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Abstract

Based on the classical Boussinesq model by Peregrine [Peregrine, D.H., 1967. Long waves on a

beach. J. Fluid Mech. 27 (4), 815–827], two parameters are introduced to improve dispersion and

linear shoaling characteristics. The higher order non-linear terms are added to the modified

Boussinesq equations. The non-linearity of the Boussinesq model is analyzed. A parameter related to

h/L0 is used to improve the quadratic transfer function in relatively deep water. Since the dispersion

characteristic of the modified Boussinesq equations with two parameters is only equal to the second-

order Padé expansion of the linear dispersion relation, further improvement is done by introducing a

new velocity vector to replace the depth-averaged one in the modified Boussinesq equations. The

dispersion characteristic of the further modified Boussinesq equations is accurate to the fourth-order

Padé approximation of the linear dispersion relation. Compared to the modified Boussinesq

equations, the accuracy of quadratic transfer functions is improved and the shoaling characteristic of

the equations has higher accuracy from shallow water to deep water.
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1. Introduction

The classical Boussinesq equations (Peregrine, 1967) only incorporate weak dispersion

and weak non-linearity, and are only valid for simulating long waves in shallow water.
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To extend the applicable range of the equations, many new forms of Boussinesq-type

equations have been developed in the past two decades. Witting (1984) presented a set of

Boussinesq equations valid only for a single horizontal dimension. Madsen and Sørensen

(1992) introduced a new set of Boussinesq equations with improved linear dispersion

characteristics for slowly varying bathymetry in which the depth-integrated velocities are

used in the momentum equations. Nwogu (1993) derived an improved Boussinesq model

in which the horizontal velocity at an arbitrary depth is used as a dependent variable.

Wei et al. (1995) developed the Boussinesq equations of Nwogu (1993) through improving

the non-linearity accurate to O(m2). Beji and Nadaoka (1996) gave a new set of Boussinesq

equations by adding and subtracting a dispersion term in the momentum equations.

Zou (1999) derived high order Boussinesq equations by introducing an artificial velocity

and mild slope assumption. Each model is different in the form and arrangement of

dispersion terms. But all lead to the second-order Padé approximation of the full

dispersion relation of linear waves. There are still other higher order Boussinesq models

with better dispersion relation and improved non-linearity (e.g. Agnon et al., 1999; Zou,

2000; Gobbi and Kirby, 2000). Among these Boussinesq equations, a typical and

relatively simple method to derive Boussinesq model was introduced by Beji and Nadaoka

(1996). However, the equations only have the same weak non-linearity as the classical

Boussinesq equations. In order to improve the non-linearity in Boussinesq equations, we

add higher order terms accurate to the order of O(3m2). It is relatively easy to improve the

linear dispersion and linear shoaling characteristics compared to the improvement of the

non-linear property of the Boussinesq-type equations. In this paper, a correction parameter

linear to h/L0 (where h is the water depth and L0 is the wavelength in deep water) is

introduced to improve the quadratic transfer functions in relatively deep water instead of a

constant parameter in the higher non-linear term (Zou, 1999).

Two higher order Boussinesq equations are presented in this paper. One is modified

Boussinesq model with higher order non-linearity in Section 2. In Section 2.1 two

parameters are introduced to improve the shoaling characteristic based on the classical

Boussinesq equations for varying water depth. Dispersion and shoaling characteristics of

the equations are given in Section 2.2. Higher non-linear terms are added to the modified

Boussinesq model in Section 2.3. A correction parameter is introduced to improve the

quadratic transfer functions in relatively deep water in Section 2.4. In Section 3, the further

modified Boussinesq equations are derived. Finally, conclusions are given in Section 4.
2. The derivation of the modified Boussinesq-type equations

2.1. Extended Boussinesq equations

The expression of the classical Boussinesq equations by Peregrine (1967) is

ht CV$½ðh ChÞ �u� Z 0 (2.1)

�ut C ð �u$VÞ �u CgVh Z
1

2
hV½V$ðh �utÞ�K

1

6
h2VðV$ �utÞ (2.2)
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where �uZ ðu; vÞ is two-dimensional depth-averaged velocity vector and h is wave surface

elevation; hZh(x,y) is still water depth and g is gravitational acceleration; V is two-

dimensional gradient operator in a horizontal plane.

