
case. We are going to evaluate (p•) at a poini well be- 
low the mixed region. If R = [[ r - r'[I is large the 
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spherical waves e 't (•/c)R will look like plane waves as 
r' varies over limited regionsø Let •/= (•,, 7,, O) be a 
point in {z' = 0}; its uses will become apparent later. It 
is convenient to introduce the abbreviations 

k= k(r -•1)/[[ r -• H; 

that is, k is the direction from • to r renofinalized to 
have magnitude k.' If r•=•] + (r • -•) is near 

R = flr-qlJ "e•"'•e"""+'"' (31) 
where the omitted terms are of •gher order in l/R; 
•he e•sion •s v•id for II r' - • II • II r - • I[. For 
we use the same •, so s•mply replace z • by -z 

Now we do the z * integration tn (30). We make 
the notat•on• ch•ge r • to r,, and abbreviate (k,, k•, 0) 

x (i exp{i[wt - (g, + g: - •).r•] } 

x exit- ikllr - ,•11 - ik- •1] ql(dg•)ql(dg:) 

+ c.c.)IIr-,•11 ' (32) 
In this, we imagine that the integration region is broken 
up into finite regions, squares say, and that • is 
piecewise constant on each region. 

Now let us consider the Jx excitation. The direct 
field 

f Go J• 
vanishes exponentially with depth, and represents an 
acoustic nearfield. This nonpropagating field can in- 
teract with the surface to produce a propagating re- 
suitant; this term p,m in the farfield p• we now calcu- 
late. 

With r far from •, the term Gx in G is determined 
by zø 

O'G• =0, 

Gt I,..o = -h(x',,',t')a-•G_ø,l . d2 I •,.o 

It is convenient to refer r'=q+ (r'-•/) to a vector 
, = (•,, •, 0), as before. We have 

ago = 2u, •'(! -t' - R/c) +... 
•z' •.o c 4a'R ' 

where u= (r -q)/11 r -•11 is the unit vector 'from • to r, 
and where the omitted terms are higher order in 1/R 
a•d will not contribute to the radiation field at r. We 

express the singular function as 

b'(t -•' -R/c) 

=•-• . iwexp[iw(t- t')} exN-i(w/½)R]dw. 

We use the expansion (31) with the understanding that 
k = w/c can now have either sign. The boundary values 
of G•, to the order considered, are found to be 

= r -.11 

Here, k= w/c e• have either sign, k=•, •d g 
= (k•,k•, 0), with due regard for the sign of w. 

The bonded solution of •'G = 0 with these b•da• 
vMue$ i$ obt•ned by inserting a factor e ae in the in- 
tegr•d, with 

a = [ll • - •,11: - (• - ½•)•/c•] 

for the M(dff:) term •d 

•= [11 ß + •xll: - (• + •)'/c:] 

for the •(d•,) term. Now we c• do the dt', dz • inte- 
grations in 

with 

x {exp[/(%t' - • 'r')]m(d•:) + 

The dr' integration •11 intr•uce factors 

•d the dw integratio n then f•es w at •(•). The 
interrelation is clear; we retain only the •(ffx + ff•) 
terms. Also, from now on w will be • abbreviation 
for • + •, as a positive qu•tity. The d• integration 
gives a factor 

f0 1 e (gz+a)t dz • = 

for a previously described. Omitting some algebra, 
the reset is 

x(i ex•/[•t - (• + •: - •). rz• 

x exp(-ikll r -nil - 

+ c.c.) dxdy' I] • •-•.11 ' (33) 
It will tur n out that p['} is negligible compared to 

V. THE ACOUSTIC INTENSITY 

We want to calculate {p•) at a point well below the 
surface, withpx=p• :• +pl m from (32), (as). Let us 
multiply two copies of expression (32) together, with 
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dga, rig4, dx•dy a as the infinitesimals in the second 
tegrations. Taking ( ) of the product will produce a 
factor 

f(gt) f (g•)dn,dg• , 

from terms ga=gt, g4--g2, together with •c.c.' terms, 
and the phase factors exp[i((o! - k]•r - q I] - k. q)] cancel 
(wide sense stationarity). There is another pair of 
terms from •s=•a, g4-----•t, according to (20). The spa- 
tial phase factor in all cases has the form 

exp[+ i(g, + • - •)- (r• - rO], 

where r,, r• now lie in {• = 0}. 

Let us make the change of integration variables 

•i =r• - r•. 

,=}(r.+r•). 
with unit Jacobia. n: 

(This is the value we choose for the previous •.) The 
vectors are all two-dimensional. The d• integration 
produces a factor 

f ex[•i•(•. + • - •)}. f•f =4•(•. + • _.•). 
where the 5 function is two-dimensional. 

The element of area d• subtends solid angie 

•= {{r -•{p ' 
at r, where cos 8----k,/k is the z-direction cosine of the 
vector r -•.' In other words, the remaining differen- 
tial d•l/l{r -• {{z can be expressed as 

du/{{ r - •{{• = •/{•. {d •, 
with • =k/k the direction of k. Altogether, 

ß • ff •r•/(•,)/0•-•,){cos• {•n•g, (34) (•1)=4• , 
with 

r = • - •'•[g• - (•, - Oq •,•[(• + •)• - g•] 
2•.• 2 •l•I(•. + •)• + •]] 

The first term in F is the leading term; from 

one finds that the correction terms are [(•/½)/•o] • 
relative to the first; this is 10 '4 at O. 1 Hz. We drop 
these terms, and we replace f(%) byf(-•,). The d• 
integration becomes 

and the resulting formula is 
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where again 0•2• is the frequency of the emitted 
acoustic wave and the normalization is 

< n•> = 
Dr. B. Hughes has informed the author that an extra 

factor of 2 was inadvertently introduced in Ref. 4, 
(33). (The folding of the negative frequency spectrum 
onto the positive frequency axis was done twice. a•) If 
we take for our f(g) the Hughes form X(k•)G(•), our (35) 
becomes the corrected version of his (33). 

