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The analytical solutions of secord-order long waves generated by the diffraction
of short wave groups by a combination of depth and current velocity
discontinuities are presented. The incident wave groups consist of two co-linear
short waves with slightly different frequencies. These incident short wave groups
are reflected partially by the abrupt changes in depth and current velocity. The
incident, reflected, and transmitted wave groups are accompanied by the second-
order locked long waves, which propagate together with the wave envelopes of the
short waves at their group velocity. Because of the discontinuity in the second-
order free surface displacement of the locked long waves, free long waves are
generated, which propagate at the shallow-water phase speed and in a direction
different from those of short waves and wave envelopes. With certain
combinations of angle of wave incidence, depth ratios and current velocity, the
free long waves can be trapped in the vicinities of depth and current
discontinuities. Several examples are given to illustrate the resonance of trapped

free long waves.

1 INTRODUCTION

When a train of modulated wave groups propagates
over a slowly varying topography and current field, two
types of second-order long waves are generated due to
refraction and shoaling.!™® The locked (forced) long
waves propagate with the wave envelopes at the group
velocities of the carrier (short) waves. The free long
waves propagate at the shallow-water speed, (gh)l/ 2,
and in a direction different from those of the carrier
waves and the wave envelopes. These (forced and
free) long waves, although second-order quantities,
play important roles in many coastal engineering
problems, such as harbor resonances’~’ and coastal
processes,g’9 if they are trapped and resonated in the
nearshore area.

Agnon and Mei'® demonstrated that the trapped long
waves can indeed be excited on a long rectangular shelf.
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By employing asymptotic methods, Agnon and Mei'°
required the continuity of long wave potentials and the
second-order normal fluxes across the edges of the shelf.
Their approach leads to the continuity in the second-
order free surface displacements.

In this paper the authors examine the scattering of
wave groups by not only the discontinuities of depth but
also the abrupt changes in current velocities. A typical
physical domain representing a uniform current flowing
along a trench is shown in Fig. 1. This configuration may
be considered as a first approximation to tidal flow along
a dredged channel. The diffraction of short waves by this
configuration has been studied by Kirby et al!! In the
present investigation the authors focus attention on the
generation and propagation of the second-order long
waves. In solving second-order long wave problems, we
require the continuity of the second-order free surface dis-
placement as well as the normal fluxes along the edges of
the trench (and the discontinuity of the current velocities).

The following section summarizes the diffraction
theory of the short waves. The eigenfunction expansion



(b)
Fig. 1. Definition sketch.

method is used'"!? and the effects of evanescent modes
are included. In Section 3, the solutions of the locked
and the free long waves are presented. The possibility of
the resonance of trapped free long waves over a shelf
with currents is discussed. Several numerical examples
are given in Section 4.

2 FORMULATION OF THE PROBLEM

The diffraction of slowly modulated bichromatic water
waves by depth and current variations is considered. As
shown in Fig. 1, the abrupt changes in current velocity
coincide with those in depth variations and both are
uniform in y-direction.

2.1 Incident wave groups

The incident wave groups are the superposition of two
co-linear monochromatic waves of slightly different
frequencies, wy £ €€y, where ¢ < 1 is a small parameter
and is assumed to be in the same order of magnitude as
the wave slope of the carrier waves. The leading incident
wave potential, ®;, and the associated free surface
displacement, ¢, can be written as:

igAy cosh ki{z + hy)

‘I’I(X,y,Z, t) == 20, cosh klhl
x exp [i(ljx + my — wot)] + * (1
G(x,y,1) = Arexp [i(hx + my —wol)] + * (2

where » denotes the complex conjugate of the prededing
term, k, = (/;,m) and k, = (B + m?)'/2 are the carrier
wavenumber vector and its magnitude, respectively, and
o, is the intrinsic frequency which can be determined

from the linear dispersion relation:
oy = wy — mV, = (gk, tanh kyh;)""? 3)

with V; and h; being current velocity and depth in the
region 1{(x <0, see Fig. 1). Denoting %, + ¢K;; and
k, — €K, as the wavenumber vectors for the short wave
components, the wave envelope 4; of the incident wave
groups can be expressed as:

Ay = ap{exp [i(K;;- X ~ QT)]| + b
x exp [—i(Kz — K;)-X] exp[~i(K;;- X — QT)]}

where a; and ayb are the amplitudes of the short wave
components with the frequencies wqg % €€2y, respectively.
In the above equation the slow variables