By an elementary addition and subtraction process, Eq. (2.2) can be written as

�ut C ð �u$VÞ �u CgVh

Z
1

2
hð1 CaÞV½V$ðh �utÞ�K

1

2
ahV½V$ðh �utÞ�K

1

6
h2ð1 CgÞVðV$ �utÞ

C
1

6
h2gVðV$ �utÞ (2.3)

where a and g are two constant parameters to be determined.

Peregrine (1967) and Beji and Nadaoka (1996) suggested that the linear relation be

used in the higher order derivative terms in the equations. Neglecting the higher order and

the non-linear terms, we can obtain

ht CV$ðh �uÞ Z 0; �ut CgVh Z 0 (2.4)

We use the second equation of Eq. (2.4): �ut ZKgVh to replace the terms proportional to

a and g in Eq. (2.3) and obtain

�ut C ð �u$VÞ �u CgVh

Z
1

2
hð1 CaÞV½V$ðh �utÞ�C

1

2
aghV½V$ðhVhÞ�K

1

6
h2ð1 CgÞVðV$ �utÞ

K
1

6
gh2gVðV2hÞ (2.5)

If a and g are equal, the extended Boussinesq equations will be changed to those of Beji

and Nadaoka’s (1996). Hereafter, we call the equations BN model.
2.2. Dispersion and linear shoaling characteristics of the extended equations

Neglecting non-linear terms in Eqs. (2.1) and (2.5) yields the following dispersion

relation

u2

gk
Z

kh 1 C 1
2

a K 1
6

g
� �

k2h2
� �

1 C 1
2
ð1 CaÞk2h2 K 1

6
ð1 CgÞk2h2

� � (2.6)

where u is the angular wave frequency, k2Zk2
x Ck2

y and kx, ky are the component of the

wave number vector k in x- and y-direction, respectively.

The expression of a and g can be determined from the second-order Padé expansion of

the linear Stokes dispersion relation u2=gkZ tanhðkhÞ:

u

gk
Z

kh Ck3h3=15

1 C2k2h2=5
(2.7)
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Fig. 1. Comparison of the Shoaling gradient with analytical solution. (1) Linear Stokes wave, (2) Present model,

(3) BN model.

Z.B. Liu, Z.C. Sun / Ocean Engineering 32 (2005) 1296–1310 1299
By comparison of Eq. (2.6) with Eq. (2.7), we can obtain an expression

ð1=2ÞaK ð1=6ÞgZ ð1=15Þ. Yet the value of a and g is still unknown. By a further

comparison between the linear shoaling characteristic of the extended Boussinesq

equations and that of the linear Stokes waves, the two parameters are optimized to be

aZ0.1308, bZK0.0076. The detailed derivation method of the linear shoaling

characteristics is referred to Schaffer and Madsen (1995). The extended equations are

applicable to the water depth up to h/L0Z0.476 comparing with the depth h/L0Z0.25 for

BN model. Fig. 1 shows the linear shoaling gradient comparison among the present model,

BN model and the linear Stokes waves. From Fig. 1, the agreement of the present model is

satisfactory.
2.3. The higher order non-linear terms

Eq. (2.5) only covers the lowest non-linearty terms. The non-linearity of Eq. (2.5) is

identical to the classical Boussinesq equations. To improve the higher-order non-linearity,

a strict mathematical derivation is applied here. We start the derivations with the simple

case of a horizontal bottom. A Cartesian coordinate system (x,y,z) is adopted with the

origin being located at the still water level and z-axis pointing vertically upward. The fluid

is assumed to be incompressible and inviscid, and the flow is assumed to be irrotational.

The independent and dependent, non-dimensional variables are defined as

x0 Z
x

L
; y0 Z

y

L
; z0 Z

z

h
; t 0 Z

ffiffiffiffiffi
gh

p

L
t; f0 Z f=

A

h
L

ffiffiffiffiffi
gh

p� �
; h0 Z

h

A
(2.8)

where g is the gravitational acceleration, h is water depth, and L, A are the characteristic

wave length and characteristic wave amplitude, respectively. Non-dimensional governing

equations can be expressed as (the superscript is omitted in the flowing derivation)

m2V2f Cfzz Z 0; K1!z!3h (2.9)

m2ðht C3Vf$VhÞ Z fz; z Z 3h (2.10)
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m
2ðft ChÞC

1

2
3ðm2jVfj

2 Cf
2
z Þ Z 0; z Z 3h (2.11)

fz Z 0; z ZK1 (2.12)

V2 Z
v2

vx2
C

v2

vy2
(2.13)

where 3ZA/h and mZh/L are the non-linearity and dispersion parameters, respectively.

