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ABSTRACT

The analysis presented in this paper was inspired by the report that the R/V Polarstern had encountered
surface waves of large amplitude hundreds of kilometers inside the ice pack in the Weddell Sea. This paper
presents analysis of processes that affect waves in an ice pack, namely the refraction of waves at the pack edge,
the effects of pack compression on wave propagation, wave train stability and buckling stability in the ice pack.
Sources of pack compresssion and interaction between wave momentum and pack compression are discussed.

Viscous damping of propagating waves are also studied.

Significant results include the conditions for total reflection of waves at the pack edge, the strong effect of
pack compressive stress on wave group speed, with the concomitant possibility of extreme local concentration
of wave energy. The result that compressive stress in the pack leads to very rapid development of wave packets,
through changes in the parameters for weakly nonlinear modulational instability of the wave field is also notable.
The analysis suggests an explanation for the change in wave dispersion observed from the ship between the
time of first arrival of the waves and after the pack was partially broken up by the first waves.

1. Introduction

It is well known that swell from the open sea pen-
etrates into the ice pack and contributes to breakup of
floes and to other processes that modify the ice cover,
especially in the marginal ice zone. Squire (1984) has
reported a combined theoretical, laboratory and field
study of ice-coupled waves. Wadhams et al. (1986) have
studied the change in the directional wave spectrum
in the marginal ice zone, and they found an exponential
decay in wave amplitude with distance from the pack
edge.

The present work was inspired by a communication
from E. Augstein, chief scientist on the R/V Polarstern
for the 1986 winter cruise to the Weddell Sea. He re-
ported that at a location in the ice pack 560 km from
the ice edge, a series of waves of approximately one
meter amplitude and 18 second period arrived, result-
ing in breakup of the ice pack. During the observed
wave event there was evidence of active dynamics in
the ice pack with ridging and rafting, resulting in ice
thickness that locally was as much as 2 m with average
thickness of 80 cm. The ship had difficulty moving
with three engines working. When the waves first ar-
rived, the wavelength was observed on radar, and as
more waves arrived in the following hours, during the
night, further observations of wavelength and period
were made while the ship moved through the ice under
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the changed ice conditions.

The observations indicate that the first waves to ar-
rive had a wavelength of approximately 250 m; this is
much shorter than the wavelength of 18 second waves
for open water conditions. Later, after the pack has
been broken up by the waves, while the period re-
mained the same, the wavelength had changed to a
value near that to be expected from the open-water
dispersion relation.,

The change in wavelength for wavés of nearly con-
stant period suggests that the breakup of the ice field
changed the dynamics of the wave field sufficiently to
change the dispersion relationship. We suggest that as
the ice was broken up by the first arrival of the waves
the mean compressive stress in the ice pack decreased
to near zero. The existence of compressive stresses in
the ice pack has been long recognized in ship design
for the Arctic. A well known example of a research
vessel designed to withstand ice pack compression is
the polar research ship Fram that was designed by Colin
Archer for Fritjof Nansen in the nineteenth century.
Pressure ridge formation is another well-known result
of compressive stresses in the ice pack, the ridges are
a result of ice floes being pushed up onto neighboring
floes by compressive forces. The effects of mean
compression on wave propagation in the ice pack were
recognized by Mollo-Christensen (1983). He found
that edge waves can have very low group velocity, and
suggested it as an explanation of ice ride-up on shore.

We shall give the derivation of the dispersion relation
for waves under pack compression, find the group ve-
locity and calculate the critical mean compressive stress
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for buckling failure in the pack. After applying the re-
sults of the analysis to the ice conditions observed in
the Weddell Sea, we go on to examine the exchange
of momentum between waves and the ice pack. Then
we proceed to analyze the modulational stability of
weakly nonlinear waves, and to discover that pack
compression can change the rate of wave packet
growth. For free surface gravity waves, the nonlinear
tendency for variations in wave amplitude to grow was
first discovered by Benjamin and Feir (1967). Their
work initiated the growth of understanding of nonlinear
wave processes that has occurred over the last two de-
cades. We refer the reader to the paper by Yuen and
Lake (1975), which gives some highlights of the work
by Zakharov and Shabat (1972), and further to the
book by Whitham (1975). Recently, surface waves of
large amplitude beneath an elastic ice sheet has been
studied by Forbes (1986), although he did not include
the effects of compressive stress.