X=X,Y)=ex, T=e, L =¢cL 4

have been employed. From the dispersion relation (3)
we can show that 0(|K;, — K;;|) = 0(¢). The modulation
length scale for exp|—i(K;, — Ky;)-X] is of 0(¢72), and,
therefore, this term can be considered as unity.
Replacing K,;; by K,, the wave envelope A4; can be
approximated as:

A = ap{exp [i(K;- X - QT)] + b
x exp [-i(K, X — QT)]} (%)

The incident wave envelope is assumed to be co-linear
with the carrier waves, and the wavenumber vector of
the wave envelope, K|, is parallel to the wavenumber of
the carrier waves, k;. Denoting the angle of incidence as
a;, we can define the wavenumber components in the
following forms:

K, =Kjcos oy, Ky, =Kjsin oy, K;=I[K,|,

11 = kl cos oy, m= kl sin Qay, kl = |k1| (6)

The wave envelope must satisfy the wave action
equation:*

6|A1|2 2 __ _ dO'I kl
o7+ (Cea1 +V1)-Vi4' =0, Cgi = T 7
in which V = (8/8X, 8/8Y), and Qq is related to Kj, i.e.
Q = (Cg +V1)-K; ®)

Because Cg,; is determined from eqns (3) and (7), one
can choose a value for either K; or () as the detuning
parameter. For convenience, we use K; =k, in the
present study.

2.2 Diffraction of short waves

The diffraction of the incident carrier (monochromatic)
waves by a trench (or a shelf) with currents (Fig. 1)
has been studied by Kirby et al!' Their solution
procedure is summarized here for completeness.
For a monochromatic incident wave train with a
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frequency @y(=wp+e€Y), the velocity potentials
within each region, j = 1,2, 3 (see Fig. 1), are expressed
in terms of a complete set of eigenfunctions in the
following forms:

3(x,7,%,1) = {Af exp (£i6) 50(2)

Z s exp (£ 5,2 |
x exp [i(riy — Qot)] (j=1,2,3)
%)

in which:

f0(2) = cosh k;(z + k) (10a)

fin(2) = cos [K;a(z + hy)] (10b)
with I::j being the real root of

&; = @y — mV; = (gk;tanh K;h))'/2 (11)
and K;, being the real roots of

6; = &y — mV; = (—gK;,tan K, ,h))'/? (12)

In eqn (9) the first term denotes the right- and left-
propagating wave components and the second term
represents the sum of all evanescent modes. The
wavenumber components l and );, are related to the
eigenvalues k and K],, as follows

l;' = ( i — m2)1/2 = ijOS Q;, m= EjSin Q;,
Np = (RE, + i)'/ (13)
Evans'? and Kirby er al.!' have presented a set of
matching conditions along the edges of the depth (and/
Or current) dlscontinuities which leads to the solutions
for Ai and BE 7, in terms of the incident potential 47.
The detalls of the matching conditions will not be
repeated here.

Once the unknown coefficients Ai and B n are
obtained, the first-order wave field for the monochro—
matic waves is determined. For later use, the authors
define the following functions in each region:

a; = 2ifgicosh Kk, (j=1,2,3) (14)

Setting 47 to be unity, we can define:
Ry=4y, T=1

=2 - =£2_ +
Rz—alAz, T, Az (15)

R; =0, T, = “3 B4
a
in which R; denotes the reflection coefficient and T3
represents the transmission coefficient of the trench-
current system. Because the above equations are
functions of frequency, R; and T; take different values

at (7)) + GQQ. Thus:

Rf = Rj(wo + 690) (163.)
R = bRj(wy ~ ) (16b)
T;" = Ti(wp + ) (17a)
T}‘_ = b]}(wo - GQo) (17b)

where R}" denotes the value of R; evaluated at w + €€,
etc.

It should be pointed out that the analysis given
above breaks down when caustics appear in either
region 2 or region 3. In such cases, the wave-
number component in the x-direction, 1} (j=2or3),
becomes zero. The corresponding critical incident wave
angle is:

[k
af = arcsin | £
ky

The present study excludes the caustics.

