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Abstract

Based on the classical Boussinesq model by Peregrine [Peregrine, D.H., 1967. Long waves on a
beach. J. Fluid Mech. 27 (4), 815-827], two parameters are introduced to improve dispersion and
linear shoaling characteristics. The higher order non-linear terms are added to the modified
Boussinesq equations. The non-linearity of the Boussinesq model is analyzed. A parameter related to
h/Ly is used to improve the quadratic transfer function in relatively deep water. Since the dispersion
characteristic of the modified Boussinesq equations with two parameters is only equal to the second-
order Padé expansion of the linear dispersion relation, further improvement is done by introducing a
new velocity vector to replace the depth-averaged one in the modified Boussinesq equations. The
dispersion characteristic of the further modified Boussinesq equations is accurate to the fourth-order
Padé approximation of the linear dispersion relation. Compared to the modified Boussinesq
equations, the accuracy of quadratic transfer functions is improved and the shoaling characteristic of
the equations has higher accuracy from shallow water to deep water.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical Boussinesq equations (Peregrine, 1967) only incorporate weak dispersion
and weak non-linearity, and are only valid for simulating long waves in shallow water.
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To extend the applicable range of the equations, many new forms of Boussinesq-type
equations have been developed in the past two decades. Witting (1984) presented a set of
Boussinesq equations valid only for a single horizontal dimension. Madsen and Sgrensen
(1992) introduced a new set of Boussinesq equations with improved linear dispersion
characteristics for slowly varying bathymetry in which the depth-integrated velocities are
used in the momentum equations. Nwogu (1993) derived an improved Boussinesq model
in which the horizontal velocity at an arbitrary depth is used as a dependent variable.
Wei et al. (1995) developed the Boussinesq equations of Nwogu (1993) through improving
the non-linearity accurate to O(u?). Beji and Nadaoka (1996) gave a new set of Boussinesq
equations by adding and subtracting a dispersion term in the momentum equations.
Zou (1999) derived high order Boussinesq equations by introducing an artificial velocity
and mild slope assumption. Each model is different in the form and arrangement of
dispersion terms. But all lead to the second-order Padé approximation of the full
dispersion relation of linear waves. There are still other higher order Boussinesq models
with better dispersion relation and improved non-linearity (e.g. Agnon et al., 1999; Zou,
2000; Gobbi and Kirby, 2000). Among these Boussinesq equations, a typical and
relatively simple method to derive Boussinesq model was introduced by Beji and Nadaoka
(1996). However, the equations only have the same weak non-linearity as the classical
Boussinesq equations. In order to improve the non-linearity in Boussinesq equations, we
add higher order terms accurate to the order of O(eu?). It is relatively easy to improve the
linear dispersion and linear shoaling characteristics compared to the improvement of the
non-linear property of the Boussinesq-type equations. In this paper, a correction parameter
linear to h/Ly, (where h is the water depth and L, is the wavelength in deep water) is
introduced to improve the quadratic transfer functions in relatively deep water instead of a
constant parameter in the higher non-linear term (Zou, 1999).

Two higher order Boussinesq equations are presented in this paper. One is modified
Boussinesq model with higher order non-linearity in Section 2. In Section 2.1 two
parameters are introduced to improve the shoaling characteristic based on the classical
Boussinesq equations for varying water depth. Dispersion and shoaling characteristics of
the equations are given in Section 2.2. Higher non-linear terms are added to the modified
Boussinesq model in Section 2.3. A correction parameter is introduced to improve the
quadratic transfer functions in relatively deep water in Section 2.4. In Section 3, the further
modified Boussinesq equations are derived. Finally, conclusions are given in Section 4.

2. The derivation of the modified Boussinesq-type equations

2.1. Extended Boussinesq equations

The expression of the classical Boussinesq equations by Peregrine (1967) is

n+V-[(h+ma] =0 (2.1)

i, + @V + gy = %hV[V-(hﬁ,)] — éth(V-ﬁt) 2.2)
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where & = (u, v) is two-dimensional depth-averaged velocity vector and 7 is wave surface
elevation; h=nh(x,y) is still water depth and g is gravitational acceleration; V is two-
dimensional gradient operator in a horizontal plane.