2. Dynamics of wave propagation

This analysis represents an extension of that of
Wadhams (1973), with the effects of pack compression
added (Mollo-Christensen 1983) and revised for the
convenience of extending the analysis to momentum
flux and nonlinear modulation processes. We shall ne-
glect viscous effects, since the thickness of the boundary
layer under the ice is much smaller than the wave-
length, so there is little opportunity for viscosity to affect
dispersion of the scale of a few wavelengths (Liu and
Davis 1977). Later, we shall calculate wave attenuation
caused by viscosity (see appendix A).

Take the water velocity field to be derived from a
velocity potential ¢(x, z, ) that satisfies the equation
of continuity:

Vi(x,z,t) =0 (1)
A possible form of the solution is
#(x, z, t) = be** cos(kx — ot). )

The vertical deflection of the ice~water interface is
taken as

n(x, t) = asin(kx — at). 3)

Considering the ice to be a thin (kA < 1) elastic plate
of thickness /4, the linearized relationship between the
deflection and the water pressure immediately below
the ice is (see Tse et al. 1978):

Eh? 9* 92 92
[ 55 a  4P 5 * orh  x
a3
= POy = = G b an]. @

Bernoulli’s equation has been used to express the pres-
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sure P, in terms of velocity potential ¢ and deflection
7, where g is the acceleration of gravity.
The notation used is the following:

E Young’s modulus of elasticity; for ice, E = 6 X 10°
Nm™3

s Poisson’s ratio; for ice, s = 0.3;

P compressive stress in the ice pack; the stress for
failure in pure compression is in the range of
10 N m™2 for sea ice (see Mellor 1983). In
general, uniaxial compressive stress in ice is a
function of ice type, strain rate and temperature
under otherwise steady conditions. The maxi-
mum compressive stress for failure is three tlmes
the tensile stress for failure.

The density of sea ice is approx1mately pr = 0.9p,,
where the density of sea water is approximately p,
= 1025 kg m 2. The kinematic boundary condition at
the underside of the ice is

an_ 3
o 0z
to a linear approximation on the plane z = 0. Substi-

tuting from Egs. (2), (3) and (5) into (4) yields the
dispersion relation

)

2rin ER’k’ _ PhK3 prhk
7 (k) - [gk+ 12(1 —sz)pw Pw }/(1 + Pw )
' = (gk + Bk® — Qk®)/(1 + kM). (6)

The B, Q and M denote the effects that modify the
frequency due to bending, compression, and the inertia
of the ice respectively. They are defined by

ERh? Ph
B=—" =22
20 -9 20"

h
M= Pi_
Pw
For zero compressive stress, Eq. (6) reduces to the dis-
persion relation found by Wadhams (1973).

3. Buckling

The breakup of the ice cover, as observed from the
Polarstern, resulted from the additional stresses im-
posed by the waves causing structural failure. Failure
can be a result of the action of combined stresses due
to waves and structural instability, as exemplified by
buckling in the presence of waves. Buckling is a lateral
divergence of an elastic plate that initially grows ex-
ponentially with time and which, when the deflection
has grown sufficiently large, results in structural failure.
For an ice pack under a mean compressive stress below
the failure stress level, additional stresses caused by
bending due to waves may bring the local stress to the
failure level. We suggest that this is what happened in
the observed wave event.

Before one can suggest that the compressive stress
in the pack was sufficient to give a very small value of
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group velocity, one has to verify the buckling of the
pack would not occur at a lower stress. The analysis
proceeds as follows. From Eq. (6), it is apparent that
the frequency can become imaginary for sufficiently
high compressive stress. This will then lead to deflec-
tions that increase exponentially with time. The critical
compressive stress for the instability known as buckling
Eh3k*

is
Pw 2
P = [12(1 e v ]/k

Note that this critical compressive stress is higher than
the classical Euler buckling load for a beam that is not
supported laterally by buoyancy. The critical Euler
buckling stress for an unsupported beam is found from
Eq. (7) by setting the acceleration of grav1ty to zero,
and this gives

Pg = ER?K?/[12(1 — 52)]. 8)

It is evident that buckling depends upon wavenumber,
and the minimum value of P; for a floating ice sheet
is found from Eq. (7) to be

(M

P%... = Ehp,g/[3(1 — s?)]. )]
The corresponding wavenumber is
ks* = 12p.g(1 — s*)/(ER?). (10)

This establishes the minimum compressive stress
needed for the buckling of an infinitely long floating
beam and also the wavelength at which buckling occurs.
We are therefore ready to determine the critical stress
at which the energy flux becomes zero, that is the com-
pressive stress that gives zero group velocity.