We assume that Oð3ÞZOðm2Þ!!1 to study the water wave motion of Boussinesq-type

Equations.

Since f is an analytic function, it can be expanded as Taylor series in terms of z around

seabed zZK1. When Eq. (2.9) and the boundary condition Eq. (2.12) are satisfied, we

obtain

fðx; y; z; tÞ Z f0 K
m2

2!
ðz C1Þ2V2f0 C

m4

4!
ðz C1Þ4V2V2f0 COðm6Þ (2.14)

where f0Zf0(x,y). Substituting Eq. (2.14) into Eq. (2.11), taking the gradient V of the

resulting equation and applying the definition of u0 hVf0 at seabed with the denotation of

V2u0 hVðV$u0Þ yields

u0t C3ðu0$VÞu0 CVh K
1

2
m2d2V2u0t Km2dVdV$u0t C

1

4!
m4d4V2V2u0t

C
1

2
3m2V½Kd2u0$V2u0 Cd2ðV$u0Þ

2�

Z Oðm6; 3m4Þ (2.15)

where d is the total water depth: dZ1C3h. Introducing depth-averaged velocity �uZ
1=d

Ð 3h
K1 Vf dz and using Eq. (2.14), we have

u0 Z �u C
1

3!
m2d2V2 �u C

7

3!5!
m4d4V2V2 �u COðm6Þ (2.16)

Substituting Eq. (2.16) into Eq. (2.15) for �u0 yields

�ut C3ð �u$VÞ �u CVh CG1 Z
1

3
m2d2V2 �ut C

1

45
m4d4V2V2 �ut COðm6; 3m4Þ (2.17a)

where

G1 Z 3m2 V
d2

2
ðV$ �uÞ2 K

d2

3
�u$V2 �u


 �
C

1

3
dht V2 �u KdV hV$ �ut

� 

(2.17b)

The fourth spatial derivative in Eq. (2.17a) would bring difficulty to the numerical

computation. This problem can be solved by neglecting the O(3m2,m4)) terms in Eq. (2.17a)

�ut C3ð �u$VÞ �u CVh Z
1

3
m2d2V2 �ut COð3m2;m4Þ (2.18)
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The fourth spatial derivative in Eq. (2.17a) can be expressed by the left-hand size terms

of the Eq. (2.18) and then we can get

�ut C3ð �u$VÞ �u CVh CG2

Z
1

3
m2d2V2 �ut C

1

15
m2d2V2ð �ut CVhÞCOð3m4$m6Þ (2.19a)

and

G2 Z 3m2 V
d2

2
ðV$ �uÞ2 K

d2

3
�u$V2 �u K

d2

30
V2ð �u$ �uÞ


 �
C

1

3
dht V2u KdVhV$ �ut

� 


(2.19b)

The expressions ð �u$VÞ �uZ 1
2

Vð �u$ �uÞK �u!V! �u and V! �uZOð3m2Þ are used in the

above derivation.

The continuity equation can be derived by substituting Eq. (2.14) of the potential f into

Eq. (2.10) and we can obtain

ht CV$ðd �uÞ Z 0 (2.20)

The term ht in the non-linearity terms G can be rewritten by using Eq. (2.20),

Eqs. (2.20) and (2.19) with dimensions can be written as

ht CV$ðd �uÞ Z 0 (2.21)

�ut C ð �u$VÞ �u CgVh CG Z
d2

3
V2 �ut C

h2

15
V2ð �ut CgVhÞ (2.22a)

and

G Z V
h2

3
ðV$ �uÞ2 K �u$V2 �u K

1

10
V2ð �u$ �uÞ


 �� 

KVh dV$ �ut (2.22b)

or

G Z V
d2

3
ðV$ �uÞ2 K �u$V2 �u K

1

10
V2ð �u$ �uÞ


 �� 


KVh dV$ �ut K
1

3
V$ �uV$ðd �uÞ


 �
K

1

3
ðVh$ �uÞVðdV$ �uÞ (2.22c)

Comparing Eq. (2.22a) with Eq. (2.5) and adding higher non-linear terms O(3m2) to Eq.