(j=2o0r3) (18)

2.3 Wave envelopes of propagation modes

Once the wave amplitudes for each region are
determined for the carrier waves, the corresponding
wave envelopes can be readily obtained by super-
position. The incident wave envelope has already been
given in eqn (5) and is rewritten as:

AI = ao{exp [I(leX+ KlyY— QoT)]
+ bexp [-i(K X + K, Y — QT)]} (19)

in which eqn (6) has been used. The left-propagating
and the right-propagating wave groups can be viewed as
the superposition of two monochromatic waves with
slightly different frequencies, &y = wy + €Qy. Thus, the
leading potential and free surface displacement of the
left-propagating (—x-direction) wave group can be
expressed as:

Q};(x,y, z,1) = A{Qj;-(z) exp [i(=[x +my —wpt)] + *

(20a)
(ﬁ(x, ¥t = %Aﬂ exp [i(—[ix + my — wyt)] + *
(20b)
where:
_ g cosh ki(z + h))
Ha) = Zaj cosh kb (21)
Al = agRF exp [ i(—K; X + K, Y — Q7)) (22)

in which summation over + and — is implied. Similarly,
the velocity potential and the free surface displacement
for the right-propagating (+ x-direction) wave group
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can be expressed as:

BL(x,3,2,1) = Afj(2) exp [i(lx + my — wpt)] +

(23a)
Ch(x,,1) = Afexp [i(lx + my — wor)] +
(23b)
where:
A7 = aoT;" exp £ i(KyX + Ky, ¥ — Qo T)] (24)

Similar to eqn (8) the frequency of the wave
envelope, €, is related to the wavenumbers in each
region, i.e.:

Q% =K;-(Cg; +V,) =K,-(Cgy + V)

=Kj-(Cg3 +V3) (25a)
where:
da .

is the group velocity vector in the jth region and o; is
defined in egn (11). Denoting a; (j = 1,2, 3) as the angle
of the carrier wave propagation in the jth region, we can
rewrite eqn (25) in the following form:

QO = Kijgjcos aj + ij(CgJ sin aj + I/j)
in which K, = Kj,. Substituting eqn (13) into eqn (26),

we obtain:
>

k2 7

where
> = - Ky,V; (28)
J

may be viewed as the intrinsic frequency of the wave
envelope. Similar results have been obtained by Liu ez
al* for the refraction of wave groups over a shear
current.

As pointed out by Liu ef al.,* the wave envelope can
also experience caustics in region 2 or region 3 for a
certain combination of angle of wave incidence, depth
and current speed. When caustics appear, K;, =0 (j = 2
or 3). From eqn (27), we can find the critical angle of
incidence for the appearance of caustics in wave
envelope to be:

1/2
) kV; 4k, Cg,Cg;
AT — g7 -1 1 _ 1_____.1
Q] = arcsin {Zlegj [ + ( + ijj2

(29)

which is different from of', the critical angle of incidence
for the short wave (carner) caustics.

3. LOCKED AND FREE LONG WAVES

The governing equations for the second-order long
waves induced by the refraction and diffraction of
wave groups have been derived by many researchers
(e.g. Refs 4 and 13). It has been shown that over a
region of constant depth and constant current velocity,
the locked long waves are generated only by the
self-product of plane short wave components (e.g.
Ref. 10). Therefore, in the present problem the
evanescent modes of the carrier waves, which decay
exponentially away from the edges of the trench, do not
contribute to the generation of long waves. Denoting ¥/
(i=R, T and j=1,2,3) as the potential of the long
waves associated with the left- (i = R) and right- (i = T)
propagating wave groups in the jth region, the govern-

ing equatlons for the second-order long waves are:%14
6T+V [{V +hV\Il tki=—=0— 2 =0 . (30)

;. 1/8 8\oi_ ol
l=— |5+ Vg | ¥/ - 31
& g <6T+ ’6Y> 4gsmh2kh (1)

where .fj denotes the second-order mean free surface
displacement associated with the long waves \IIJ In
eqns (30) and (31), A/ represents the modulated
wave amplitude for each propagating wave group,
and the positive sign in front of the last term in eqn (30)
is used for i=7T and the negative sign for i= R.
Equation (30) represents the depth-averaged continuity
equation for each long wave component; the last term in
the equation denotes the ‘Stokes’ drift’ caused by the
wave groups. In each region {J can be eliminated from
eqns (30) and (31) to yield an equation for \Il’ Thus:

i AN &F o
(a?”’fay) ¥i- h<6X2+8Y2 v

_Ly. (k,. IA{|2> &

ol4f? a4}
X ( 5T +V; 3Y (32)
Introducing the dimensionless variables:
X T h
X—»E, T—»w—o, o — wyo, h—»EO—o-,
ko kok, Cg— B0y (20w,

o0

Vwo

£ (2a0) k€, V——2,
Koo

A— aoA (33)
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in Wthh ay denotes the incident wave amplitude and
ko = w}/g; and substituting eqns (22) and (24) into eqn
(32) we obtain a set of dimensionless governing
equations for the long waves:

o 9\ ; &F &\
(o7+V72%) ¥~ "(5}‘2*@ Y

I . 1 1
=~ ik| 4! .
2 14| ;(Smhzkjhj"‘angj)

