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A new algorithm is proposed, called the stream function method (SFM) for producing
vector current maps from radial data measured by dual-site high frequency surface
wave radar (HFSWR). In SFM, a scalar stream function is constructed under some
oceanographic assumptions. The function describes the two-dimensional (2-D) ocean
surface water motion and is used to obtain the distribution of vector currents. The
performance of SFM is evaluated using simulated radial data, which demonstrates
that SFM has advantages over typical vectorial combination methods (VCM) both in
error acceptance and robustness, and excels another method based on least-squares
fitting (LSF) in recovering the complicated current models. Furthermore, SFM is
capable of providing the total currents based on radials from single-site radar. We
also test the assumptions of horizontal non-divergence in the simulation. The new
algorithm is applied to the field experiment data of Wuhan University’s ocean state
measuring and analyzing radar (OSMAR), collected in the coastal East China Sea
during April 11–17, 2004. Quantitative comparisons are given between radar results
by three current algorithms and in-situ current meter measurements. Preliminary
analysis of the vertical current shear is given based on the current meter measure-
ments.

Typically, one radar provides a radial current map
and HF current measurement systems usually employ two
or more sites situated tens of kilometers apart, allowing a
vector current solution to be obtained by combining meas-
urements from the respective sites (Barrick et al., 1977).
Leise (1984) gave a vectorial combination method for
dual-site radar, called VCM in this paper. The radials from
two radars are linearly interpolated to a common grid and
combined directly to get the vector current field. How-
ever, the calculation of one velocity component becomes
unstable along the baseline or at large distances from the
sites, where both sites measure the same radial compo-
nent; the transverse component cannot be constrained. The
analysis of Nadai et al. (1999) also showed that the prob-
ability distribution of measurement error of the current
vector depended on the azimuthal difference of the two
radar beams. When the azimuthal difference is smaller
than 45° or larger than 135°, the measurement errors of
the current vector are much larger than when the azimuthal
difference ranges from 45 to 135°. These instabilities are
inherent shortcomings of radial measurement in that ra-
dial errors are amplified by VCM. The radio wave propa-
gation laboratory (RPL) of Wuhan University, China has
been developing the HF radar system OSMAR since 1997.
Yang et al. (2001) reported the VCM measurements by

1.  Introduction
HFSWR measures ocean surface currents from the

Doppler shift of the Bragg-resonant echoes. The Bragg
scattering of the HF surface wave involves ocean waves
with a wavelength of one half the electromagnetic (EM)
wavelength, traveling toward or away from the radar
(Barrick, 1972; Teague et al., 1977). HFSWR systems
provide valuable information about surface currents, par-
ticularly the character of circulation patterns, trends, and
relative magnitudes of currents. At the same time, the
amplitudes and variations of HFSWR currents can be very
erroneous, the magnitudes of errors at times approaching
the order of the currents (Lewis et al., 1998). Lipa and
Barrick (1983) showed that the sources of uncertainties
in CODAR/SeaSonde measurements of radial velocity in-
clude statistical uncertainties, systematic errors and er-
rors/simplifications in the analysis. Paduan and Shulman
(2004) stated that the largest source of error or bias in
every HF radar is introduced when determining the bear-
ing angle to the ocean echo source. Thus, care must be
taken in the use of such observations due to uncertainties
in the accuracy of the data.
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OSMAR along with those by moored current meters at a
depth of 2 m. They concluded that the current detecting
range of OSMAR dual-site system reached 200 km, and
mean absolute errors between radar and current meter
measurements for current magnitude and direction were
8.0 cm/s and 8.1°, respectively.

Lipa and Barrick (1983) described another algorithm
for total current combination from two or more CODAR
radars data based on the least-squares fitting (LSF)
method. In that algorithm, the common coverage area of
the dual-site radar is divided into radar cells; on each cell
the total current is determined by least-squares fitting to
the radials by minimizing the sum of the deviations be-
tween radial measurements and radially projective val-
ues of expected vector current. The uncertainties in the
total velocities follow from those in the radials using
standard linear error propagation, which includes the ef-
fects of radial uncertainties as well as the geometry. The
analyses of Lewis et al. (1998) indicated that the HFSWR
currents have significant divergences and unrealistic spa-
tial variations of divergence. They calculated the diver-
gence of two adjacent grid cells over a distance of about
2.8 km based on the currents measured by CODAR radars.
The results indicated highly variable, large divergences
and convergences.

These results suggest that HFSWR data need addi-
tional processing as to minimize errors in the data and to
make them more useful for various applications. Since
the majority of observations and numerical studies show
that surface currents have a divergence of the order of
10–6/s or less, the output of HF radar systems could be
smoothed, perhaps by fitting the field of currents with
horizontal non-divergent (or near-non-divergent) condi-
tions (Lewis et al., 1998). Lipa and Barrick (1983) de-
rived a method, applying the 2-D equation of continuity,
to provide total current vectors from single-site CODAR
data. Kang (1984) investigated the effects of the Asian
Monsoon on ocean currents by means of an analytic so-
lution for barotropic currents driven by a uniform, steady
meridional wind in the East China Sea, the South China
Sea, and the Yellow Sea, by introducing a stream func-
tion in his numerical model. This study proposes a new
algorithm for producing vector current maps, the stream
function method (SFM). In SFM, a scalar stream func-
tion is constructed in a local ocean area from the radial
observations of HF radar under the assumption of 2-D
non-divergent flow. The function describes the 2-D ocean
surface water motion and offers a convenient way to ob-
tain the distribution of vector currents.

The critical problem for SFM is whether the assump-
tions of 2-D divergence-free flow are satisfied in our study
region, the coastal East China Sea. As is well known,
horizontal divergence in the ocean usually causes an up-
ward flow of subsurface water, i.e. upwelling. Luo and

Yu (1998) reported upwelling stripes off Fujian and
Zhejiang with a width of 40 km or so, and the computed
largest upwelling, 1.0 × 10–3 cm/s, occurs between 20 and
30 m, but the upwelling could not reach the sea surface.
Numerical simulation of Huang et al. (1996) indicated
that the upwelling in the coastal areas of the East China
Sea could be induced by the influence of a tidal nonlinear
effect and the sea bottom topography. Pang et al. (2002)
analyzed the observed data obtained from East China Sea
field measurement in 1994, using evaluation and calcu-
lation methods. The conclusion was that there was
upwelling with a velocity of 2.6 × 10–3 cm/s near the
Changjiang River mouth, but the upwelling could not
reach the upper 10 m layer. Generally, the vertical com-
ponent of flow in the top 1–2 m depth is estimated to be
much less than 1.0 × 10–3 cm/s as the vertical velocity is
equal to zero at the sea surface. On the other hand, we
follow Lewis et al. (1998) in the examination our OSMAR
radar data. The same phenomena are observed. The di-
vergence of two adjacent grid cells is calculated based on
OSMAR total currents produced by the conventional
VCM. The magnitude of divergence in two adjacent grid
cells is of the order of 10–5/s. A surface divergence of
1.0 × 10–5/s will result in a vertical velocity of 1.0 ×
10–3 cm/s in the top 1 or 2 meters. There are also a number
of instances in which the divergences of the two grid cells
are relatively large but opposite in sign. For a surface
layer that is about 2 m thick, the large but opposite-in-
sign divergences over a period of tens of minutes will
result in sea level differences between the two grid cells
of the order of meters. Hence, it is a tradeoff that the cur-
rents are constrained with horizontal non-divergent con-
ditions to smooth the abnormal output of HF radar sys-
tems. We investigate the effect when horizontal non-di-
vergence assumptions are not satisfied in the study re-
gion in the numerical simulations. The performances of
SFM are tested on the simulated data fields that include
divergence of O (10–6–10–5/s).

