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Technical note

Is the wind wave frequency spectrum outdated
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Abstract

This paper presents a detailed examination of the practice of using the frequency spectrum
to characterize wind waves. In particular, the issue of stationarity and Gaussian random process
in connection with wind wave studies is addressed. We describe a test for nonstationarity
based on the wavelet spectrum. When this test is applied to wind wave time series, the results
significantly diverge from those expected for a Gaussian random process, thus casting critical
doubts on the conventional concept of the wind wave frequency spectrum. 1999 Published
by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Posing the title of a paper as a question usually implies a definitive answer is at
hand. This is not necessarily the case here. The question is only an attempt to call
attention to some of the recent developments in wind wave spectrum analysis. The
concept of frequency spectrum analysis was first introduced to ocean wind wave
studies around 1950. Over the following five decades, Fourier spectrum analysis was
the standard procedure used by atmospheric and oceanic scientists as well as coastal
and marine engineers to analyze and predict wind-generated ocean waves.

The long lasting usefulness of wind wave spectrum analysis is clearly not acciden-
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tal but well warranted. Here are some of the notable successes of wave spectrum
analysis:

O The wave spectrum provides an appropriate representation of energy distribution
at the ocean or lake surface.

O The wave spectrum encompasses all the Fourier components of a spatially homo-
geneous and temporally stationary wave field.

O Most of the common measures of wind wave characteristics are conveniently
related to the moments of a wave frequency spectrum.

O The concept of wave spectrum has also contributed significantly to progress in
numerical modeling for wind wave predictions.

The emerging application of the wavelet transform and time–frequency analysis
and the advent of simultaneous wind and wave measurement at the same high resol-
ution, however, have cast a wary shadow over the conventional notion of a wind
wave frequency spectrum. Fourier-transformed spectral information in the frequency
domain can conceal the information about the temporal variability of wave activity.
The wave frequency spectrum simply cannot provide spectral information on actions
occurring at any specific time of interest within the time series. The lack of infor-
mation about the time localized spectra has generally been taken for granted for
practical reasons. However, ignoring the temporal variability of the spectrum can
suppress the details of crucial local processes occurring at short time scales. To offset
this difficulty, almost all the analyses and published studies have basically contended
that the wave field was practically a stationary Gaussian random process. On the
other hand, the professed stationarity clearly contradicts the well-known and well-
established observable fact that wind waves always appear in groups, i.e., higher
waves occur in successively separated sequences. It is certainly not unreasonable to
assert that stationarity and wave grouping cannot coexist in the same wave field;
therein lies the problem with the traditional wind wave frequency spectrum.

The wavelet analysis is an approach of more recent inception (Daubechies, 1992).
Initially aimed at providing an easily interpretable visual representation of signals,
it has evolved as an effective alternative to the standard Fourier analysis (Combes
et al., 1989). Based on wavelet analysis of continuously recorded simultaneous wind
and wave measurements made in Lake Michigan and in the Pacific Ocean, this paper
attempts to examine the fundamental assumptions associated with the concept of the
wave frequency spectrum. In light of the practical applications of wavelet time–
frequency spectrum analysis to the wind waves, it appears likely that the answer to
the question posted by the title of this paper is yes, the wind wave frequency spec-
trum is probably now outdated.

2. The genesis of the wind wave frequency spectrum

The period from the late 1940s to the early 1950s perhaps marked the beginning
of the modern study of wind waves and the era of wave frequency spectrum. Notably,
Barber and Ursell (1948) published the first measurements and analysis of ocean
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wave spectra, and Pierson and Marks (1952) adopted the works of Tukey (1949)
and introduced power spectrum analysis to the ocean wave data analysis. Now five
decades later, and with the development of the Fast Fourier Transform (FFT) tech-
nique, spectrum analysis has become a routine starting point for any time series data
analysis. But in the early day the adaptation of spectrum analysis to wind wave
studies was by no means simple and straightforward.