KX+ Ky Y - QT)] + x  (34)

x exp [2i(+

where the positive sign is used in the argument of the
exponential function for i = T, while the negative sign is
used for i = R and * denotes the complex conjugate. The
solutions for eqn (34) can be decomposed into the
steady-state component, ¥/ and the dynamic compo-
nent, i.e.:

V] = UL + L9/ (X) exp 2i(K), Y — QoT)] + * (35)

The steady-state components do not contribute to the
mean free surface displacement &/. From eqn (36) the
amplitude function of the dynamic component satisfies
the following equation:

ER

1 1 _
x ; (sinh T + > ng) exp [+ 2iK,X]  (36)

1. ji2

3.1 Locked long waves

The solutions of eqn (36) consist of the particular
solution (locked long waves) and the homogeneous
solution (free long waves). The locked long waves in
each region can be readily obtained. The locked long
waves associated with the right-propagating wave
groups can be expressed as:

i) T T
. . 1 1
iy, — _ J
(1) = . ( z2: o ) (Sinh2kjhj+0'ngj>
g

K
j
x exp [2iK;, X] (37
in which * denotes the complex conjugate. Similarly, the

locked long waves associated with the left-propagating
wave groups in the jth region can be written as:

)R
. - 1 1
iy, — _ J
(Yr)L 8( 2 ) ) (sinthjhj+0ngj)
g

> -Kh

J
X exp [—2iK;, X] (38)

The corresponding second-order free surface displace-
ments for the locked long waves can be calculated from
eqn (31). Thus, for the left-propagating locked long
waves the free surface displacement reads:

&k =1 & exp 2i(Ky, Y — QT)]
_(RP+ IR

39
16 sinh? sk, (3%2)
where:
2
+ —x 2 02 ij
(Z K2 ) 2 sinh? ki, 0;Cg;
x exp (—2iK, X) (39b)

and the second term on the right-hand side of eqn (39a)
represents the steady-state mean free surface set-down.
The second-order free surface displacements associated
with the right-propagating locked long waves can be
written as:

& =1 exp [2i(Ky, Y — Q,T)]
(TP +117 P

40
16sinh? kb, (402)
where:
>
k.
— 2 2 J
&= T'T; Kiboy 5
(Z 2 ) 2sinh? kb 0,Cg;
x exp(2iK;, X) (40b)

It is clear that the second-order free surface displace-
ments associated with the locked long waves are
discontinuous along the edges of depth and current
discontinuities. Free long wave components, which are
the homogeneous solutions of eqn (36), must be added
in each region. In this paper the steady-state free surface
displacement is not investigated.

3.2 Free long waves

Denoting 4 (i=R,T,D and E) as the outgoing free
long waves in region 1 (i = R) and in region 3 (i=T),
as well as the right-going (i = D) and the left-going
(i = E) free long waves in region 2, the free long wave
potentials are the homogeneous solutions of eqn (36), i.e.:

[dx2+ (Z Kly )}w, =0 (41)

where j =1 when i = R; j=2 when i= D and E; and
J=3 when i =T. Thus, in region 1 the free long wave
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solution can be written as:
5 1/2

vE=Ejexp(=2i0X), \=|-+--K?% (42)

where A\, could be either a real or an imaginary value.
When ), is a real value, ¢% is a propagating wave. On
the other hand, when ); is an imaginary constant, 9§
becomes an evanescent mode which decays exponen-
tially for large negative X. The amplitude of the free
long wave, E;, is to be determined. When J, is equal to
zero, 1/;{, which is the solution of eqn (41), is the sum of
a linear function in X and a constant. To avoid an
unbounded solution, 7 ,f is a constant when \; becomes
zero. Therefore, eqn (42) includes the case A, =0.

Similarly, the free long wave components in region 2
can be written as:

¥3 =¥p +¥E (43)
where:
¥p = Eyexp(2i\X), of = Ezexp(-2i0X) (44)
with:
i 1/2
Y= | 5o~ Kby (45)

which could be either real or imaginary. When J; is
zero, the free long wave solution of eqn (41) becomes:

Y] =Yp+9E=CX+C, (46)
which remains finite within the region 2,0 < X < L,.
Note that eqn (46) cannot be obtained by setting A; to
zero in eqns (43) and (44). However, as A, approaches

zero, eqns (43) and (44) can be expanded in Taylor’s
series for small \,L; <« 1:

Y3 = Yb+YE ~ 20(E; — E)X + (Ey + E3)  (47)
Comparing eqns (46) and (47), we obtain:

C, =2\ (E; — E3), Cy=(Ey+ Ej) (48)
This implies that when )\, is zero, E; and E; must be
proportional to A; ! 5o that C; remains finite. This point

is discussed further in the next section.
In region 3, the free long waves are:

¥vF = Eqexp (2i3X) (49)
with:
2 1/2
M= |-k} 50

When JA; is a real constant, the free long waves
propagate in the positive X-direction. If X; is an
imaginary constant, d); represents an evanescent
mode which decays exponentially for large X. When
A; is zero, the free long wave potential becomes a
constant.