In recent years, some methods have been developed
for real time assimilation and forecasting of coastal cur-
rents based on assimilation of HF radar surface current
measurements into a coastal ocean model (Lewis et al.,
1998; Lipphardt et al., 2000; Oke et al., 2002; Paduan
and Shulman, 2004). In particular, Lipphardt et al. (2000)
described an horizontal fitting analysis technique based
on normal mode analysis (NMA), used to blend HF radar
observations with results from a primitive equation model.
The main differences between NMA and SFM are the fol-
lowing: (i) The NMA methods are free of assumptions
about the surface divergence, which ensure that the ve-
locity field is exactly incompressible in three dimensions
by constraining the observed surface currents to sets of
vorticity and divergence models. (ii) The NMA methods
require no-flow normal conditions at coastal boundaries
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and normal flow observations on open boundaries, pre-
senting a challenge for coastal ocean nowcasting. SFM
do not require any boundary conditions since stream func-
tion expressions can be constructed in the local region
based on the radial measurements. (iii) The NMA meth-
ods blend the HF radar and numerical model velocities
with a spectral approach, so the inconsistency in tempo-
ral and spatial resolution of the radar and numerical model
should be considered in the data processing. For SFM, a
stream function model is introduced in producing total
current maps, which is a technique that aids in smooth-
ing the HF radar data that include a relatively large hori-
zontal divergence. On the whole, the SFM algorithm is
simple and easy to use; moreover, the computation time
is significantly reduced.

SFM is introduced first, including the simplifying
assumptions, the theory of stream functions, the numeri-
cal techniques, such as the Taylor expansion method
(Kesan, 2003) and least-squares fitting in realizing SFM
and a discussion of error sources. The performances of
SFM, LSF and VCM are evaluated using simulated ra-
dial data, which demonstrates that SFM has advantages
over the old algorithms. In simulation, the vector currents
are known as a priori knowledge, from which the radial
components are extracted. The vector current data are
manipulated in simulation so that the performances of
three methods can be investigated with various radial
current parameters. The new algorithm is then tested on
the OSMAR experiment data, where qualitative compari-
sons between the outputs of the three method and in-situ
current meter measurements are conducted.

2.  Foundations of SFM
SFM is based on oceanographic stream function

theory (Kang, 1984; Kowalik and Murty, 1993). Some
numerical techniques are applied to solve the partial dif-
ferential equation to improve the computational accuracy
and robustness.

2.1  Simplifying assumptions
The East China Sea is an epi-continental sea. The

whole study region in the coastal sea of Zhejiang prov-
ince is a shelf region shallower than 70 m, more than 70%
of which has a depth of about 60 m. Figure 1 shows a
sketch of the depth contours in and around our study re-
gion. The locations of two OSMAR sites are indicated by
hollow circles with their coverage area indicated by the
circular sectors. Moored current meters and wind stations,
which provided in-situ measurements, were in the radar
field of view; their locations are indicated by dots in the
figure. The current in the study region is considered to be
an irregular, semi-diurnal tidal current, where the M2 tidal
current is dominant (30–50 cm/s). The amplitude of the
M2 tide is almost 1 m (Guo and Yanagi, 1998). The

Changjiang River mouth is located north-west of the study
region. Zhu et al. (2003) observed diluted water and a
plume front off the Changjiang River estuary during Au-
gust 2000, using CTD, a Multi-parameter Environmental
Monitoring System-YSI and other instruments. Figures 2
and 3 (cited from Zhu et al., 2003) show the vertical sec-
tions of monthly averaged salinity and temperature in and
around the study region in August 2000. They found
upwelling was present along the Zhejiang coast, in the
north-west outside of our study region. The field obser-
vations and numerical simulation experiments have con-
firmed that significant upwelling exists below 10 m layer
from the sea surface in part of the study region. How-
ever, it is pointed out that the vertical motion cannot reach
the surface layer (Huang et al., 1996; Luo and Yu, 1998;
Pang et al., 2002).

Generally, a magnitude of surface divergence in the
ocean much larger than 10–6/s is not expected. The analy-
ses of Lewis et al. (1998) indicated that the HF radar cur-
rents had significant divergences and unrealistic spatial
variations of divergence. On examination of our OSMAR
radar data, we find the same phenomena. The divergence
of two adjacent grid cells is calculated based on OSMAR
total currents produced by the conventional VCM algo-
rithm during the field experiment. The radar cell spacing
is 5 km and the time step is 10 minutes. Figure 4 shows
two examples of our calculation results. One pair of grid
cells is located in the upwelling stripes observed by Luo
and Yu (1998) and Huang et al. (1996), while another
pair is not. This indicates that the magnitude of diver-

Fig. 1.  Depth contours in and around the study region. Loca-
tions of two OSMAR sites are indicated by hollow circles
with their coverage area indicated by the circular sectors.
Mooring current meters and wind stations are indicated by
dots.



50 L. Liu et al.

gence of two adjacent grid cells is much larger than
10–6/s. The 3-D incompressibility condition is
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where   
v
V  is vector velocity in the surface layer, u, v and

w are three velocity components in the x (east), y (north)
and z (upward) directions, respectively. If w is equal to
zero at the sea surface, surface divergence of 1.0 ×
10–5/s will result in a vertical velocity of 1.0 × 10–3 cm/s
in the top 1 or 2 meters, which is comparable to the larg-
est upwelling velocity occurring between 20 and 30 m;
while Luo and Yu (1998) proved that the largest upwelling
couldnot reach the top 10 meter layer. Moreover, there
are a number of instances in which the divergences of the

two grid cells are relatively large but opposite in sign.
For a surface layer that is 1 or 2 m thick, the large but
opposite-in-sign divergences over a period of tens of min-
utes will result in sea level differences between the two
grid cells of the order of meters. The same characteristics
of surface divergence are observed for the two pairs in
the graphs. This indicates that the upwelling in the sub-
surface water has no significant relations with the sur-
face divergence derived from the HF radar data; or per-
haps such relations cannot be manifested in the inaccu-
rate observation data.