By an elementary addition and subtraction process, Eq. (2.2) can be written as

@, + @ Vya+ghn
= %h(l + )V [V - (hil,)] — %ahV[V(hli,)] — %hz(l + V)V (Vi)
+1hzy|7(|7~a,) (2.3)

6

where o and vy are two constant parameters to be determined.

Peregrine (1967) and Beji and Nadaoka (1996) suggested that the linear relation be
used in the higher order derivative terms in the equations. Neglecting the higher order and
the non-linear terms, we can obtain

n, +V-(hil) =0, i@, +gVn=0 2.4)

We use the second equation of Eq. (2.4): #, = —gVn to replace the terms proportional to
a and vy in Eq. (2.3) and obtain

i, + @ V)i + gVn
= %h(l + V[V - (hii,)] + %aghV[V'(hVn)] — éhz(l + YWV -i,)

1
- gthY 7(7*n) (2.5)

If « and v are equal, the extended Boussinesq equations will be changed to those of Beji
and Nadaoka’s (1996). Hereafter, we call the equations BN model.

2.2. Dispersion and linear shoaling characteristics of the extended equations

Neglecting non-linear terms in Egs. (2.1) and (2.5) yields the following dispersion
relation
w? kh[1 4 (o —2y)k*h?]

Y - 2.6
gk [1+30 + 0k — L1 + yk*h] @0

where w is the angular wave frequency, k> = k2 + k? and k., k, are the component of the
wave number vector k in x- and y-direction, respecﬁvely.

The expression of « and +y can be determined from the second-order Padé expansion of
the linear Stokes dispersion relation w?/gk = tanh(kh):

kh + KR35

)
T ko 27
gk 14215 @7
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Fig. 1. Comparison of the Shoaling gradient with analytical solution. (1) Linear Stokes wave, (2) Present model,
(3) BN model.

By comparison of Eq. (2.6) with Eq. (2.7), we can obtain an expression
(1/2)ac— (1/6)y = (1/15). Yet the value of a and vy is still unknown. By a further
comparison between the linear shoaling characteristic of the extended Boussinesq
equations and that of the linear Stokes waves, the two parameters are optimized to be
a=0.1308, 8= —0.0076. The detailed derivation method of the linear shoaling
characteristics is referred to Schaffer and Madsen (1995). The extended equations are
applicable to the water depth up to 4/L,=0.476 comparing with the depth //Ly=0.25 for
BN model. Fig. 1 shows the linear shoaling gradient comparison among the present model,
BN model and the linear Stokes waves. From Fig. 1, the agreement of the present model is
satisfactory.

2.3. The higher order non-linear terms

Eq. (2.5) only covers the lowest non-linearty terms. The non-linearity of Eq. (2.5) is
identical to the classical Boussinesq equations. To improve the higher-order non-linearity,
a strict mathematical derivation is applied here. We start the derivations with the simple
case of a horizontal bottom. A Cartesian coordinate system (x,y,z) is adopted with the
origin being located at the still water level and z-axis pointing vertically upward. The fluid
is assumed to be incompressible and inviscid, and the flow is assumed to be irrotational.
The independent and dependent, non-dimensional variables are defined as

r_ X r_ Y r_ % gh / A r M
=—, ==, =,  =—1, =¢/| —L+\/gh ), =— 2.8
X= Y= =g i3 ¢ d)(h \/g> n= (2.8)

where g is the gravitational acceleration, /4 is water depth, and L, A are the characteristic
wave length and characteristic wave amplitude, respectively. Non-dimensional governing
equations can be expressed as (the superscript is omitted in the flowing derivation)

W+ ¢, =0, —1<z<en (2.9)

W, + Vo) =6, z=en (2.10)
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1
1, + 1) +§e(u2|l7¢|2 +¢) =0, z=ey @2.11)
¢, =0, z=-1 (2.12)
9% 9%
=5+ 2.1
axz + ayZ ( 3)

where ¢e=A/h and u="h/L are the non-linearity and dispersion parameters, respectively.
We assume that O(¢) = O(u?) < <1 to study the water wave motion of Boussinesg-type
Equations.