(2.5) we obtain

�ut C ð �u$VÞ �u CgVh CG

Z
1

2
hð1 CaÞV½V$ðh �utÞ�C

1

2
aghV½V$ðhVhÞ�K

1

6
h2ð1 CgÞVðV$ �utÞ

K
1

6
gh2gVðV2hÞ (2.23a)
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G Z V
h2

3
ðV$ �uÞ2 K �u$V2 �u K

3

2

a

2
K

g

6

� �
V2ð �u$ �uÞ


 �� 

K

2

3
hhVðV$ �utÞ

KhVhV$ �ut (2.23b)

In order to improve the non-linear property, a correction parameter bZ12.1h/L0 is

introduced in the higher non-linear term:

G Z V
h2

3
ðV$ �uÞ2 K �u$V2 �u K

3

2
b

a

2
K

g

6

� �
V2ð �u$ �uÞ


 �� 

K

2

3
hhVðV$ �utÞ

KhVhV$ �ut (2.23c)
2.4. Transfer function of super and sub harmonics

For a bichromatic wave train, the following first order equations of (2.1) and (2.23) is

assumed to be

h1 Z A1 cosðk1x Ku1tÞCA2 cosðk2x Ku2tÞ (2.24)

By the first order equations of (2.1) and (2.23), we can obtain

u1 Z
u1

k1h
A1 cosðk1x Ku1tÞC

u2

k2h
A2 cosðk2x Ku2tÞ (2.25)

where Ai, ui, ki (iZ1,2) are the amplitude, wave frequency and wave number. From

Eqs. (2.1)–(2.23) for constant depth, we can obtain the second order equations

h2 Z A1A2GG
2 ðu1;u2ÞcosðkGx KuGtÞC

1

2
A2

1GC
2 ðu1;u2Þcos 2ðk1x Ku1tÞ

C
1

2
A2

2GC
2 ðu2;u2Þcos 2ðk2x Ku2tÞ (2.26)

where kGZk1Gk2, uGZu1Cu2 GG
2 Z ðu1;u2Þ is the quadratic transfer function with the

following expression

GG
2 ðu1;u2Þ Z

1

h
ðgG

BB CgG
se CgG

h CbgG
disÞ (2.27a)

where

gG
BB Z

kG

2DG

uG 1 C
2

5
k2
Gh2

� �
u1

k1

C
u2

k2

� �
CkG 1 C

1

15
k2
Gh2

� �
u1u2

k1k2


 �
(2.27b)

gG
se ZH

k2
Gh2

2DG

1 C
1

15
k2
Gh2

� �
u1u2

k1k2

� �
k1k2H

1

3
ðk2

1 Ck2
2ÞK

1

3
k1k2


 �
(2.27c)

gG
h ZK

kG

2DG

1 C
1

15
k2
Gh2

� �
k1u2

2Gk2u2
1 C

2

3
ðk1u2

1Gk2u2
2Þ


 �
(2.27d)
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Fig. 2. Ratio of super harmonic GC
2 ðu1;u2Þ to Stokes solution GC ðu1;u2Þ �GCZGC

2 ðu1;u2Þ=

GC ðu1;u2Þ; u2 Ku1 Z0:1 �u; �uZ ðu1 Cu2Þ=2. Eqs. (2.1) and (2.23) with bZ1 (solid); Eqs. (2.1) and (2.23)

bZ12.1h/L0 (dash-dotted).
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gG
dis Z

k2
Gh2

30DG

1 C
1

15
k2
Gh2

� �
u1u2

k1k2

� �
(2.27e)
DG ZKghk2
G 1 C

1

15
k2
Gh2

� �
Cu2

G 1 C
2

5
k2
Gh2

� �
(2.27f)

Figs. 2 and 3 are the comparisons between the present model and the Stokes solution.