Since the majority of observations and numerical
studies show that surface currents have a divergence of
the order of 10–6/s or less, we attempt to smooth the
HFSWR data by fitting the field of currents with hori-
zontal non-divergent conditions. In this study, we assume
a horizontally non-divergent flow existing in the sea sur-

Fig. 2.  Vertical sections of average salinity along (a) Section 29°N; (b) Section 30°N; (c) Section 30.5°N; (d) Section 31°N in
August 2000 (cited from Zhu et al., 2003).

Fig. 3.  Vertical sections of average temperature along (a) Section 29°N; (b) Section 30°N; (c) Section 30.5°N; (d) Section 31°N
in August 2000 (cited from Zhu et al., 2003).
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face layer which HFSWR is able to detect, so Eq. (1) is
simplified as

∂
∂

+ ∂
∂

= ( )u

x

v

y
0 2.

2.2  Basic principles
Vertically polarized HF radio waves propagating at

grazing incidence (i.e. surface wave propagation) are scat-
tered in a resonant interaction with the gravity waves.
Techniques have been developed to measure ocean cur-
rents in the upper 1–2 m of the ocean surface using
HFSWR. As the first-order scattering mechanism is highly
selective in terms of the direction of wave propagation,
i.e. only those ocean waves that are traveling toward or
away from the radar contribute appreciable energy to the
fist-order echo, a single HF radar can measure the com-
ponent of ocean current in the direction of the radar site,

which is expressed as

V u vr = + ( )cos sin ,θ θ 3

where Vr is the radial velocity measured by HF radar, θ is
the corresponding azimuth angle in polar coordinates.

The 2-D divergence-free ocean water flow may be
represented graphically by a flow net, a set of orthogonal
streamlines. The streamlines are the loci of points with
identical values of the stream function ψ(x, y). A stream
function is a general function that describes incompress-
ible flow which may be viscous and/or rotational. In the
horizontal plane the flow is along the level curves of the
function, i.e. the level curves are the streamlines of the
flow. The field of the stream function ψ provides a very
general description of oceanic water motion, which gives
the components u, v of fluid velocity in the x, y plane as
follows:
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Fig. 4.  Time histories of divergence based on the OSMAR current data from two adjacent grid cells at the coastal East China Sea.
(a) Solid line: 123°00′00″  E, 30°00′00″  N; dashed line: 123°03′00″  E, 30°00′00″  N. (b) Solid line: 123°30′00″  E, 30°00′00″
N; dashed line: 123°33′00″  E, 30°00′00″  N.
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The advantage of this equation is that it is easier to find
boundary conditions for ψ that are physically correct.
Since the ocean is bounded with coasts, and water can
neither accumulate near the coast nor cross it, the stream-
line near the shore will be parallel to it. Since the isolines
of ψ are streamlines, the value of ψ should not vary along
the shore. In other words, the shoreline is a streamline.

Substituting (4) into (3), it is rewritten in Cartesian
coordinates
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which is a linear partial differential equation with ψ = 0
as boundary condition along the coastline. The attractions
of the stream function formulation are that the incom-
pressibility constraint is automatically satisfied, and there
is only one scalar unknown to solve for. After the solu-
tion of a partial linearization of the stream function equa-
tion on the radar grids has been obtained, the velocity
field is recovered by Eq. (4).

In the present work we assume the existence of a
stream function for a 2-D ocean current field with a semi-
open boundary condition. We should point out that the
boundary condition (ψ = 0) is convenient in oceano-
graphic applications, but it is not used in the SFM reali-
zation. In addition, the area where a stream function can
be computed is not the whole radar coverage area, but a
patch around a certain range-azimuth cell. The solution
of the scalar function ψ(x, y) is described below.

2.3  Approximate ψ solution
As the HF radar radial current Vr(x, y) is discretely

distributed in the radar beam coverage, an analytic solu-
tion of Eq. (5) seems impractical. Thus only numerical
solutions can be realized. For this purpose, the Taylor
expansion is applied to obtain the approximate solution
of linear partial differential equations under specified
associated conditions. The method first replaces the un-
known by truncated Taylor series with unknown Taylor
coefficients around a point (x0, y0). Then Vr(x, y) near (x0,
y0) are used as measurements to fix the unknowns by
means of the least-squares method. In this way, the par-
tial differential equations will be converted to a set of
linear algebraic equations.

Assume that stream function ψ(x, y) has partial de-
rivatives until degree N + 1 on an interval a ≤ x, y ≤ b,
centered in a point (x0, y0); its Taylor expression in that
area is
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For a well-developed sea surface, the N degree approxi-
mate expression of Eq. (6) is
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In Eqs. (6) and (7), item [(x – x0)∂/∂x + (y – y0)∂/∂y]nψ(x0,
y0) is the total differential of degree n of ψ(x, y) at point
(x0, y0), expressed as
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Substituting Eq. (8) into (7) one obtains
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Let r = k, s = n – k, f(r,s)(x0, y0) = (∂r+sψ(x0, y0))/(∂xr∂ys),
Eq. (9) is now rewritten as



Algorithm for HF Radar Vector Current Measurements 53

ψ x y
r s

f x y x x y yr s r s

s

N r

r

N

,
! !

, ,,( ) =
⋅

( ) −( ) −( ) ( )( )

=

−

=
∑∑ 1

100 0 0 0
00

which is a Taylor polynomial of degree N at (x, y) = (x0,
y0), where 1/(r!·s!)f(r,s)(x0, y0), r, s = 0, 1, ..., N are the
coefficients to be determined. The number of unknown
Taylor coefficients is controlled by polynomial index N.
Larger N corresponds to more radar cells included in cal-
culation of the approximate stream function for the given
area. The vector current results may have fewer local trun-
cation errors but they may also be more sensitive to ra-
dial measurement error (which will be discussed in the
next subsection). Smaller N has the opposite effects. Here
we assume (x0, y0) = (0, 0), i.e. the center of the area of
interest, and express the coefficients by α r,s = 1/
(r!·s!)f(r,s)(x0, y0), r, s = 0, 1, ..., N and seek the solution in
the form
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Substitution of Eq. (11) into Eq. (5) gives a linear alge-
braic equation
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1/2(N2 + 3N) unknown Taylor coefficients are included
in Eq. (12), meaning that 1/2(N2 + 3N) radials in the area
considered are needed to form a linear equation system
and determine the solution. However, HF radar measure-
ments over the past several years have revealed that er-
rors exist in estimation of the radial velocities. In order
to smooth the effects of noisy radials and seek a more
accurate stream function expression, more than 1/2(N2 +
3N) radial samples should be taken into consideration.
Assume that M (M > 1/2(N2 + 3N)) radial currents are
obtained in an area of radar coverage, put these radial
currents in a vector, Vr = (Vr1, Vr2, ..., VrM)T, with x = (x1,
x2, ..., xM)T and y = (y1, y2, ..., yM)T being the correspond-
ing coordinate vectors. Let ααααα  = (α1,1, ..., α1, N–1, α2,1, ...,
α 2,N–2, ..., αN–1,1, α 1,0, ..., αN,0, α 0,1, ..., α 0,N)T be a
1/2(N2 + 3N) column vector to be determined, and let
G = {Gi,j} be an M by 1/2(N2 + 3N) matrix of coeffi-
cients. Linear equation systems are written in matrix form