Since ¢ is an analytic function, it can be expanded as Taylor series in terms of z around
seabed z= —1. When Eq. (2.9) and the boundary condition Eq. (2.12) are satisfied, we
obtain

2 4
2 0
06y, 2,0 = o =5, (2 F D*72¢, + TEC D*P27% ¢ + O(u®) (2.14)
where ¢o= ¢o(x,y). Substituting Eq. (2.14) into Eq. (2.11), taking the gradient V of the
resulting equation and applying the definition of u, = V¢, at seabed with the denotation of

V2uy =V (V -u,) yields

1 1
uo, + e Vg + 7 — wrd*Vug, — wrdvav -ug, + o wrd* v ru,
1
+5 W’ V[—d*uy-Vuy + d*(V -up)*)

= O(u®, eu*) (2.15)

where d is the total water depth: d = 1 + en. Introducing depth-averaged velocity & =
1/d [ V¢ dz and using Eq. (2.14), we have

pwrd* a4+ o(u®) (2.16)

R Y
= — v
ug u+3!,ud u+3><5!
Substituting Eq. (2.16) into Eq. (2.15) for i yields
1 1
i, +e@ V)i +Vn+G = wrd*via, + Eu“d“vz 7, + O(ul, en)  (2.17a)
where

2 d2 —\2 d2 — 2 - 1 2 — _
Gy =\ V|Z (V) —5-a72a| +dn, PPa —dV 7 -4, (2.17b)

The fourth spatial derivative in Eq. (2.17a) would bring difficulty to the numerical
computation. This problem can be solved by neglecting the O(eu? u*)) terms in Eq. (2.17a)

1
i, +e@Vya+vy= g,fdz 72, + O(ep?, ut) (2.18)
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The fourth spatial derivative in Eq. (2.17a) can be expressed by the left-hand size terms
of the Eq. (2.18) and then we can get

i, +e@ V)i + vy + G,
1 1
=3 wrd*vta, + T W d* V@, + V) + OCep’ - u®) (2.19a)

and

d* 1
3 i Vi —%Vz(ﬁ-ﬁ) + 3 dn, 7u —anV-a,}

2 2
G, = e,u2{l7{d7(l7-12)2 —d—
(2.19b)

The expressions (& -V)u = % V@a-u)—ua XV Xa and V Xia= O(e,uz) are used in the
above derivation.

The continuity equation can be derived by substituting Eq. (2.14) of the potential ¢ into
Eq. (2.10) and we can obtain

n, +V-(di) =0 (2.20)

The term 7, in the non-linearity terms G can be rewritten by using Eq. (2.20),
Egs. (2.20) and (2.19) with dimensions can be written as

n,+V-(di) =0 (2.21)
_ - . h_,
u, +@-Vui +gl7n+G=?l7 u; +EV @@, +gVn) (2.22a)
and
Pl _ 5 1 5] _
G=VFV 3 V-@) —u-Vu—EV @-a)| p —Vndl-a, (2.22b)
or
G=V & _(V-ﬁ)z—ﬁ-Vz'—LVz(ﬁ'ﬁ)_
3| 10 ]
1 _ 1 _ _
—Vn [dV'ut -3 V'uV'(du)] — g(Vn-u)V(dV-u) (2.22¢)

Comparing Eq. (2.22a) with Eq. (2.5) and adding higher non-linear terms O(eu?) to Eq.
(2.5) we obtain

u, +@-Vyim+gln+G

Lot + V[V - (hii,)] + %aghV[V-(hVn)] — éhz(l + VP (7 -@,)

(S

1
— gthYV(Vzn) (2.23a)
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_ P I S N N A Y 2 _
G—V{3 [(V-u) —av _E(E_E)V (u-u)]} — P (7-a)
— WPV -a, (2.23b)