From the figures, the super harmonic of the present model with bZ1.0 deviates from the

Stokes solution quickly with the increasing of water depth. But when introducing

bZ12.1h/L0, even for h/L0Z0.5, the super harmonic can well agree with the Stokes

solution and the maximum error is 14%. As for the sub harmonic, the present model can

well agree with the Stokes solution up to the water depth h/L0Z0.5.
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Fig. 3. Ratio of sub harmonic GK
2 ðu1;u2Þ to Stokes solution GK ðu1;u2Þ �GKZGK

2 ðu1;u2Þ=

GK ðu1;u2Þ; u2 Ku1 Z0:1 �u; �uZ ðu1 Cu2Þ=2. Eqs. (2.1) and (2.23) with bZ1 (Solid); Eqs. (2.1) and

(2.23) bZ12.1h/L0 (dash-dotted).
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3. Further improvement of the modified Boussinesq-type equations
3.1. Derivation of the equations

The dispersion of the modified Boussinesq-type equations with two parameters is only

to the accuracy of O(m4) and the maximum range of the shoaling characteristics is only

h/LZ0.476. To further improve the dispersion and linear shoaling characteristic of the

equations, a new velocity variable ~u is introduced to replace the depth-averaged velocity �u

�u Z �u Ka1m2h2V2 �u Ka2m2hV2ðh �uÞKb1m4h4V2V2 �u Kb2m4hV2V2ðh3 �uÞ (3.1)

where a1, a2, b1 and b2 are four parameters to be determined. Eq. (3.1) is accurate to O(m4),

which is the same in order of approximation as the velocity for the modified Boussinesq-

type equations in Eqs. (2.1), (2.23a) and (2.23b). To simplify the equations, we consider a

mildly sloping seabed and employ the mild slope assumption VhZOðm2Þ.

Substituting Eq. (3.1) into the non-dimensional expression of Eqs. (2.1) and (2.23)

leads to

ht CV$½ðh C3hÞ ~u�

Z a1m2V$½ðh C3hÞh2V2 ~u�Ca2V$½ðh C3hÞhV2ðh ~uÞ�

Cb1m4V$ðh5V2V2 ~uÞCb2m4V$½h2V2V2ðh3 ~uÞ�COð32m2;m6Þ (3.2)

~ut C3ð ~u$VÞ ~u CVh CG

Z ða1 K
1

6
Þm2h2VðV$ ~utÞC a2 C

1

2

� �
m2hV½V$ðh ~uÞ�

CK
g

6
m2h2V½V$ð ~ut CVhÞ�C

a

2
m2hV½V$ðh ~ut ChVhÞ�

C b1 K
1

3
ða1 Ca2Þ


 �
m4h4V2V2 ~ut Cb2m4hV2V2ðh3 ~utÞCOð32m2;m6Þ (3.3a)

G Z
1

3
3m2V h2 ðV$ ~uÞ2 K ð1 C3ða1 Ca2ÞÞ ~u$VðV$ ~uÞK

3

2

a

2
K

g

6

� �
V2ð ~u$ ~uÞ


 �� 


K
2

3
3m2hhVðV$ ~utÞK3m2hVhV$ ~ut

(3.3b)

In order to remove the fourth spatial derivatives in the above equations, neglecting the

O(3m2,m4) terms in Eqs. (3.2), (3.3a) and (3.3b) gives

ht CV$½ðh C3hÞ ~u� Z ða1 Ca2Þm
2h3V$ðV2 ~uÞCOð3m2;m4Þ (3.4)

ht CV$½ðh C3hÞ ~u� Z ða1 Ca2Þm
2
V$½V2ðh3 ~uÞ�COð3m

2;m4Þ (3.5)
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~ut C3ð ~u$VÞ ~u CVh Z
1

3
Ca1 Ca2

� �
m2h2VðV$ ~utÞCOð3m2;m4Þ (3.6)

~ut C3ð ~u$VÞ ~u CVh Z
1

3
Ca1 Ca2

� �
m2V½V$ðh2 ~utÞ�COð3m2;m4Þ (3.7)

Substituting Eqs. (3.4)–(3.7) into the fourth spatial derivatives in Eqs. (3.2), (3.3a) and

(3.3b) and using the relation ð ~u$VÞ ~uZ ð1=2ÞVð ~u$ ~uÞK ~u!V! ~u and V! ~uZOð3m2Þ

gives the flowing equations expressed in dimensional form:

ht CV½ðh ChÞ ~u� Z a1V$½ðh ChÞh2VðV$ ~uÞ�Ca2V$½ðh

ChÞhVðV$ðh ~uÞÞ�C
b1

a
V$fh2

V½ht CV$ððh ChÞ ~uÞ�g

C
b2

a
V$fV½h2ht Ch2V$ððh ChÞ ~uÞ�g (3.8)