Vr = Gααααα . (13)

The least-squares solution for the parameters α r,s mini-
mizes the quantity

I(ααααα) = �Vr – Gααααα�T�Vr – Gααααα�. (14)

This leads to

ααααα = �GTG�–1GTVr. (15)

Then the u and v in the area of interest can be calculated
from Eq. (4)
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The total velocity, defined with magnitude V and direc-
tion υ, is obtained by combining u and v
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2.4  Sources of error
Various sources of error are discussed in this sub-

section.
1)  Truncation limit

The number of unknown Taylor coefficients is con-
trolled by polynomial index N. Estimating N is impor-
tant. To obtain the best solution of Eq. (5), we must take
more terms from the Taylor expansion of functions; that
is, the truncation limit N must be chosen sufficiently large.
However, too large a number will impact the computa-
tional efficiency. On the one hand, the number of radials
M is required to be large enough to fit the data involved
in the least-squares method, meanwhile increasing the
radar coverage cell area correspondingly. On the other
hand, we find in the simulation that SFM is not so robust
when a stream function of N > 2 is constructed for the
noisy-added radial currents, i.e. higher order processing
is more sensitive to radial sampling error. In this case,
high-order least-squares fitting causes computational in-
stability, since the number of coefficients to be determined
increases by 1/2(N2 + 3N). Therefore N must be chosen
carefully. Generally, HF radar current measurements as-
sume constant velocity over a radar cell. Here we assume
the water motion is smooth; the velocity of particles will
not change greatly in a limited area. When the truncation
limit N = 2, the second order stream function is appropri-
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ate to describe the complexity of ocean water motion.
Uniform or linearly variational current are special cases
of the proposed solution. When a more complicated cur-
rent field is involved, the truncation error must be con-
sidered. Truncation limit N < 3 is selected in the remain-
der of this section.
2)  Resolution

In data processing, the radar beam coverage area is
divided into various radar cells, whose sizes are deter-
mined by radar spatial resolution both in range and azi-
muth. To determine the stream function in a certain radar
cell, the radial current measurements in the given radar
cell as well as those in surrounding radar cells are all taken
into consideration. The number of unknown Taylor coef-
ficients determines how many radar cells are included.
The number of cells should be sufficiently larger than the
number of Taylor coefficients. Thus, SFM area size is
much larger than the radar cell size. In this paper, the
local area where a stream function is constructed is about
20 by 20 km on condition that radar parameters are se-
lected such as range resolution 5 km, azimuth resolution
of 2.5° and truncation limit N < 3. In fact, surface cur-
rents are highly variable due to strong influence of local
surface wind and wave fields. However, the SFM method
assumes a uniform or linear current variation over many
radar cells; this process in turn implies a decrease of spa-
tial resolution in the output vector currents map. As for
the time scales of the SFM algorithm, the radial current
maps are real-time output every 10 minutes for the
OSMAR system and SFM vector current results can be
obtained almost synchronously if the radial data from two
radar site are both available.
3)  Radial noise

Our measurements over the past several years have
revealed that the greatest source of errors in the vector
current mapping using the VCM comes from the errors
in estimating the radial velocities. Most uncertainty in
these radial vectors is due to spatial and temporal varia-
tions of the current field and use of non-optimal analysis
parameters (Lipa and Barrick, 1983). Spatial uncertainty
results because many different current velocities can be
present in the radar scatter patch due to horizontal shear;
these velocity values are calculated during analysis and
are averaged to produce the output value for that loca-
tion. This spatial uncertainty usually increases with dis-
tance from the radar as the size of the radar scatter patch
increases proportionally with range. Uncertainty can also
arise from variations in the current velocity field over
the duration of the radar measurement, and from assump-
tions and simplifications that are made during the analy-
sis process.

Now we take into account the measurement errors
of radial currents. Assuming observational radial currents
Vr* have the form of a linear model as

Vr  = Gα α α α α + w, (18)

where w is a noise vector of M by 1, with zero mean and
covariance matrix C of M by M. The least-squares solu-
tion for the parameters α r,s minimizes the quantity

I(ααααα) = �Vr – Gααααα�T     �Vr – Gααααα�. (19)

This leads to

ααααα* = �GTC–1G�–1GTC–1Vr , (20)

and the covariance matrix of ααααα* is

C G C Gα ∗ = ( ) ( )− −T 1 1
21.

The standard deviation in the u and v can be given by ∆u
and ∆v from the formula (21), then the standard devia-
tion of total velocity by linear error propagation is
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4)  Assumption of horizontal non-divergence
The basic assumption of the SFM method is that the

ocean current is a horizontally non-divergent flow. If that
holds, we can expect that SFM is robust and able to pro-
vide quite accurate surface current maps (taking no ac-
count of the effect of measurement errors of radial cur-
rents). The method considered here seems to be inappli-
cable in areas where water motion varies rapidly, such as
a gulf, channel or some areas where the vertical gradient
of ocean water motion in the surface layer is not negligi-
ble when upwelling or downwelling occurs.

In order to evaluate the performance of SFM, or any
other question regarding the accuracy of HF radar algo-
rithms, some measure of success or ground truth is re-
quired. Nadai et al. (1999), among others, have made
substantial progress in estimating VCM errors through
comparison with moored current meter measurements.
However, inherent differences between measurements
methods and uncertainties in the in-situ measurements
themselves limit this method of estimating HF radar meas-
urement errors. For instance, taking account of the verti-
cal current shear, HF radar is averaging the currents over
a 1 or 2 meter thick layer below the sea surface, whereas
the current meter is measuring the currents at the moor-
ing depth. Furthermore, we should bear in mind that part

*

* *

*
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of the error arises from the temporal and spatial mismatch
between the in-situ measurement and the 2.5/5 km radar
footprint. In the next section we evaluate the perform-
ance of the SFM algorithm with various current models
including spatial variation, radial errors and horizontal
divergence etc. via simulation experiments.

3.  Simulations
In this section a computer simulation is used to

analyze the errors in HFSWR ocean vector current meas-
urements based on radial data from two radar sites. For
simulations, the surface current fields are known, and may
be manipulated so that the performance of the methods
can be compared over a range of conditions. In particu-
lar, using simulated data can help demonstrate the effect
of applying the zero horizontal divergence SFM assump-
tion to a data field that includes divergence.