In order to improve the non-linear property, a correction parameter 8= 12.1h/L, is
introduced in the higher non-linear term:

_ P S S BN T A Y U 2 _
G—V{? [(V-u) —a-v —Eﬁ(E—E)V(u-u)]}—gth(V-u,)

— hVnV-u, (2.23¢)

2.4. Transfer function of super and sub harmonics

For a bichromatic wave train, the following first order equations of (2.1) and (2.23) is
assumed to be

1N, = A; cos(kix — wt) + Ay cos(kox — wot) (2.24)
By the first order equations of (2.1) and (2.23), we can obtain
w w
u = kl_;1A1 cos(kyx — wyf) + kz—ZAZ cos(krx — wot) (2.25)

where A;, w;, k; (i=1,2) are the amplitude, wave frequency and wave number. From
Egs. (2.1)—~(2.23) for constant depth, we can obtain the second order equations

1
Ny = A]AZG%((L)I, O)z)COS(kix - (,L)it) + EA%G;((L)l, (L)Z)COS 2(k1x - (,L)lt)

1
+ §A§G2+(w2, w,)cos 2(kyx — woi) (2.26)

where k. = k) + ky, g = w; + W, G%” = (w;, w,) is the quadratic transfer function with the
following expression

1
Gy (W, ) = E(é%s +gh+ ﬁ + Bgsy) (2.27a)
where
+ ki 2500\ (w1, o 150\ wiw
= o (12 ) (2 | +—12h 227b
5 = 2D, [”i( sk )(k] +k2>+ki< sk )klkz] (2:270)
L P22 ) (292 o FL 2 + 1) — Lkk (2.27¢)
= 1op, 57 ki thtz k) —Fkk .

1 2
. (1 +Ek;h2> [klwéikzoﬁ +§(k1w%ik2w§)] (2.27d)
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Fig. 2. Ratio of super harmonic Gj(w;,w,) to Stokes solution G+ (w;,w,) G+ =G} (w,w,)/
G+ (w1,0,), Wy —w; =0.10, ®=(w; + w,)/2. Egs. (2.1) and (2.23) with 8=1 (solid); Eqgs. (2.1) and (2.23)
B=12.1h/L, (dash-dotted).

212
4 kih L 55\ (wiw
ke 2.27
s 30D4 ( i 15 = ) <k1k2 > (2:27¢)
1 2
Dy = —ghk%<1 +E/c%h2> + w_%<1 +§k%h2) (2.27f)

Figs. 2 and 3 are the comparisons between the present model and the Stokes solution.
From the figures, the super harmonic of the present model with 3=1.0 deviates from the
Stokes solution quickly with the increasing of water depth. But when introducing
B=12.1h/Ly, even for h/Lo=0.5, the super harmonic can well agree with the Stokes
solution and the maximum error is 14%. As for the sub harmonic, the present model can
well agree with the Stokes solution up to the water depth 4/Ly=0.5.
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Fig. 3. Ratio of sub harmonic G;(w;,w,) to Stokes solution G— (w;,w,) G—=G;(w,w,)/
G—(w1,0,), wy—w; =010, @=(w;+ wy)/2. Egs. (2.1) and (2.23) with 8=1 (Solid); Egs. (2.1) and
(2.23) B=12.1h/L, (dash-dotted).
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3. Further improvement of the modified Boussinesq-type equations

3.1. Derivation of the equations

The dispersion of the modified Boussinesq-type equations with two parameters is only
to the accuracy of O(u*) and the maximum range of the shoaling characteristics is only
h/L=0.476. To further improve the dispersion and linear shoaling characteristic of the
equations, a new velocity variable # is introduced to replace the depth-averaged velocity i

i =i —ayu’h* V% — au’hV>(hit) — by B V0% — bou* i v (i) (3.1

where a,, a,, b; and b, are four parameters to be determined. Eq. (3.1) is accurate to O(p,4),
which is the same in order of approximation as the velocity for the modified Boussinesq-
type equations in Eqs. (2.1), (2.23a) and (2.23b). To simplify the equations, we consider a
mildly sloping seabed and employ the mild slope assumption i = O(u?).