The corresponding second-order free surface dispiace-
ment of the free long waves can be found from eqn (31)
as:

ER=2 vk E=20 vh =2 ¥f
1 2 2
and € =2 Y 9f (51)
3

3.3 Matching conditions

To determine the amplitudes of free long waves,
matching conditions for the second-order wave solu-
tions along the edges between regions, X = 0 and L, (see
Fig. 1), must be specified. The full expression of the
second-order free surface displacement near the depth
and/or current discontinuity is:

'L-_l(.?_ i) _L{|oe’, |02’ |99’
=2\ ar)Y z|lox| Tlay| Tiaz
o _9%*

where ® denotes the first-order velocity potential and
Uthe second-order long wave potential. If the current is
absent, the quadratic terms on the right-hand side of the
above equation are continuous across the edge of the
trench. The continuity of the second-order long wave
potential leads to the continuity of the second-order free
surface displacement. In the present problem, the
current and the first-order velocity potential are
discontinuous at the edge of the trench. The first
matching condition requires the continuity of the
second-order free surface displacement at X =0 and
Ll’ ie.

Er+ER+EL+EE=EF+ER+E +EH+EE atX =0

(52a)
G+ +G=G+G+G+&+& atx=1L
(52b)
where:
R i o O e s A
/ g||0x| |8y| |oz g ' 8z
z=0

in which the overbar distinguishes the terms including
fast variables and j = 1, 2 and 3. The second matching
condition requires the continuity of the second-order
flux across X = 0 and L,. From eqn (30) the flux in the
X-direction for each wave group component can be
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calculated from:

1 L4,
T [hf' % * 8o, 80,

Summing up the contributions from all wave group
components on each side of the interfaces between
regions we obtain:

. [hl <3¢r+3¢lk+3¢£>

0X 090X X

1 oy Oyr Oh  OVE
=3, [h2<ax+ax+ax+'37

; -
+ 30, (6~ RIRi )]

+§I;-(T2+T2"* — Rf RS ] atX=0 (53a)
2

1|, (21 0vr)  BTITS

= | P\8x T ax 803

Wy Ok  Ovh  OVE
=3, l"z(ax *ox Tox tax

+-8%(T§"T2'*—R2+R2“*)J atX =1, (53b)
We remark here that the matching conditions (53) for
the normal flux can be reduced to the same form as those
used by Agnon and Mei,'° when the current velocity
vanishes. Agnon and Mei'® matched the second-order
long wave potentials along the edges between regions,
X =0 and L,. From eqn (31) the dynamic components
of the second-order free surface displacements in their
solutions are discontinuous across the edges. On the
other hand, we match the free-surface displacements
associated with long waves, but allow a jump in the
second-order potentials. The authors matching con-
ditions are justified, because the velocity field and the
pressure field will not be altered by introducing an
arbitrary constant into the potential function.

For the cases where A, is not equal to zero, we
substitute the long wave solutions, eqns (37)—(40)),
(42), (44) and (49), into the matching conditions (52)
and (53), to obtain a set of linear algebraic equations for
the amplitudes of free long waves, E|, E,, E; and Ej,:

( E, F,
E. F.
N2l o 2 (54)
E; F;
 E4 F,
where the matrix N is given by:
(5 -%, -X, 0
0 EzeZi/\le EZC—Zikzlq _z3e2i)‘3L,
N=d M bk Axhy 0
] 2 )
0 Ak, eZidaly Ak e~2iNLi Ashsy 2Ly
x 5, ) Ty

(55)

and the right-hand side terms of eqn (44) are related to
the locked long wave components

Fi=-3l-E+&+E)+ G+ G+

(X=0) (56a)
F=-s-G+8+&) + G+
(X =L,) (56b)

1
F= -z—llehl(ﬂb} -
il il
+ 160’121 (b - Rl ! ) 160222
x (T3 T3" - RYR;™ (X=0)  (560)

1 1
F,= —E—szhz(%’; — %)+ E'sthstb}'
+—— (I 13" i

16 222 16055,
(X=1L,) (56d)

1
YR) + 5 Koo (V7 ~ ¥R)
2

- RIRY) - =T T5*

Once the incident wave groups and the geometrical
parameters, including the current velocities, are des-
cribed, the free long waves can be readily computed
from eqn (54).