Kinsman (1965) described the conceptual struggles that were encountered at the
time before the wave frequency spectrum approach was applied:

1. The conviction that the problem of bringing law to the confusion of the sea was,
in its essence, a statistical problem. This required a firm departure from the classic
approach to waves and commitment to the then-new-and-unfamiliar discipline of
stochastic processes.

2. The realization that even under the new formulation the motion obeys the classical
equations. This is not trivial. There is no a priori reason to suppose that a statistic
must propagate in the classical manner. In fact, there are some which do not.

3. The identification of the energy spectrum as the ordering and governing principle
in the apparent confusion.

4. The conception that the space–time function describing a given sea state must
have a certain multivariate probability structure which, if stationary, can depend
only on time and space coordinate differences.

It seems that in the beginning, adapting of stochastic process and energy spectrum
as the practical approach to follow required conviction and commitment, but every-
thing was basically uncertain. It was amply clear, however, that using the energy
spectrum should be the approach to follow, and the conceptual basis required the
process to be stationary.

Decades later, in a recent definitive publication that summarized the current state-
of-the-art knowledge of wind waves and modeling, Komen et al. (1994) echoed and
elucidated those earlier viewpoints as

In practice one never considers the deterministic initial value problem for a
realistic sea basin. The reason is that it is virtually impossible to determine the
Fourier modes with the correct phases. To overcome this problem one resorts to
a statistical description

and emphasized that in so doing “it is essential that the wave field is statistically
stationary and homogeneous” while “the probability distribution of the sea surface
is nearly Gaussian”. Thus, Komen et al. further secured the notion that thewave
spectrumis still the basic element of wind wave processes, just as it was identified
in the early years.

So in essence, the application of wave spectrum analysis and the subsequent
numerical wave modeling developments all initially stem from an approach that was
basically a recourse for convenience and expediency rather than for intrinsic and
deterministic dynamical reasons. This certainly does not preclude us from pursuing
other possible approaches, now or in the future. The fundamental assumption that
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the wave process is stationary and Gaussian should not be taken for granted. In
practical applications, however, it is usually expected or assumed that the require-
ment is generally fulfilled. But efforts to check the process to ascertain whether the
required conditions actually exist have been rarely carried out.

3. Wind wave frequency spectrum and wind wave wavelet spectrum

Spectral analysis transforms a time series of instantaneous water surface measure-
ments into an energy spectrum in the frequency domain. If the water surface measure-
ments represent wind wave data, then the distribution of wave energy with respect
to frequency, the frequency corresponding to the peak energy, the total energy, and
various spectral moments can all be readily obtained from the frequency spectrum.
What the frequency spectrum does not provide, however, is an indication of the
variability of the various energy measures within the time series. In a truly stationary
process, time localization should not be important. But in the real world where sta-
tionarity is only a remote idealization, then time localized information, if needed,
cannot be extracted from a frequency spectrum. This is where the usefulness of the
recently advanced approach ofwavelet transformemerges.

As shown by Liu (1994), Torrence and Compo (1998), and others, wavelet trans-
forms can be considered a broadened extension of the commonly used Fourier trans-
form. Both methods transform the function that is representing the process in one
domain to some different domain. For the Fourier transform, the new domain consists
of basis functions that are sines, cosines, or complex exponential functions. For the
wavelet transform, the new domain contains basis functions called mother wavelets,
or analyzing wavelets, that can be constructed from other specified functions for
particular applications. In the Fourier transform, the basis functions are localized in
the frequency domain. In the wavelet transform, the basis functions are localized in
both the frequency and the time domain. It is this expanded capability in time localiz-
ation that makes the wavelet transform a useful tool for studying nonstationary pro-
cesses.