~ut C ð ~u$VÞ ~u CgVh CG

Z a1 K
1

6

� �
h2VðV$ ~utÞC a2 C

1

2

� �
hV½V$ðh ~utÞ�Cc1h2V½V$ð ~ut

CgVhÞ�Cc2V½V$ðh2 ~ut Cgh2VhÞ�C
a

2
hV½V$ðh ~ut CghVhÞ� (3.9a)

The expression of G is accurate to O(3m2)

G Z
1

3
V h2 ðV$ ~uÞ2 K ð1 C3aÞ ~u$VðV$ ~uÞK

3

2
c C

a

2

� �
V2ð ~u$ ~uÞ


 �� 


K
2

3
hhVðV$ ~utÞKhVhV$ ~ut (3.9b)

a Z a1 Ca2; b Z b1 Cb2; c Z c1 Cc2; c1

ZKg=6 C ðb1 Ka=3Þ=ða C1=3Þ; c2 Z b2=ða C1=3Þ (3.9c)

Eqs. (3.8), (3.9a) and (3.9b) are the new form of the higher order Boussinesq equations

in terms of the new velocity vector ~u.

3.2. Properties of the new form of the equations

In this section, we will determine the six parameters contained in the new derived

equations by investigating the dispersion, non-linear characteristics and shoaling property

of the equations.

3.2.1. Linear dispersion characteristic

Using the method introduced by Schaffer and Madsen (1995), we can obtain the

following dispersion relation for Eqs. (3.8) and (3.9):
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C2 Z
u2

k2
Z gh

½1 C ða Cb=aÞk2h2�½1 C ðc Ca=2Þk2h2�

½1 C ðb=aÞk2h2�½1 C ð1=3 Ca Cc Ca=2Þk2h2�
(3.10)

Comparing with the following expression of the expansion of the linear Stokes

dispersion

ðCSÞ2 Z gh
tanh kh

kh
Z gh

1 C ð1=9Þk2h2 C ð1=945Þk4h4

1 C ð4=9Þk2h2 C ð1=63Þk4h4
COðk10h10Þ (3.11)

the value a,b/a and cCa/2 can be obtained by choosing the parameters (a, b/a, cCa/2) in

Eq. (3.10) to match fourth-order Padé expansion in Eq. (3.11), and the following four sets

of the solutions can be obtained

a;
b

a
; c Ca=2

� �
Z

K
1

6
C

ffiffiffiffiffiffiffiffi
805

p

630
C

ffiffiffiffiffiffiffiffi
133

p

63
;
2

9
K

ffiffiffiffiffiffiffiffi
133

p

63
;

1

18
K

ffiffiffiffiffiffiffiffi
805

p

630

K
1

6
K

ffiffiffiffiffiffiffiffi
805

p

630
C

ffiffiffiffiffiffiffiffi
133

p

63
;
2

9
K

ffiffiffiffiffiffiffiffi
133

p

63
;

1

18
C

ffiffiffiffiffiffiffiffi
805

p

630

K
1

6
C

ffiffiffiffiffiffiffiffi
805

p

630
K

ffiffiffiffiffiffiffiffi
133

p

63
;
2

9
C

ffiffiffiffiffiffiffiffi
133

p

63
;

1

18
K

ffiffiffiffiffiffiffiffi
805

p

630

K
1

6
K

ffiffiffiffiffiffiffiffi
805

p

630
K

ffiffiffiffiffiffiffiffi
133

p

63
;
2

9
C

ffiffiffiffiffiffiffiffi
133

p

63
;

1

18
C

ffiffiffiffiffiffiffiffi
805

p

630

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

Z

0:061; 0:039; 0:011

K0:0287; 0:039; 0:101

K0:305; 0:405; 0:011

K0:395; 0:405; 0:101

8>>>><
>>>>:

9>>>>=
>>>>;

Group A

Group B

Group C

Group D

8>>>><
>>>>:

9>>>>=
>>>>;

(3.12)

Using each of the parameter sets given in Eq. (3.12), the new equations will yield the

dispersion Eq. (3.11), but as discussed in Section 3.2.2, only one set is appropriate for

giving accurate super and sub harmonic transfer function.