The coefficient matrix N in eqn (54) becomes singular
when its determinant vanishes, i.e.:

by )X
[2—; (A2h2)(Ashs) + 2—? (Azhz)(A,h,)] cos 2X,L,

b D>
[E 5, k) (shs) + =552

x sin 2\,L; =0

(Azhz)z]

or
tan 2A2Ll
-i k) (Ashs)(215,)° +
(’\lhl)(/\3h3)(22)4

(k) Dohy) (2,55)°
+ Moy (B, 35)°
(57)

To satisfy this equation the necessary condition is that
A, must be real and A\, and \; are imaginary, which
represents the trapped modes in region 2. In the simpler
situation where the conditions in region 3 are identical
to those in region 1, i.e. Ay = h3, A} = A3, and £; = £,
eqn (57) can be reduced to:

2(/\1"1)(/\2’12)(2 )2

tan 2\,L, =
2= IO )IES £ (Aghy)’ S

(58)

which can be solved for the nth eigenfrequency 2 for the
resonance:

Q,8,L, = inm + tan™! [ oo,

i
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with:
12
_N_ |y (KyY
B"‘ﬂ‘[h?‘(n (©0)
_ K, Vi\? _sin g
'yj—(l ) ), K, = Ca; Q (61)

and j = 1,2. Because $; must be imaginary and 8, must
be real in eqn (59), one can derive the upper and the
lower bounds of the incident wave angles within which
the resonance of the trapped long waves might occur:

Vi+vh Va+vhy

As pointed out in the previous section, when ), is
zero, the solution in region 2 takes a different form, eqn
(46). Applying the matching conditions (52) and (53),
we obtain a different matrix equation for unknown
coeflicients, E|, E4, C; and C,:

<sin ap <

C F,
N Thy =72 (63)
&) F3
E4 F,
where the matrix N is given by
(X 0 -3, 0 )
0 22Ll 22 —2362»‘3['1
Ak ih
N=¢ 21 2 > (64
2%, 0 0 (64
ik, Ashy a2inr,
|0 7%, SR

The right-hand side term of eqn (63) takes the same
form as eqn (56). The determinant of eqn (64) is not
zero. Therefore C; and C, are finite. There is no
resonance at A, = 0.

4 NUMERICAL EXAMPLES

Numerical examples for the diffraction of incident wave

groups by different depth and current variations are
discussed. In all calculations the wave amplitudes of the
short wave components are assumed to be the same, i.e.
b =1-0 in eqn (5). Moreover, the small parameter e is
chosen to be 0-1.

4.1 A ‘top-hat’ current

In the first example, the water depth is assumed to be
uniform: A, = hy = h;. The current velocity is confined
within region 2. Defining the Froude number in a
different region as

Fr; = i
Tm)'
In the present case, Fr; = Fr; = 0, and Fr, = £ 0-1. The
width of the jet-like current is L/k; = 10. The refiection
and trapping of carrier (short) waves by the ‘top-hat’
current has been studied by Mei and Lo'® and Kirby !¢
in the shallow water limit. Using the parameters given
above in the eigenfunction expansion method described
in Section 2, the reflection and the transmission
coefficients are calculated with different number of
evanescent modes. A typical set of numerical solutions
is shown in Table 1; the angle of incidence is /6 and
kihy = 1-0. It is clear that for this particular case the
evanescent modes play an insignificant role. In the same
table the reflection coefficient and the transmission
coefficient for other geometries are also shown and will
be discussed later.

In Fig. 2 the critical incident angles for the
appearance of the caustics along the edges X = 0 and
L, in the carrier waves and the wave envelope are shown
for different ki h; with Fr, =0-1. Since the wave
envelope has a longer wavelength and is refracted more
by the current velocity, the corresponding critical
incident angle is smaller. The present theory becomes
invalid when the angle of incidence is larger than the
critical angle for the wave group. In Fig. 3 the critical
incident wave angles for the free long waves becoming
decay modes in each region are shown. For the case

(j= 172:3) (65)

Table 1. Reflection and transmission coefficients with different numbers of evanescent modes (NV);
oy =7n/6 and kih; = 1-0