Fig. 1 presents an example comparing Fourier spectrum and wavelet spectrum
analyses. A typical 10-min time series data of surface wave fluctuations, sampled at
1.7 Hz, is shown in part (a). Its energy frequency spectrum is given by the solid line
curve in part (b). Part (c) is the corresponding time–frequency wavelet spectrum,
calculated using the Morlet wavelet (Liu, 1994). The wavelet spectrum is illustrated
as energy density contours in the two-dimensional time–frequency plane. An average
of the wavelet energy densities in part (c) leads to the equivalent wavelet frequency
spectrum plotted as the knotted curve in part (b) for comparison. Prior to the develop-
ment of wavelet spectrum analysis, if a frequency spectrum like the solid curve in
part (b) was calculated for a particular time series, one probably would envision
some approximately constant energy distribution during the 10-min recording period
similar to the equivalent time–frequency spectrum shown in part (d), instead of the
intermittent quality of the wavelet spectrum as shown in part (c).

The time–frequency wavelet spectrum in part (c) carries more detailed information
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about time variability than the frequency spectrum of part (b), as well as the intuitive
equivalent time–frequency spectrum in part (d). What new information is provided
by the wavelet spectrum? Clearly the energy distribution with frequency is not at
all approximately constant throughout this 10-min recording period. Rather it
increases and decreases intermittently corresponding to the surface fluctuations. The
intermittent nature of wave groupings, an unmistakable characterization of typical
wind wave recordings, is totally hidden in the conventional frequency spectrum. Yet
one basic characteristic of wind waves is really the intermittent quality of wave
groups. Even though we do not currently have a good understanding of wave group-
ings, efforts to explore these grouping characteristics will be the key to improve
understanding of wind wave processes.

4. How do wind waves grow?

Perhaps one of the striking results in the application of the conventional frequency
spectrum analysis to wind waves is the presumed confirmation of the theoretical
exponential growth in wind waves. Based on the measurements of wind waves in
the laboratory and oceans, Plate et al. (1969), Barnett and Wilkenson (1967) and
others showed that by examining the magnitude of the peak-energy frequency
component in a set of growing spectra as a function of time or space, the component
appeared to grow exponentially. The rapid exponential growth of the energy level
tends to slow down and eventually dip slightly, which was characterized by Barnett
and Sutherland (1968) as an “overshoot” effect. Phillips (1977) adopted these results
and postulated the existence of four distinct phases in the development of a wave
component: (1) an initial phase followed by (2) a rapid exponential growth phase
that led to (3) the overshoot phase before (4) the saturation phase was finally attained.
Phillips further commented that:

It would be pleasant if each phase could be associated with a single dynamical
process, but the threads seem often to be more tightly interwoven than this.

The exponential growth of the wind wave spectrum has evolved as the basic, central
element in formulating the source function for numerical wind wave modeling.

To further examine the notion of the wind wave growth process, we will examine
an 8-h continuous time series of wind waves sampled at 1.7 Hz using an instrumented
NDBC buoy in western Lake Michigan. The time series corresponds to a moderate
storm in November 1995 during which wind speeds increased from 8 to 15 m/s and
wind direction was fairly constant. The resulting surface wave fluctuations are
presented in Fig. 2(a). Fig. 2(b) presents the sequence of frequency spectra obtained
from wavelet spectrum analysis every 20 min of data consecutively. The results show
a rather familiar picture of spectral growth of wind waves where the peak-energy
frequency shifts continuously toward the lower frequencies as the energy densities
grow. Now concentrating on the frequency component for which the highest peak
energy is achieved in this episode, its development is plotted on a semi-logarithmic
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stationary processes are well established. Surprisingly, a search of text books as well
as published literature reveals that no simple techniques readily available for
assessing the stationarity of a given time series.