Substituting Eq. (3.1) into the non-dimensional expression of Egs. (2.1) and (2.23)
leads to

N, + V- [(h +eni]
= a 1’V -[(h + emh* Vi) + a,V - [(h + en)hV*(hii))
+ b WtV (PVPVR) + byt V- [PV ()] + O, 1) (3.2)
i, +e@ Vyi+Vn+G
=(a; — é)uth v(V-i,) + (a2 + %) WrhV IV - (hii)]

_

+
6

WRVIV - @, + V)l + % WV [V - (hii, + hVn)]
1
+ {b, - 5(a, + az)] wh v, 4 byt RV (i) + O u?, 1’ (3.3a)

1 3
G = gs,qu{hz {(V'ﬁ)z — (U 3@ + @) P~ (% - %) 172(12-12)] }

2
- ge,uzth(V-ll,) — el’hV gV -i,
(3.3b)

In order to remove the fourth spatial derivatives in the above equations, neglecting the
O(e,uz,,u4) terms in Egs. (3.2), (3.3a) and (3.3b) gives

0+ V-[(h+ eni] = (a) + a7 -(F2i) + Oep®, u*) (3.4)

N+ V- [(h + en)ii] = (a, + a)p’ V- [V (Ri)] + Oen®, u*) (3.5)
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1
i, +e@Vyia+ vy = <§ +a, + a2> WV (Vi) + O(ep?, u*) (3.6)

1
i, + @@ Vya+Vn = (E +a, + a2> VIV - (h*d,)] + O(en?, u*) (3.7)
Substituting Egs. (3.4)—(3.7) into the fourth spatial derivatives in Egs. (3.2), (3.3a) and

(3.3b) and using the relation (@& V)i = (1/2)V(G-u)—d XV Xd and V Xid= O(e,uz)
gives the flowing equations expressed in dimensional form:

e+ VI + )il = aV-[(h + PV (V)] + a7 -[(h
+ n)hV(V'(hﬁ))H% VARV, + V- ((h + mi)]}

4 % P AV, + 127 (0 + i)} (3.8)

i, + @ V)i +gVvn +G
N, 1 N > 3
= (@ =g |0V -a) + (@ + 5 | APV (i) + e VIV (@,

+ gV + &, VIV -(h*d, + gh* V)] + %hV[V-(hﬁ, + ghVn)] (3.92)

The expression of G is accurate to O(e,uz)

_ oo e iy — 2 (ot O\ 2
G —gV{h {(17 @)’ — (1 +3a)i- (V) — (c+ 2)17 (i u)”
—%th(Vﬁ,) — WPV &, (3.9b)

a=al+a2, bzb]+b2, C=C1+C2; Cq
= —v/6 + (by — al3)/(a + 1/3), ¢, = by/(a + 1/3) (3.9¢)
Egs. (3.8), (3.9a) and (3.9b) are the new form of the higher order Boussinesq equations
in terms of the new velocity vector .

3.2. Properties of the new form of the equations

In this section, we will determine the six parameters contained in the new derived
equations by investigating the dispersion, non-linear characteristics and shoaling property
of the equations.

3.2.1. Linear dispersion characteristic
Using the method introduced by Schaffer and Madsen (1995), we can obtain the
following dispersion relation for Eqs. (3.8) and (3.9):



1306 Z.B. Liu, Z.C. Sun / Ocean Engineering 32 (2005) 1296—1310

_ o [1 + (a + bl K [1 + (¢ + a/2)k*R?]
12 ST+ Gl + (13 + a + ¢ + dl2)kPH]

c’ (3.10)
Comparing with the following expression of the expansion of the linear Stokes
dispersion

tanh kh _ 1+ (1/9)k*h* + (1/945)k*h*

C%? =gh
) = & = 8" T o + (63

+ O(k'n'%) (3.11)

the value a,b/a and c + «/2 can be obtained by choosing the parameters (a, b/a, c + a/2) in
Eq. (3.10) to match fourth-order Padé expansion in Eq. (3.11), and the following four sets
of the solutions can be obtained