The results of the celerity ratio C/Cs and the corresponding group velocity ratio Cg=C
s
g

are given in Table 1. We can see that when h/L0%0.5, the error is less than 1%, even when

h/L0Z1.0, the maximum error of C is only 2% and that of Cg is only 11%.
3.2.2. Transfer function of super and sub harmonics

When solving the Eqs. (3.8) and (3.9) for constant water depth by the similar way in

Section 2.4, we can obtain the following expressions:
Table 1

Scaled celerity, group velocity and the shoaling gradients

h/L0 0 0.2 0.4 0.5 0.7 0.8 1.0

C/Cs 1.000 1.000 1.000 1.000 1.004 1.007 1.020

Cg=C
s
g 1.000 1.000 1.001 1.003 1.011 1.043 1.102

as 0.2498 0.0484 0.0840 0.0471 0.0090 0.0035 0.0005

a5 0.2498 0.0511 0.0908 0.0524 0.0084 0.0034 0.0171
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GG
2 ðu1;u2Þ Z

1

h
ðgG

BB CgG
se CgG

h CgG
dis ChgG

hÞ (3.13a)

gG
BB Z

kG

2DG

uGf3ðkGÞ
u1

k 0
1

C
u2

k 0
2

� �
CkGf1ðkGÞ

u1u2

k 0
1k 0

2


 �
; (3.13b)

gG
se ZH

k2
Gh2

2DG

f1ðkGÞ
u1u2

k 0
1k 0

2

� �
k1k2H

1

3
ð1 C3aÞðk2

1 Ck2
2ÞK

1

3
k1k2


 �
; (3.13c)

gG
h ZK

kGh2

2DG

f1ðkGÞ
k1k2

k 0
2

u2
2G

k2k1

k 0
1

u2
1 C

2

3

k2
1

k 0
1

u2
1G

k2
2

k 0
2

u2
2

� �
 �
; (3.13d)

gG
dis Z

c Ca=2

2

k4
Gh2

DG

f1ðkGÞ
u1u2

k 0
1k 0

2

� �
; (3.13e)

�gG
h Z a

uGkGh2

2DG

f3ðkGÞ
k2

1

k 0
2

u1 C
k2

2

k 0
2

u2

� �
C

a

b

� � uGk3
Gh2

2DG

f3ðkGÞ
u1

k 0
1

C
u2

k 0
2

� �
(3.13f)

where

f1ðkÞ Z 1 C a C
b

a

� �
k2h2; f2ðkÞ Z 1 C ðc Ca=2Þk2h2; f3ðkÞ

Z 1 C
1

3
Ca Cc Ca=2

� �
k2h2; f4ðkÞ Z 1 C

b

a

� �
k2h2; k 0

i

Z kif1ðkiÞ=f4ðkiÞ ði Z 1; 2Þ; DG

ZKghk2
Gf1ðkGÞf2ðkGÞCu2

Gf3ðkGÞ$f4ðkGÞ (3.13g)

When a, b/a, cCa/2 are different, then GGðu1;u2Þ will be different. Figs. 4 and 5 give

the different results with different value of a, b/a, cCa/2. From the figures, we know only

the value in Group B can agree well with the Stokes solution compared with the other three

groups, so we will choose Group B as the final solution. Compared with the modified

Boussiensq equations (with bZ1), we can find that the equations in this section have a

better super transfer function for the range of h/L0!0.3, but the sub harmonic transfer

function is only applicable to h/L0!0.3, which is less accurate compared with modified

Boussinesq equations. If we apply the method used in Section 2.4, with a correction

parameter introduced, the sub harmonic transfer function is only applicable to h/L0!0.5.

The maximum error is 13%. The sub harmonic transfer function is still only applicable to

h/L0!0.3.
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+

Fig. 4. Ratio of super harmonic GC
2 ðu1;u2Þ to Stokes solution GC ðu1;u2Þ �GCZGC

2 ðu1;u2Þ

=GC ðu1;u2Þ; u2 Ku1 Z0:1 �u; �uZ ðu1 Cu2Þ=2. / Group A; — Group B with bZ1; - - - Group C; -$-$-

Group D; -$$-$$- Group B with bZ12.1h/L0; — Eqs. (2.1) and (2.23) with bZ1.
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3.2.3. Linear shoaling characteristic

Using the method introduced by Schaffer and Madsen (1995) in Eqs. (3.8) and (3.9a),

we obtain
a1

Ax

A
Ca2

kx

k
Ca3

hx

h
Z 0 (3.14)
From Eq. (3.10) we can obtain the following expression:
kx

k
Z a4

hx

h
(3.15)
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0

0.2
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2

h/L0

G
-

Fig. 5. Ratio of sub harmonic GK
2 ðu1;u2Þ to Stokes solution GK ðu1;u2Þ �GKZGK

2 ðu1;u2Þ

=GK ðu1;u2Þ; u2 Ku1 Z0:1 �u; �uZ ðu1 Cu2Þ=2. / Group A; — Group B with bZ1; - - - Group C; -$-$-