Examining the differences between Fig. 1(c) and Fig. 1(d) has suggested a new
simple test of stationarity. Since the wavelet spectrum in Fig. 1(c) provides the local
frequency spectrum at every time point while Fig. 1(d) gives a constant local fre-
quency spectrum across the time points, the total sum of their differences should be
small if the process is in fact stationary. An index measure can be defined using the
wavelet spectrum for the wind waves asW(vi, tj) in terms of frequency,vi, and
time, tj, and the equivalent frequency spectrum obtained from integrating the wavelet
spectrum with respect to time given by

Fm(vi) 5
1
N ON

j 5 1

W(vi, tj )

where N is the total number of data points. TheNonstationarity Index(N.I.) can
then be defined as
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i

O
j
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Fm(vi)

G2
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Under this definition the N.I. will be a positive number and every time series will
have an N.I. attached to it. A time series with a larger N.I. will be more nonstationary
than the one whose N.I. is smaller. Or alternatively, a time series with a smaller N.I.
will probably be more stationary than the one with a larger N.I. number. It must be
noted here that this is a totally empirical approach, which may or may not be related
to mathematical concepts of stationarity. In general, stationarity is usually a property
of a theoretical process, and a time series is simply a realization of a process that
can either be stationary or nonstationary. On the other hand, a time series with a
relatively large N.I. would not likely be a realization of a stationary process.

Five different time series are selected to evaluate the feasibility of the simple
testing procedure proposed here. These time series consist of a widely used Doppler
signal, a composite of grouped sine waves, actual surface wind wave fluctuations,
actual wind speeds, and a Gaussian random signal. All are set at 28 800 s long, with
a 1.7 Hz sampling rate. A sample segment for each of the five time series is shown
in Fig. 4.

In calculating the nonstationarity indices, each time series is first subdivided into
different segment lengths to calculate their N.I., and then an average N.I. is obtained
for each predetermined segment length. The results, shown in Fig. 5, are presented
as N.I. versus segment length on a log–log scale to encompass all the outcomes.

Without a preconceived notion of what might transpire in the process, the Nonsta-
tionarity Index performed credibly well. The clearly nonstationary Doppler signal
exhibited the highest N.I, which increased exponentially with increasing segment
length. The Gaussian random signal, known to be stationary, exhibited the lowest
N.I., about 1, which was generally unaffected by the segment length, as one would
expect for a stationary time series. The grouped sine wave series also had a high
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N.I. The wave and wind speed time series, however, are the most interesting to this
study. It is a surprise to see that the high-resolution time series of wind speeds turned
out to exhibit practically the same stationarity as a Gaussian random signal. It may
also be a surprise to some that the time series of wind waves was not at all close
to the Gaussian random signal, at least for segment lengths of 5 min or more. Note
that in addition to the measured surface wave fluctuations from eastern Lake Michi-
gan shown in Fig. 4, a separate surface wave fluctuations time series measured by
a NDBC buoy from the Pacific Ocean has also been used in the stationarity test. It
is the second line near the “surface wave fluctuations” label in Fig. 5, close to the
Lake Michigan result.

It is highly significant that the results for surface wave fluctuations in Fig. 5 are
clearly diverging from the results for Gaussian random signal. It shows that a knowl-
edge of the stationarity of a time series is important and it should not be taken for
granted or ignored. It also shows that a wind wave time series is unlikely to be a
realization of the Gaussian random process and the current prevailing concept of
wind waves that is based on describing wind waves as a Gaussian random process
might be very much in question.

6. Concluding remarks

After nearly half a century of dominating wind wave study as the empirical gov-
erning principle, the energy frequency spectrum of wind waves has now undergone
some previously unexplored scrutiny. The emerging availability of new analysis tech-
niques like the wavelet transform has weakened the once uncontended significance
enjoyed by the wave frequency spectrum. Current state-of-the-art models for wind
waves are still based on the frequency wave spectrum concept and still face unsatis-
factory error margins. Based on the results presented here, it may now be necessary
to seek alternative conceptual paradigms for wind waves to make further progress
in understanding wind wave processes. In conclusion, to answer the question posed
in the title of the paper, it is my opinion that the current wind wave frequency
spectrum is outdated.
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