3.1  HFSWR vector current algorithms
Three algorithms for producing vector current

maps—an algebraic approach using vectorial combina-
tion (VCM) developed by Leise (1984), a numerical
method using least-squares fitting (LSF) of Lipa and
Barrick (1983) and the new algorithm based on the ocea-
nographic stream function model, SFM—are compared
in terms of the effect of variations in radial current input.
In VCM, the radials from two radars are linearly interpo-
lated to a common grid and directly combined to obtain
vector current fields. Details of VCM can be found in
Leise (1984) and Nadai et al. (1999). In LSF of Lipa and
Barrick (1983), the radial current uncertainties are used
as a weighting of the least-squares fit radial current in-
put; they are set to 1 in this study. The radar system pa-
rameters used in the simulation are taken from the Wuhan
University’s OSMAR system, which operates on a cen-
tral frequency of 7.5 MHz and is able to detect surface
current as far as 200 km, with a range resolution of 2.5 or
5 km and an azimuthally resolution of 2.5°.

3.2  Generation of simulated data
The simulation procedure includes simulating the

vector current field, generating radial currents from the
given vector current field and comparing the simulated
surface currents with those estimated by three methods.
We simulate the surface currents at the coastal East China
Sea near the Zhoushan Islands, Zhejiang Province. The
domain of the vector current model extends from
122.35°E to 124.85°E and from 28.25°N to 31.75°N,
which well covers the footprints of two radars, A and B.
The geometry is shown in Fig. 5. The local area where a
stream function is constructed is about 20 by 20 km; ex-
amples are indicated by two boxes in Fig. 5. Such boxes
partially overlap each other, so more than one current

velocity result for each grid cell may be engendered from
different boxes. For this problem we have included
weighting factors in the average of all the available re-
sults for each grid cell. For example, the weights could
represent a distance averaging or filter processing.

For convenience of expression, we formulate our
current models in the Cartesian coordinate system in the
plane with the origin (0, 0) at the point 122°E, 30°N. The
x axis is eastward, y axis is northward, and their units are
km. Current amplitudes of 0–150 cm/s are chosen for the
various current models, in the range of current velocities
that the HF radar systems are commonly designed to
measure. First, vector current fields are simulated to sat-
isfy the 2-D non-divergent condition expressed by Eq.
(2), including uniform and non-uniform current fields.
Secondly, the Gaussian noises are added to ideal currents
so that we can consider the effects of radial errors on the
performance of all methods. Finally, data fields having a
certain horizontal divergence are combined with the ideal
currents in order to investigate the effect of the SFM as-
sumptions. Radial currents are distributed in a grid of
range/azimuth cells on the ocean surface. The radial cur-
rent fields are configured in a circular sector covering
200 km of range and 120° of azimuth, with a range reso-
lution of 5 km and an azimuth resolution of 2.5° for both
radar sites. Figure 6 shows examples of the simulated field
of uniform current model and the intermediate radial maps
extracted from the uniform current field for radar sites A
and B, respectively. We should point out that the range
resolution and azimuth resolution are set as described
above in the algorithm computation, but they have been
doubled in illustrations for discerning the radar footprints
in this section.

Fig. 5.  Radar geometry considered for simulation. Two radar
sites A and B are indicated by dots; corresponding radar
detection areas are indicated by circular sectors. The little
box is an area unit where a stream function is constructed.
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3.3  Results
The simulation results of three methods under the

varying radial current conditions are reported here.
1)  Uniform current

A uniform current with an amplitude of 50 cm/s in
the direction of due north is used. The radial current data
are processed with VCM, LSF and SFM. Figure 7 shows
the corresponding vector current results from the three
methods. The VCM results have little bias, generally less
than the ground truth. As discussed at the beginning of
this paper, the linear interpolation is the main cause of
the VCM bias. The results show that both the LSF and
SFM measurements are nearly equivalent to the simulated
vector currents. Moreover, the first-order stream function
can describe a uniform current field, which is very easy
to implement using the SFM method. The root mean
square (RMS) differences between the estimated results
of the three methods and the given vector current for all

the radar cells are calculated and shown at the bottom of
the corresponding current maps.
2)  Sensitivity to errors in radials

In the preceding subsection the intermediate radial
currents were extracted from the given vector currents,
without adding any errors. However, the greatest source
of errors in the vector current mapping using VCM comes
from the errors in the estimation of radial velocities. Here
we evaluate the effect of radial errors on the results of
vector current algorithms, through simulation by adding
a Gaussian noise. The given vector current field is still
the uniform current with an amplitude of 50 cm/s in the
direction of due north. A zero-mean Gaussian noise in
current velocity with a SD of 5 cm/s, 10 cm/s and 15
cm/s is added to the intermediate radial maps, respec-
tively. The vector current maps obtained from the radials
with a noise SD of 10 cm/s are given in Fig. 8. Table 1
lists the RMS errors of u and v components in different
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Fig. 6.  Results for uniform current model with a simulated uniform current field, the intermediate radial current maps of site A
and site B.
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Fig. 7.  Vector current maps produced by VCM, LSF and SFM from the intermediate radials.
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conditions of radial current input for the uniform current
simulation experiment. The LSF- and SFM-derived vec-
tor current results are not as accurate as the case when
the ideal radials are used. The VCM-derived vector cur-
rent results appear more affected by the radial current
errors and the estimation of the vector current map is
worse. The results indicate that the radial current errors
do influence the estimation accuracy of each method; LSF
and SFM have similar error acceptance capability, but
SFM excels LSF in processing radials with a larger noise.
3)  Current field spatial variation

We next investigate the case of an ocean surface cur-
rent field that has spatial variation in current velocity. An
example of such a current map is expressed as u = –2.5 ×
10–6x km/s and v = (2.5y + 500) × 10–6 km/s. Such a cur-
rent field has no horizontal divergence, but varies in both
velocity amplitude and direction. The vector currents are
derived from the corresponding intermediate and noise-
added radial maps, as we do with the uniform current
model. Figure 9 shows the resulting vector current maps
when a zero-mean Gaussian noise in radial velocity with
a SD of 10 cm/s is added. Table 2 lists the RMS errors
under different conditions of radial current inputs. It in-
dicates that current fields derived from LSF and SFM
remain stay robust after Gaussian noises are added, while
those derived from VCM seem disorderly when the SD

of noise increases to 10 cm/s. The RMS errors of SFM-
derived results are smaller than those of LSF-derived re-
sults in all instances; moreover, only SFM produces the
total currents without from the intermediate radials, even
in the marginal area where only radial data from one ra-
dar are available. It is thought that SFM excels LSF in
dealing with the non-uniform current fields that have no
horizontal divergence.
4)  Effect of horizontal divergence

Here we investigate the effect when horizontal non-
divergence assumptions are not satisfied in the study re-
gion. In fact, the assumptions are not quite satisfied in
the study region, where the M2 tidal current is dominant,
and the amplitude of the M2 tide is almost 1 m (Guo and
Yanagi, 1998). The continuity equation in a homogene-
ous and invicid ocean of constant depth, subject to a uni-
form wind stress is

∂
∂

+ ∂( )
∂

+ ∂( )
∂

= ( )η
t

Hu

x
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0 23

where u  and v  are vertically-averaged velocities in the
x (east) and y (north) directions, respectively, η is the
sea-level elevation from the sea surface, and H is the depth
of the ocean. If the sea elevation is about 1 m (Guo and
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Fig. 8.  Results for the uniform current model but with noise of SD 10 cm/s in magnitude added in the radial data.