Group D; –$$–$$– Group B with bZ12.1h/L0; — Eqs. (2.1) and (2.23) with bZ1.
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where

a1 hð1 K3b1
�k2
ÞL2L5g1 C ð1 K3b6

�k2
ÞL2

1g2 C2b5L1L2
�k2

g1 C2b2L1L5
�k2

g1;

a2 hKð1 K3b1
�k2
Þ½1 C ðb2 K3b1Þ �k

2
Cb1b2

�k4
�L5L6 C ðb5L2g1 K3b6L1g2

K4b2b5
�k2

g1ÞL1
�k2

Cb2L1L5
�k2

g1 K2b5ð1 K3b1
�k2
ÞL2

�k2
g1 K3b1L2L5

�k2
g1;

a3 hð1 K3b1
�k2
Þ½2ðb1L2 Kb2L1Þ �k

2
KL1L2�L5L6 CL2L3L5g1

C ½ðb7 K2b5ÞL1L2g1 Kb8L2
1g2 C4b5ðb1L2 Kb2L1Þ �k

2
g1� �k

2
Cb4L1L5

�k2
g1

a4 hðg1g2 C ĝÞ=ð2g1g2 C ĝÞ; ĝh2 �k2
½ðb2L5 Cb5L2Þg1 K ðb1L6 Cb6L1Þg2�;

�k hkh; Li h1 Kbi
�k2

ði Z 1; 8Þ; g1 hL1L6; g2 hL2L5:

From Eqs. (3.14) and (3.15) we have

Ax

A
ZKa5 hx

h
(3.16a)

a5 Z
a3 Ka2a4

a1

(3.16b)

where a5 is the linear shoaling characteristics of the Eqs. (3.8) and (3.9). Properly

choosing the parameters a2, b2 and a, we can make a5 match the Stokes solution as from

shallow water to deep water. And the expression of the Stokes solution as is

as Z
P

ð1 CPÞ2
1 C

1

2
Pð1 Kcosh 2khÞ


 �
(3.17)

where PZ2kh=sinh 2kh

1

2p

ð2p

0
ða5 KasÞ2dðkhÞ Z min (3.18)

Eq. (3.18) means that the mean square error a5 over the water depth range of 0!h/

L0%1.0 will be minimal. So we can obtain

a2;
b2

a
;a

� �
Z ðK0:0220;K0:0191; 0:2386Þ (3.19)

Other parameters are

ða1; a2; b1; b2; c1; c2Þ Z ðK0:0067;K0:0220;K0:0017; 0:0005;K0:020; 0:0016Þ

(3.20)

In fact, c2 is not an independent parameter. It is determined by c2 Zb2=ðaC1=3Þ. The

comparisons of a5 and the Stokes solution as are listed in Table 1. From the table, we can

see that a5 matches as well from shallow water to deep water. The shoaling property is

more accurate over the wide range of 0!h/L0!1.0.
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4. Conclusions

From the classical Boussinesq equations, we derived two sets of Boussinesq equations.

The dispersion of the modified Boussinesq-type equations is accurate to O(m4) and that of

further enhancement of the modified Boussinesq equations is accurate to O(m8). The

shoaling characteristics of the two different Boussinesq equations are different: the former

is applicable to h/L0!0.476 and the latter is to h/L0!1.

The super and sub harmonic transfer function of the two set Boussinesq equations are

different. The latter is more accurate in super harmonic transfer function for h/L0!0.3, but

the former is more accurate in sub harmonic transfer function for h/L0!0.5 with the

parameter b being 1. If we choose bZ12.1h/L0 for the modified Boussinesq equations, both

the super and sub harmonic transfer function will be accurate over wide range of h/L0!0.5.

The maximum error is 14%. If we choose the parameter bZ12.1h/L0 for the Boussinesq

equations with six parameters, the super harmonic transfer function will be accurate over

wide range of h/L0!0.5, and the maximum error is 13%. But the sub harmonic transfer

function will be accurate over h/L0!0.3, and the maximum error is 20%.
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