Description N=0 N=2 N=4 N=38§ N=16
(a) Reflection coefficient
“Top hat’ current 0-015558 0-015260 0-015255 0-015254 0-015254
Forward step 0-002432 0-057786 0-061024 0-062222 0-062649
Backward step 0-164980 0-168898 0-169210 0-169306 0-169332
Shelf 0-256122 0-230487 0-229619 0-229352 0-229279
Trench 0-000970 0-065521 0-068493 0-068919 0-068988
(b) Transmission coefficient
‘Top hat’ current 0-999879 0-999884 0-999884 0-999884 0-999884
Forward step 1-056230 1-054468 1-054265 1-054187 1-054159
Backward step 1028587 1-027896 1027840 1-027823 1-027818
Shelf 0-966644 0-973075 0-973281 0-973343 0-973361
Trench 1-000000 0-997851 0-997652 0-997622 0997617
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Fig. 2. The critical incident wave angles for carrier waves
( ) and wave envelope (- - - - - ) for the case of a ‘top hat’
current; Fry = 0-1.

where the current flows in the same direction as the y-
component of waves (Fr =0-1), the critical angles in
region 1 are always greater than those in region 2.
Equation (62) cannot be satisfied and the resonance of
the trapped modes in region 2 does not exist. On the
other hand, for the case with Fr = —0-1, where the
current flows against the direction of the y-component
of wave propagation, the critical incident angles for the
decay modes appearing in region 1 are smaller than
those in the region 2. The trapped long waves can be
resonated when the incident wave angles are between
those two curves. The phenomena are further illustrated
by plotting the free long wave amplitudes, |E,}|, for an
angle of incidence a; = 7/6 (see Fig. 4). The resonant
peak appears at kb, = 1-5324 for Fr, = —0-1. The
response, |E,|, also becomes very large when A, =0
(k\hy = 1-3468 and 1-7234 for Fr, =01 and —0-1,
respectively). This does not imply that a resonance has
occurred as explained in Section 3. The corresponding
resonance frequency, (,, can be calculated from eqn

90

Fig. 3. The critical incident wave angles for the decay modes to

appear in regions 1 and 2. (- - - - - ) region 2 with Fry = —0-1;

(——) region 1 with Fry =+0-1; (- » « - -« ) region 2 with
Fr2 =0-1.

2.0

0.5

Fig. 4. The amplitudes of one of the free long wave
components, |E,|, over the ‘top hat’ current. The angle of
incidence is 7/6; (——) Fry = ~0-1; (- - - - - ) Fry =0-1.

(59) to be 0-6433. It should also be pointed out that the
long wave amplitudes become quite large when the
depth is small, where the Stokes wave theofy breaks
down.

4.2 A step without current

In the second example the authors examine the
scattering of wave groups by a step, either a forward
or a backward step, i.e. h;/hy < or > 1 with h, = h;. In
computing the reflection and the transmission coefficient
for the carrier waves, a different number of evanescent
modes has also been experimented. It is found, in
general, that if 16 or more evanescent modes are
used, the reflection and transmission coefficients remain
practically the same. A typical set of results is shown in
Table 1, with kyh; = 1-0 and a; = n/6. For the forward
step h; = hy/2 is used. In the case of the backward step
hy = 2h, is employed. In the rest of the calculations
reported herein 16 evanescent modes are used. In
Fig. 5(a) the critical incident angles causing the decay
modes for the free long waves in regions 1 and 2 are
plotted for the forward step (h; = h,/2) case. A similar
set of curves is shown in Fig. 5(b) for the backward step
(hy = 2hy). In both cases the resonance of trapped
modes does not exist, because the free long waves are
allowed to propagate into infinity on the step. The
second-order free long waves, |E,| and |E,|, are plotted
in Figs 6 and 7 for the incident wave angle a; = #/6. In
the case of the forward step, a local peak appears in |E; |
and |E,|, which corresponds to A, = 0 (kyh; = 0-9278),
i.e the angle of incidence approaches the critical angles
for the decay modes of the free long waves as shown in
Fig. 5(a). For the backward step A, = 0 corresponds to
a value of k1A, which is larger than 2 and is outside of
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Fig. 5. The critical incident wave angles for the decay modes to
appear in region 1 (——) and region 2 (- - - - - ): (a) a forward

step, hy = hy/2; (b) a backward step, h; = 2h,.

the figure. For completeness, numerical results are also
obtained for different depth ratios and angles of
incidence with a fixed value of k1h) = 1-0 (see Fig. 8).
It is interesting to observe that |E,| is relatively

I.OF

|E2]

0.5+

kb

Fig. 6. The amplitudes of the free long waves, | E, |, for the step
cases with ; = 7/6 and h; = hy/2 (forward step (—)) or
_ hy = 2k, (backward step (- - - - - ).