Table 1.  RMS errors for the uniform current model experiment (cm/s).

Method SD of radial errors

0 5 10 15

urms v rms urms v rms urms v rms urms v rms

VCM 2.1 3.5 4.2 6.6 6.7 8.4 7.9 11
LSF 0 0 1.3 2.6 1.8 3.4 3.9 4.4
SFM 0 0 1.3 2.7 1.6 3.5 2.9 3.7
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Yanagi, 1998), the term ∂η/∂t in the continuity equation
is estimated to be O(10–5–10–4 m/s). So the term ∂(H u )/
∂x + ∂(H v )/∂y is estimated to be O(10–5–10–4 m/s). As-
suming constant depth (60 m) in the study region, the
horizontal divergence of vertically averaged velocities
∂ u /∂x + ∂ v /∂y, is O(10–6–10–5/s). Our discussion in Sub-
section 2.1 indicates that the surface divergence in the
top 1–2 m layer is not more than 10–5/s. Here, the per-
formances of SFM are tested on the simulated data fields
that include divergence of O(10–6–10–5/s).

First we simulate a current model having divergence
of 10–6/s, which is considered the superposition of two
components, including the non-divergent part (uniform

currents) and a divergent part. For example, the distribu-
tion function of u, v velocity components is expressed as
u = –2 × 10–6x km/s and v = (3y + 500) × 10–6 km/s. Table
3 lists the RMS errors under different conditions of ra-
dial current inputs for the model with a divergence of
10–6/s. It is obvious that horizontal divergence does in-
fluence the performance of the SFM algorithm, but the
bias of SFM-derived results is still smaller than those of
the other two methods. Another model tested is described
as u = 2.5 × 10–6x km/s and v = (7.5y + 500) × 10–6 km/s,
with a uniform divergence of 10–5/s. The inverse vector
currents using three methods from the corresponding in-
termediate radial maps are given in Fig. 10. We can see
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Method SD of radial errors

0 5 10 15

urms v rms urms v rms urms v rms urms v rms

VCM 1.8 4.9 3.6 7.2 5.7 9.1 7.7 11
LSF 2.2 2.0 2.6 2.2 2.2 3.0 4.1 4.4
SFM 0 0 0.9 1.6 1.6 1.6 3.4 3.0

Method SD of radial errors

0 5 10 15

urms v rms urms v rms urms v rms urms v rms

VCM 1.5 4.4 3.3 5.5 5.3 8.3 8.1 14
LSF 1.8 1.7 2.6 2.5 2.4 4.5 3.2 4.2
SFM 0.49 0.36 1.1 1.3 3 3.3 3.5 3.1

Fig. 9.  Vector current maps derived from radial current maps with added noise of SD 10 cm/s in magnitude for current field
model with spatial variation.

Table 2.  RMS errors for the non-uniform current model experiment (cm/s).

Table 3.  RMS errors for the experiment of current model with a divergence of 10–6/s (cm/s).
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that the horizontal divergence is a great challenge for the
SFM method, for the bias of SFM-derived results becomes
a little larger than that of LSF-derived results. Table 4
lists the RMS errors under different conditions of radial
current inputs for the current model with a divergence of
10–5/s. The three methods do not perform perfectly in this
case. The performance of SFM is very similar to LSF,
despite the fact that urms and vrms are 1.0 and 0.5 cm/s
larger, respectively. This is obviously due to the con-
straints of non-divergence in the SFM method. Though
the RMS error of SFM-derived currents is not a simple
superposition of RMS errors of the above two compo-
nents, the errors induced by the divergent component
obviously dominate in the current results.

3.4  Conclusion
Some important conclusions from the simulation

experiments are the following:
1) SFM and LSF have better error acceptance ca-

pability. It is thought that SFM and LSF avoid the errors
of VCM connected to the interpolation. Due to the
processing of least-squares fitting to the radial data in
both methods and the weighted averaging of vector cur-
rent results in SFM, SFM and LSF smooth the effect of
radial observation errors on the vector current results to

a certain degree, while the bias of VCM-derived current
results increases rapidly with the increase of radial SD
errors in the simulations.

2) SFM excels LSF in processing the complicated
current fields. In the LSF method, the current is assumed
to be uniform in a local spatial region (in this study, it is
set to be as large as the box where a stream function is
constructed), while the SFM method is able to show the
second order variation of the stream function in this study.
Though the current models in the simulation experiments
are special examples which are expressed as uniformly
or linearly varying functions, it is expected that SFM re-
covers the spatial variation better than LSF in practical
application.

3) SFM has a unique advantage in that its current
maps cover a larger sea area in general. It is thought that
different data processing between SFM and the two older
methods results in a different coverage area: for VCM
and LSF, radial currents from two radar sites are com-
bined or fitted for each radar cell, i.e. a vector current is
obtained only when a radar cell is illuminated by two
radars; for SFM, a vector current field is obtained in a
local area covering some radar cells after a scalar stream
function is constructed based on the radials falling into
that area, so reasonable vector currents are generated in
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Method SD of radial errors

0 5 10 15

urms v rms urms v rms urms v rms urms v rms

VCM 4.3 8.7 5.8 9.4 10 9.9 13 12
LSF 3.8 3.1 3.9 3.3 4.8 4.6 4.1 4.7
SFM 4.9 3.6 4.9 3.7 5.4 4.8 5.0 4.4

Fig. 10.  Vector current maps derived from radial current maps with added noise of SD 10 cm/s in magnitude for current field
model with a uniform divergence of 10–5/s.

Table 4.  RMS errors for the experiment of current model with a divergence of 10–5/s (cm/s).
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the marginal area, that is, only if one radar cell is illumi-
nated. In practice, HF radar radials usually do not cover
the radar beam uniformly, i.e., there are many gaps in the
radial maps, so it is expected that the SFM method can
fill the spatial voids as long as one item of radar data is
available in the region of interest. It also indicates that
SFM is applicable to single-site radar vector current meas-
urements.