Dr. Hughes also notes • that the corrected version of 
the Brekhovskikh z Eq. (54) should be 

essentially because Brekhovskikh uses the sine function 
instead of the exponential for the basic wavelets [Ref. 
2, Eq. (19)]. [There axe also canceling errors by a 
factor of 2 just before Ref. 2, Eq. (49).] If we replace 
az(g) in the Brekhovskikh Eq. (53) by our 2/(g), his 
spectrum exceeds ours by a factor 

{1 + [T•/4(1 + T•)]} ' , 

in our notation. This factor is essentially unity below 
ripple frequencies (26 Hz acoustic), but increases to 
(5/4) • (i.e., 1.94 dB) at high frequencies. 

Altogether, alter the above corrections are made, 
the spectrum of Hughes and the present author agree, 
and the spectrum of Brekhovskikh agrees with these at 
low frequencies. The acoustic source level corre- 
sponding to (35) is discussed in Appendix [[o 

Let us assume that the direction-frequency spectrum 
of the surface gravity wavefield has the form •(•)G (•); 
the normalization is (Ref. 22, Sec. 4.5): 

œ- (•5 = •(•)•. 

fo •' •(o)d• = 1. 
The acoustic spectrum involves the association parame- 
ter • defined by 

x=2.•(•)G(o+ •)d•; 

x=l for uniform G• and X= •/4 is the value used in 
Ref. 4. Foc 4•((7) we take the form 

=0, •<•o, 

with ao the wind-and-fetch dependent spectral peak and 
/1=0.0123 a dimensionless constant (Ref. 22, p. 147). 
Then, with w = 2•r = 2(gtf) t/• and fo = •o/*r, 

{Pl• = f•i s09af 
for acoustic spectral density 

S(.D = (4xp• g•a/•r•c •) 
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(Numerically, 

101og[$(f)/10 't•] = 113.-1 - 701off 

dB•'/•Paa/Hz), 

above the cutoff; we have used X----•/4.• 
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APPENDIX A 

Vorticity considerations 

It is known that the potential flow of Sec. ]II leaves a 
nonvanishing stress on • when the viscosity term is 
included in the mdmentum flux tensor (Ref. 22, Sec. 
3.4). This stress must be eliminated by including a 
vector potential term Vx A in v; a wave-height ampli- 
tude perturbation series has been given to second order 
in Ref. 6. Except for a pseudosound term proportional 
to •ga (Ref. 22, Eq. 3.4.13), the vorticity field is con- 
fined to a thin layer near •,, and the Vv components in 
this layer are of the same order as those in the poten- 
tial flow (Ref. 22, p.48). The relative thickness of this 
layer (unit l/g) is 1/(2Q) •/•, where the viscous damping 
coefficient for gravity waves is Q = (r/(4•gz). Graphs of 
1/(2Q) are given in (Ref. 22, Fig. 3.1) (For a clean 
ocean surface, 2Q = 100 at a= 200 radians/s, acoustic 
frequency 64 Hz. Even with oiI film, 2Q = 50 at 100 
Hz acoustic). Since the production of sound is a volume 
effect, according to our treatment, vortical corrections 
of the acoustic intensi• will be of order 1/(2Q) •/z 
relative to the intensity due to potential flow. At the 
frequencies of interest (0.1-10 Hz) these corrections 
will be negligible. 

APPENDIX B 

The source level 

An acoustic monopole in the ocean close to the sur- 
face will generate a dipole farfield, because of the an- 
tireflection at the free surface. The dipole is vertical- 
ly oriented, and lies in/he surface. In a homogeneous 
ocean, the acoustic intensity at a large distance r 
from the source is p•/(p•)=[3 cos•/(2•)]W W/m •, 
where • is the polar angle from the dipole to the point 
of observation, and where IF is the total acoustic power 
into the ocean. 

Suppose next that such sources are distributed over 
the ocean surfaces, radiating into the ocean at a mean 
rate I W/m • which is uniform over the whole sur- - 
face. The contributions from disjoint areas are as- 
sumed to be incoherent. At a point P well below the 
surface an element of solid angle d• in the upper 
hemisphere at P intercepts an element of area 
cos• on the ocean surface, where • is now the colati- 

rude of J/l and r the distance from P to the surface in 
direction/L The sources in this element of area have 

power Iz•d•/cos6, and/he resulting contribution at P 
is 

p• 3cos•-O Ir•d• I 3cos0 d pc- 2•r • 'cos0 = '•--d•. 
The integralion over the hemisphere 

f cos0 dft= •r 
is elementary, and gives 

•.I, 

for the mean square pressure at P. 

The factor • is required by the cos O distribution of 
the flux at P, as follows. Radiation from lr•d•3/cos O 
strikes a horizontal square meter at P obliquely, and 
the incident flux through a horizontal window at P is 

jr 3 cos•O = I j. • d• = I W/(horizontal m•). 
This elementary conservation of energ7 would be far 
more comphcated if bottom reflection and water atten- 
uation were taken into account4; reverbera/ion could 
raise the level by 6-30 dB. 

Comparing with (34)-(35), it i• apparent that the 
source level producing (35) is 
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