4. Group velocity

Since wave energy propagates at group velocity,
group velocity plays a fundamental role in wave prop-
agation. When the group velocity decreases with dis-
tance, there will be accumulation of wave energy due
to flux convergence, this can cause high wave amplitude
locally. We suggest that this has been a contributory
cause to the high wave amplitudes observed from the
Polarstern.

From Eq. (6), the value of group velocity C, is found
to be

C = 56 = [g+ (5 + 4kM)Bk* — (3 + 2kM)QK?]/
[26(1 + kM)?). (11)

Note that the group velocity can take on the value of
zero for a compressive stress P in excess of a critical
value P, given by

Periy = pwQc/h
=pp[g+(5+ 4kM)BK*1/[h(3 + 2kM)YK?]. (12)
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When P_;; < Pg waves with a propagation phase can
still exist but their group velocity can vary and, for P
= P, become vanishingly small. When the group ve-
locity varies in the wave propagation direction from a
positive value to a small value, there will be accumu-
lation of wave energy. An infinite wave train of initially
constant amplitude, entering from a distance, would
attain singular amplitude where it encountered a place
of zero group velocity. This is a possible mechanism
that may explain the local occurrence of large ampli-
tude waves in the ice pack. While linear theory looses
its validity at large wave amplitude, the fact that zero
group velocity can occur at lower compressive stress
in the pack than the critical stress for buckling insta-
bility does suggest that very low group velocity may
have caused focusing and have contributed to the ob-
served Weddell Sea wave event.

5. Application of the analysis to the events observed
in the Weddell Sea

The results of the preceding analysis will now be
applied to the wave observations from the Polarstern.
The observed wave period was 18 s, and the wavelength
observed at the initial arrival of the waves was approx-
imately 250 m, while the ice thickness was 2 m in the
ridging and rafting area.

In the absence of ice, the wavelength for this wave
périod would be approximately 510 m; we suggest that
the smaller observed wavelength must be due to the
combined effects of pack flexural stiffness and pack
compression, The only unknown term in the dispersion
relation [Eq. (6)] is the compression term. Solving for
this and listing all the terms, the following values are
obtained for reference.

Flexure: Bk® = ER’K’/[12(1 — 5%)p,]
=42x 1072572
Compression: Qk*= Phk®/p, =3.1P X' 1078572
Gravity: gk =245X107's™2
Inertia: M = p;h/p, =18 m

The corresponding value of the compressive stress is

= 5.1 X 10 N m ~2, This value is less than the stress
for compressive failure, and also less than the buckling
stress. The buckling stress can be obtained from Eq.
(9) as Pp, = 6.7 X 10 N m™2, which occurs for a
wavelength of 900 m approximately.

From the list of the magnitudes of the terms, it is to
be noted that the compression effect is the main cause
of departure from the free surface dispersion relation,
where only gravity and inertia enter. Substituting the
parameters into the expression for group velocity [ Eq.
(11)] resultsin C; ~ 0m s~L. The group velocity being
nearly zero, one can conclude that wave energy accu-
mulation must have occurred in the area of high com-
pressive stress. The stress calculated with the observed
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wave period and wavelength from the dispersion re-
lation, with the resulting calculated zero value of group
velocity, helps explain the large wave amplitudes that
were observed. When the ice thickness decreases to
one meter, the group velocity calculated from Eq. (11)
increases to 2.4 m s,

Observations of wavelength from a ship are not al-
ways precise, especially when an unexpected, short du-
ration event occurs. It is therefore important to ex-
amine the sensitivity of the dispersion to variations in
wavelength. We take the observed wave period to be
correct, since this observation can be made by a person
anywhere on board who feels the motion of the ship
and has access to a watch.

Figure 1a shows the variation in compressive stress
with wavelength A calculated from Eq. (6) for waves
of period T = 18 s. Note that the rate of change in
compressive stress with wavelength is a maximum near
zero compressive stress and is smaller for higher stress.
The group velocity (solid line) and the phase speed
(dotted line) for 18 s period waves are plotted as func-
tions of wavelength in Fig. 1b. For reference, Fig. 1b
also shows the group velocity for a constant compres-
sive stress of P = 5.1 X 10® N m 2 (dashed line).