4) As discussed above, a disadvantage of SFM is a
decreased computational precision if the horizontal non-
divergence assumptions are not well satisfied in the study
region. The additional errors caused by the divergent com-
ponent increase with increasing amplitude of divergence.
Compared with the results produced by VCM and LSF,
such errors are negligible when the current model con-
tains an added horizontal divergence of 10–6/s as input.
Though SFM excels VCM, it is put in the shade by LSF
when the divergence is on the order of 10–5/s. Fortunately,
so large a divergence, up to 10–5/s, is seldom observed,
either in the study region or in most of the world’s oceans.
In addition, SFM generally requires a few seconds for a
model run on a Pentium 4 machine, while the computa-
tion time of the other two methods is less than one sec-
ond on the same machine.

4.  Study of Field Experiment Data
The RPL of Wuhan University has been developing

the HFSWR system OSMAR since 1997 in the project
“HFSWR Technique in Monitoring Ocean Environment”,
which receives funding from the National High Technol-
ogy Research and Development Program of China (the
863 Program). OSMAR is a wide-band radar, adopting a
frequency modulated interrupted continuous waveform
(FMICW), operating on a centre frequency of 7.5 MHz.
The transmitting antenna is a three-element Yagi aerial.
The receiving antenna is a beeline array composed of two
rows, 13.3 m apart. In each row there are 4 monopoles
which are evenly spaced at 8 meters. Radar range and
Doppler (or current velocity) resolution are accomplished
by double fast-Fourier transforms (double-FFT), and the
bearings are determined by the minimum variance method
(MVM) or multiple signal classification (MUSIC) algo-
rithm. The OSMAR current data used in this paper are
obtained from the MUSIC algorithm (Yang et al., 2001).
The radar is able to detect surface current as far as 200
km, and also extract wave and wind with less detection
range than that for surface current.

4.1  Radar installation
The RPL has two sets of OSMAR systems with the

same specifications. The radar main site is located in
Zhujiajian Island and a slave site is located at Shengshan,
Zhoushan Islands of Zhejiang Province. From April 11 to
17, 2004, a field experiment was conducted in the East

China Sea. The verification tests of OSMAR against tra-
ditional marine instruments’ in-situ measurements were
conducted with the collaboration of Wuhan University,
Donghai Substation of the State Marine Bureau, the First
Marine Research Institute of the State Marine Bureau and
China Marine University. A map of the experiment loca-
tions is shown in Fig. 11. The locations of two OSMAR
sites are indicated by dots at the shore. Seven ship moor-
ing locations, A1–A6 and A8, which provided in-situ
measurements, were in the radars’ common detection area;
their positions are indicated in the figure by crosses. Con-
ventional instruments lowered from ships included RCM9

(a)

(b)

Fig. 11.  Radar sites diagram indicated by dots at the shore.
Seven ship mooring locations are indicated by crosses. Ra-
dial current maps measured by OSMAR at (a) Zhujiajian
and (b) Shengshan radar site on 11:50, April 13, 2004 are
also shown.
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Aanderaa current meter for measuring currents, tempera-
ture, conductance and hydraulic pressure, AZF1-II wave
gauge for measuring wave height and direction, and
XZC5-1 shipping telemetry system for measuring wind
velocity and direction. The overall goal of this experi-
ment was to validate the gauge of the ocean surface state
parameters measured by OSMAR. Here we only discuss
the ocean surface current measurements.

4.2  Current maps
Both OSMARs were operated with the same param-

eters. The observations were conducted every 10 minutes
from April 11 to April 17, 2004. Unfortunately, the main
radar was interrupted by a power cut, which lasted for
several hours on April 14 and 15, so its data sets were
incomplete. Figure 11 also shows examples of radial cur-
rent maps measured at Zhujiajian and Shengshan, respec-
tively. Both OSAMRs measured the radial current veloci-
ties with a directional resolution of 2.5°, range resolu-
tion 2.5/5 km, and the arrow marks denote the magnitude
and direction of vector currents. The attainable maximum
distance for current measurement is strongly affected by
the condition of the sea surface, external noise, and the
path of the radio waves (Nadai et al., 1997). When sea
surface conditions are appropriate and there is little ex-
ternal noise, the OSMAR can measure radial surface cur-
rent velocities over a distance of 200 km. Under poor
surface conditions, however, the maximum distance for
radial current measurement becomes less than 100 km.
The actual software of the ocean surface current algo-
rithm based on the MUSIC algorithm for the OSMAR
system was an improvement over that used in earlier ex-
periments. The amplitude response of the receiving chan-
nels was calibrated previously, while the calibration aimed
at both amplitude and phase responses in this experiment.

Figure 12 shows examples of vector current maps
which are interpolated onto a 2.5 by 2.5 km grid, gener-
ated using VCM, LSF and SFM from the dual-site radial
maps shown in Fig. 11. It shows good agreement between
three results, except that SFM current maps cover a larger
sea area in general. Current maps are produced every 10
minutes when the two radars were functioning normally.
There are many instances when reasonable vector cur-
rents are generated in the marginal area that is illumi-
nated by only one radar using SFM, as discussed in the
simulation. The direction of vector field rotates clock-
wise, changing periodically, a main feature of the semi-
diurnal tidal current in the observations area (Guo and
Yanagi, 1998).

4.3  Comparisons with current meter measurements
A research ship sailed during the field experiment

and moored successively at seven stations where conven-
tional observations were provided in different timeslices.

(a)

(b)

(c)

Fig. 12.  Examples of vector currents produced by (a) VCM
(b) LSF and (c) SFM.
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In-situ current measurements were provided by an
Aanderaa current meter lowered from the ship at each
station, which recorded current magnitude and direction
at three depths: 1.5, 2.0 and 2.5 m. Unfortunately, the
direction sensor of the current meter installed at 2.5 m
depth was not working correctly from the first day’s moor-
ing at A8 (A8_1) to the morning of April 16. Further-
more, only the direction sensor at 2.5 m depth was work-
ing well when the ship moored at station A8 again (A8_2)
at the last time period during the experiment. The current
magnitude sensors at three depths were always working
correctly.