Fig. 7. The free long wave amplitude, |E,|, for the step cases
with o) =7/6 and h; =hy/2 (forward step (—)) or
hy = 2h, (backward step (- - - - - ).

0S5+

hy/hy
(b)

Fig. 8. The free long wave amplitudes |E, | and | E,| for the step
cases with kb = 1-0. (a) |E,|; (b) |E,|.
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Fig. 9. Reflection and transmission coefficients of the carrier
waves for both trench (——) and shelf (. - - - - )} cases. The
angle of incidence is /6.

insensitive to the angle of incidence in the case of a
backward step.

4.3 A trench (or shelf) with currents

The last example concerns the generation and trapping
of long waves over a trench or a shelf. In the case of a
trench, the depth is fixed as 4, = 2h, and h; = A;. On the
other hand, for the shelf the depth is 4, = 0-5h, and
h3 = h. In both situations L = 104, and the current
velocity is confined in region 2 with Fr, = 0-1. The first-
order reflection and transmission coefficients for both
cases are plotted versus k;4; in Fig. 9. To obtain these
numerical solutions, 16 evanescent modes have been
used (see Table 1). When the carrier waves propagate
from a shallower depth to a deeper depth, caustics could
appear if the angle of incidence is greater than a certain
critical angle. In Fig. 10 these critical incident angles for
the trench case are shown. For the present theory to be
valid, the angles of incidence must be below both curves.

In Fig. 11 the critical incident wave angles for
generating decay modes for free long waves in region 1
(or 3) and region 2 are shown for both trench and shelf

Fig. 10. The critical incident wave angles for caustics to appear
in short waves (——) and wave envelope (- - - - - )} over a
trench with Fr, = 0-1.

S0

kehy

(a)

QOE

S T T Ty
kI hl
(b}
Fig. 11. The critical incident wave angles for the decay modes

to appear in the region 1 (——) and region 2 (- - - - - Jof (a)a
trench case and (b) a shelf case. In both cases Fr, = 0-1.

cases. The trapped mode can be resonated in the shelf
case when the incident wave angles are between the two
curves shown in Fig. 11(b). One of the free long wave
components in region 2, |E,|, is plotted in Fig. 12 for
both shelf and trench cases. The angle of incidence is
fixed at 7/6. From Fig. 11, the trapped long waves can
be resonated for the shelf case when k; 4, is between 1-5
and 2-0. This is confirmed in Fig. 12; there is a resonance
peak at k k) = 1-6066. Note that | E,| also becomes very
large when L, =0 (or kjh; = 0-7647). Finally, the free
long wave amplitudes, |E3|, are shown for different
angles of incidence in Fig. 13. Once again, the resonance
occurs only for the shelf case within the range of angles
of incidence, 37°-50° (see Fig. 11(b)). The precise
incident angle is 39-42°. When the angle of incidence is
greater than 50°, the long wave components on the shelf
become decay modes and the amplitudes are small.
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Fig. 12. The free long wave amplitudes, |E,|, for both trench
(- ) and shelf (——) cases with Fr, = 0-1 and oy = 7/6.

5 CONCLUDING REMARKS

Analytical solutions for the forced and free long waves
generated by the diffraction of short wave groups by
abrupt changes in depth and current velocity are
presented. Based on the mass conservation and the
continuity of the second-order free surface displace-
ment, a set of matching conditions for the second-order
long waves along the edges of a trench (or a shelf) is
developed. It is demonstrated that free long waves
propagate with shallow-water speed, which is faster than

the group velocity, and in a direction different from

those of short waves and wave envelopes. The possibility
for the resonance of trapped long waves is also
confirmed. The analytical solutions presented herein
can be used as bench-mark problems for future research.

20

3

= 60 l ‘ 90
a, (deg)
Fig. 13. The free long wave amplitudes, |E;|, for both trench

¢---- ) and shelf (——) cases with Fr, = 0-1 and k}h; = 1-2.

Carefully arranged laboratory experiments should be
performed to verify the present second-order long wave
generation theory for simple cases such as a step without
current. The wave-maker must have the capability of
generating incident locked long waves and being able to
suppress the re-reflection of free long waves and the
reflected locked long waves from the wave maker.!”

For future research, a numerical model which can
handle an arbitrary topography and current velocity
field is needed for solving practical problems. The
refraction, reflection and diffraction of the short waves
should be included in the model. A numerical scheme
must be developed for evaluating the forcing terms for
the long waves. In the long wave model, the effect of
bottom friction should be examined.
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