_ 1 B05 V133 2 V133 1 4805

6 ' 630 63 9 63 18 630

_1_ V805 V133 2 V133 1 VB80S

(a,é,c—i-a/Z) _ 6 630 63 9 63 18 ' 630
a _l+\/§()§_\/@g+ 133 1 /805

6 ' 630 63 9 63 18 630

1 BO5  iI33 2 V33 i+\/%

6 630 63 "9 ' 63 18 ' 630

0.061,0.039,0.011 Group A

—0.0287,0.039,0.101 | | Group B a1
"~ ] —0.305,0.405,0.011 [ ] Group C '

—0.395, 0.405,0.101 Group D

Using each of the parameter sets given in Eq. (3.12), the new equations will yield the
dispersion Eq. (3.11), but as discussed in Section 3.2.2, only one set is appropriate for
giving accurate super and sub harmonic transfer function.

The results of the celerity ratio C/C® and the corresponding group velocity ratio C,/Cy
are given in Table 1. We can see that when h/Ly<0.5, the error is less than 1%, even when
h/Ly=1.0, the maximum error of C is only 2% and that of C, is only 11%.

3.2.2. Transfer function of super and sub harmonics
When solving the Egs. (3.8) and (3.9) for constant water depth by the similar way in
Section 2.4, we can obtain the following expressions:

Table 1

Scaled celerity, group velocity and the shoaling gradients

hiLy 0 0.2 0.4 0.5 0.7 0.8 1.0
cice 1.000 1.000 1.000 1.000 1.004 1.007 1.020
C,/Cy 1.000 1.000 1.001 1.003 1.011 1.043 1.102
o® 0.2498 0.0484 0.0840 0.0471 0.0090 0.0035 0.0005

o’ 0.2498 0.0511 0.0908 0.0524 0.0084 0.0034 0.0171
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1
Gy(w1,w2) = (888 + & + &5 + Lais + gy (3.13a)
+ k+ [aNa%
gBB = w j3(k+) k/ + kyfi (k) Tk (3.13b)
12
th 1
g = ki ﬁ(h)(uli};jz) {k k2+ (1 +3a)k3 + k) — kkz}, (3.13¢)
12
T = _kih2f (k) kiky w2+k2k1 w? —I—z k—%wz-i-k—%cf (3.13d)
&7 Top Y T T O T3\ ) | '
+ c+ 0[/2 k_;,_hz W1y
= 1
e n? K2 K3 w ki n? Lo
&y = m f;(lq)( l+k—’j‘w2> +(b) Pk fa(k-I—)< kf) (3.13f)
2 2
where

fitk)y =1+ <a + S) KR, fo(k) =1+ (c + al)k*R?,  f3(k)

=1+ G +a+c+ a/2> KR, fuk) =1+ (3> KCh?, K
a
= kifi(k)fak)) (i =1,2), Dy

= —ghldf, (k)fo(ky) + whfs(ke) folks) (3.132)

When a, b/a, ¢+ af2 are different, then Gy (w;, w,) will be different. Figs. 4 and 5 give
the different results with different value of a, b/a, ¢ + /2. From the figures, we know only
the value in Group B can agree well with the Stokes solution compared with the other three
groups, so we will choose Group B as the final solution. Compared with the modified
Boussiensq equations (with 3=1), we can find that the equations in this section have a
better super transfer function for the range of h/L,<<0.3, but the sub harmonic transfer
function is only applicable to h/L,<<0.3, which is less accurate compared with modified
Boussinesq equations. If we apply the method used in Section 2.4, with a correction
parameter introduced, the sub harmonic transfer function is only applicable to h/L;<<0.5.
The maximum error is 13%. The sub harmonic transfer function is still only applicable to
h/Ly<0.3.
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3.2.3. Linear shoaling characteristic
Using the method introduced by Schaffer and Madsen (1995) in Egs. (3.8) and (3.9a),
we obtain