Continuous observations were conducted at moor-
ing locations A8_1, A2, and A8_2 each for about 14 hours
during the experiment. Here, a comparison is presented
between the vector current velocities measured by the
dual-site OSMAR systems and those measured effectively
by current meters moored at three depths of 1.5, 2.0 and

2.5 m for those three locations, taking account of the dif-
ference in measuring depths and the effect of the spatial
variation of current within the radar target cell (Steward
and Joy, 1974). Graphs of the eastward (u) and north-
ward (v) currents produced by VCM, LSF and SFM ver-
sus the current meter eastward and northward current at
different depths at above three locations are shown in Fig.
13. There is good agreement between radar measurements
and current meter measurements. In the current maps, A2
was located in the marginal area of dual-site radar com-
mon coverage, so radials from the two radars could not
be obtained simultaneously when the sea echoes were
absent or weak. Figure 13(b) illustrates that VCM and
LSF currents were not generated sometimes, while SFM
currents consistent with current meter measurements were
produced during the whole observation time. Taking into
account the bias of the radars’ radial measurements, it is
thought that SFM results from a single-site radar data were
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Fig. 13.  Plots of the eastward (u) and northward (v) components of HF radar by VCM, LSF and SFM and current meter currents,
along with the RMS differences noted. (a) At mooring station A8_1; (b) At mooring station A2; (c) At mooring station A8_2.
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generally rational.
Because of the 2-D movement of water particles in

the ocean surface waves, the radial current velocity mea-
sured by HF radar generally corresponds to a value aver-
aged between the surface and a certain depth. Steward
and Joy (1974) showed that the “effective” depth of sur-
face current detected by HF radar was related to the radar
frequency. Under the linear-current-profile assumption,
the “effective” depth of OSMAR measurements was about
1.5 m. A vector current map was output every 10 minutes
for radar measurements, while current meter measure-
ments were recorded each 2 minutes. Current meter
records were averaged each 10 minutes, which is con-
venient for comparison. Figure 14 shows scatter diagrams
of the current velocities measured by OSMAR for three
methods versus those measured by current meter at 1.5 m
depth. The correlation between SFM results and current
meter is highest, about 48.1%; the slope of the linear least-
square fit to the data comes to a maximum 0.609, too.

The total currents of radar algorithms are compared
with current meter measurements; the statistics of RMS
errors of the eastward component and northward compo-
nent are listed in Table 5. There are great differences be-
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Fig. 13.  (continued).

Fig. 14.  Scatter diagrams of the current velocities of HF radar
by VCM, LSF, SFM and current meter currents at 1.5 m
depth. The correlation coefficient R and slope S of the lin-
ear fit between HF radar and current meter currents are
noted.
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tween the currents measured by the HF radar and by the
current meter. This is thought to be connected with the
differences of two measurement means besides the radial
observation errors. Current meters effectively measure
current at a single point in a certain depth while the radar
measurements represent an average over an area of about
6.25 km2 and a depth of 1–2 m, so the two instruments do
not survey exactly the same area.

4.4  Vertical shear: Relationship to wind
It is observed that the slopes in Fig. 14 are all less

than 1, which indicates that radar measurements are in-
clined to be larger than current meter measurements. We
find a positive difference statistically by comparing the
current velocity measured by the radar and the 1.5-m cur-
rent meter. It is thought that vertical shear of horizontal
velocities existed in the surface layer, presumably due to
wind stress on the sea surface.

Wind speed and direction at 10 m altitudes were ob-
tained using a XZC5-1 shipping telemetry system at each
mooring station during the experiment. Wind measure-
ments were recorded for 15 minutes every 45 minutes.
Figure 15 shows time series of wind velocity at 10 m al-
titude and current velocities measured by the current
meters at three stations. When the ship was moored at
Station A2, there was a relatively strong wind with ve-
locity of about 6–12 m/s. Figure 15(b) indicates an obvi-
ous shear, but it does not seem to be directly related to
the wind velocity. We argue that the M2 tidal current
dominates in the study region, but the total current in-
cludes a tidal component and a  wind-driven one, both
of which may vary with depth. To get a better estimate of
the wind-driven component, the tidal component should
be subtracted from the total. Due to the limited field data,
the tidal component could not be filtered out. Further dis-
cussion of the vertical shear as well as the correlation of
the direction of the current with respect to the wind will
therefore be postponed until we obtain more observations.

5.  Conclusions
Traditionally, the vectorial current combination

(VCM) or least-squares fitting (LSF) algorithm is applied
to obtain vector fields when two (or more) HFSWRs are
available. Here we propose a new algorithm, the stream

Depth (m) urms (cm/s) vrms (cm/s)

VCM LSF SFM VCM LSF SFM

1.5 11.2 10.1 10.5 14.4 15.3 12.2
2.0 11.9 11.2 10.0 13.6 14.7 11.7
2.5 16.7 15.6 15.6 13.8 15.1 14.7
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Fig. 15.  Time series of wind velocities at 10 m altitude (upper
solid lines) versus current velocities measured by the cur-
rent meters at three depths: the solid lines show current
velocities at a depth of 1.5 m; the short-dashed lines show
current velocities at a depth of 2.0 m; the long-dashed lines
show current velocities at a depth of 2.5 m.

Table 5.  RMS errors of currents by HF radar algorithms compared with current meter measurements at different depths.
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function method (SFM), for providing total current maps
from dual-site HF radar radials. The new algorithm avoids
the errors of the VCM due to linear interpolation of vec-
tor current maps in combination in a grid of longitude-
latitude cells and has the advantage over the LSF in re-
covering a complicated current field. The new method
can also generate vector current maps over a larger radar
coverage area.

We first evaluate the performance of SFM, compared
with the other two in simulation. Three factors are exam-
ined: the effect of radial current errors, the effect of cur-
rents’ spatial variation, and the response to horizontal
divergence. Compared with VCM and LSF, SFM has two
main advantages: 1) SFM has better acceptance of radial
errors and is more robust in processing the complicated
current fields. 2) SFM current maps cover a larger sea
area. It also indicates that SFM is applicable to single-
site radar measurements. The performance of SFM will
not be significantly affected by a horizontal divergence
unless it is very large, up to 10–5/s, but so large a diver-
gence is seldom observed in the study region, or in most
of the world’s oceans.

SFM is tested on OSMAR real data collected at the
coastal East China Sea in April, 2004. The experiment
data demonstrate the validity of SFM. The performance
of SFM is very similar to LSF in the common coverage
area. However, realistic currents are generated using SFM
in the marginal area only illuminated by one radar, where
vector currents cannot be combined using VCM and LSF.
The currents maps produced by the three methods indi-
cate that the direction of vector field rotates clockwise,
due to a dominant tidal current component. Compared
with in-situ current data measured by 1.5-m current me-
ters, the correlation of current velocity between SFM re-
sults and current meter measurements is highest, about
0.481, and the slope of the linear least-square fit to the
data comes to a maximum 0.609, too. The RMS differ-
ence of SFM results is smaller than that of VCM and LSF
results, compared with current meter observations at all
three depths. Preliminary analysis of the vertical current
shear is conducted based on the current meter and wind
measurements.

Improving the HF radar radial current measurement
accuracy, especially the direction of arrival (DOA) tech-
niques, has been demonstrated to influence the perform-
ance of SFM. Horizontal divergence will be tied to com-
putational accuracy of SFM, and the application of nu-
merical current model appropriate for divergent flow will
be studied in future work. Another topic of future work is
the investigation of the applications of SFM in single-
site HF radar vector current measurements.
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