A k h
0(1%“‘0[2%"‘&3%:0 (314)

From Eq. (3.10) we can obtain the following expression:

=~

ke gl
k 4

; (3.15)
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Fig. 5. Ratio of sub harmonic G, (w;,w,) to Stokes solution G—(w;,w,) G—=G;(w;,w,)
/G — (w1, ), Wy — w; =0.10, ®= (w; + wy)/2. -+ Group A; — Group B with 3=1; --- Group C; -----
Group D; —- -—+-— Group B with §=12.1h/Ly; — Egs. (2.1) and (2.23) with =1.
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where
oy =(1 =381k M Asg) + (1 — 366k Mgy + 2654, 4,k g1 + 28,4, A5k g1,
oy =—(1 =36, K01 + (B, — 38K + 8162k 14545 + (BsAagi — 366018
— 48,85k gV AK” + BrAy A5k’ gy — 2B5(1 — 36,k M,k g, — 38, M, 45K g,
oy = (1 = 36,K0)[2(8145 — B ADK — 4,451 454 + A, 43458,

+ [(B7 — 2B5) 4, Aagy — BsATgs + 4B85(81 4y — BrADK g 1K + By, Ask g,

s =(818 +8/(2818, +8), & EZEZ[(ﬁzAs + Bs45)g1 — (8146 + BeA1)g2],
k=kh, A,=1—8k (i=18), g =045 g =As.

From Eqgs. (3.14) and (3.15) we have
A, h
X —0(5 x

e Y (3.16a)

o =83 e (3.16b)
o
where o’ is the linear shoaling characteristics of the Eqs. (3.8) and (3.9). Properly
choosing the parameters a,, b, and «, we can make o> match the Stokes solution &° from
shallow water to deep water. And the expression of the Stokes solution &’ is

P 1
$=——— |1+ =P — cosh 2kh 3.17
“ (1+P)2[ g PU1 — cosh 2 @17
where P = 2kh/sinh 2kh
1 (> ,
o= L (@ — o*)*d(kh) = min (3.18)

Eq. (3.18) means that the mean square error o’ over the water depth range of 0 <A/
Lo < 1.0 will be minimal. So we can obtain

b
(az,gz, a) = (—0.0220, —0.0191, 0.2386) (3.19)

Other parameters are
(ai,ay, by, by, cq,cy) = (—0.0067, —0.0220, —0.0017, 0.0005, —0.020, 0.0016)
(3.20)
In fact, ¢, is not an independent parameter. It is determined by ¢, = b,/(a + 1/3). The
comparisons of o’ and the Stokes solution o are listed in Table 1. From the table, we can

see that o® matches o well from shallow water to deep water. The shoaling property is
more accurate over the wide range of 0 <h/Ly<1.0.
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4. Conclusions

From the classical Boussinesq equations, we derived two sets of Boussinesq equations.
The dispersion of the modified Boussinesqg-type equations is accurate to O(u*) and that of
further enhancement of the modified Boussinesq equations is accurate to O(u®). The
shoaling characteristics of the two different Boussinesq equations are different: the former
is applicable to h/Ly<<0.476 and the latter is to h/Ly<1.

The super and sub harmonic transfer function of the two set Boussinesq equations are
different. The latter is more accurate in super harmonic transfer function for /L, <0.3, but
the former is more accurate in sub harmonic transfer function for h/Ly<0.5 with the
parameter (8 being 1. If we choose = 12.1h/L, for the modified Boussinesq equations, both
the super and sub harmonic transfer function will be accurate over wide range of h/L;<0.5.
The maximum error is 14%. If we choose the parameter 8= 12.1h/L, for the Boussinesq
equations with six parameters, the super harmonic transfer function will be accurate over
wide range of h/Ly<0.5, and the maximum error is 13%. But the sub harmonic transfer
function will be accurate over h/Ly<0.3, and the maximum error is 20%.
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