Because the calculated compressive stress in the pack
was near both the critical stress for buckling and the
stress for compressive failure, the observed breakup of
the ice pack and the rafting may be attributed to a
combination of failure modes. Our analysis is linear
and is only valid for infinitesimal wave amplitudes.
Finite amplitude waves may be able to induce buckling
below the critical stress for linear buckling instability.

The rafting process can be driven by the compressive
stress that causes acceleration of some of the ice floes,
and the rafting activity may persist for a short time
after the compressive stress is relieved. Therefore, this
process will result in the formation of open leads. Not
all the rafting need to be caused by the mean com-

P 105 N/#%)

500

AUM)

FIG. 1a. Ice compressive stress effects on wavelength A calculated
from Eq. (6) with ice thickness # = 2 m and wave period 7 = 18
sec.
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F1G. 1b. Group velocity (solid line) and phase speed (dotted line)
as a function of wavelength with T, = 18 sec. Group velocity (dashed
line) as a function of wavelength for a fixed compressive stress Po
=51X10°Nm™2

pressive stress in the ice pack. The waves also contain
momentum. When wave energy is destroyed by a
combination of compressive failure, ice breaking and
the dissipation that would be associated with pack fail-
ure, the wave momentum would have to be transferred
partly to the water velocity field, and the rest to pack
compression or local acceleration of ice floes. This, in
turn, may contribute to rafting.

An area of rafting would change the wave group ve-
locity, possibly giving rise to caustic formation for
waves in a certain frequency range. If circumstances
should form a lens-shaped area of increased ice thick-
ness, spatial focusing could occur, the focal distance
being dependent upon wave frequency. Pack modifi-
cation by breakup and rafting is likely to occur in a
focal region. The interaction between wave momentum
and the mean state of the ice pack and flow field will
be discussed next.

6. Momentum transfer by wave-ice interaction

Waves carry momentum, and when wave amplitude
changes, the wave momentum has to show up as forces
on the fluid and ice and/or as mean momentum in
the pack and the water. It is therefore of interest to
consider the exchange of momentum between waves
and ice pack stresses for slowly varying wave and ice
parameters.

From the boundary condition at the bottom of the
ice, Eq. (4) can be written

a* 92 9? 0¢

(B ax4+an2+Mat2+g)n e (13)

For an ice deflection wave of the form given by Eq.
(3), the velocity potential is

¢ = —a[(Bk* — Qk* — Mc* + g)/ o]

X e** cos(kx — at). (14)
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The corresponding horizontal velocity just under the
1Ce 18

9¢

u=—_-= a[Bk* — Qk* — Ms? + g)/C]

X e** sin(kx — ot).

(15)

The wave momentum N is then given by (Phillips
1977)

dn
N=—p, ¢ —
prbax

= 2 a%u(Bk* — Qk* -
where C = o/k, and the overbar denotes a time average
on the plane z = 0 of the linearized solution.

Let us consider very slow variations of ice conditions
with distance. That is, the length scale of variations of
ice conditions and wave parameters is much longer
than the wavelength. Then the rate of change of mo-
mentum with distance x can be expressed by

Me*+g)/C  (16)

,_oN
N = ax
. d
"2 E;')(Bk‘ Ok? — Ma* + g)/C
0w o(0B,, 9Q.,, oM ,
+_ P — — — r—
2a(axk axk ax”)/c

a*(5Bk* — 3Qk*> — Ms* + g) g—fc/ o.

17
For kM < 1, it can be shown from Eq. (11)
g + SBk* — 30Qk? = 2C,o0. (18)
Neglecting the terms
@820 ca3M 30
ox ox  ax

as being small, the dominant terms in the spatial de-
rivative of wave momentum are

N = ”7““ [(a®)(Bk* — Qk* — Mo® + g)/C

- a*Q'k?/C + 2a*C,k']  (19)
where the primes indicate x-derivatives for slow vari-
ations. .
The condition for conservation of momentum, i.e.,
= ( is then

(a®)(Bk* — Qk? — Mo? + g)

= a’k*Q' - 2a’CCk'.  (20)
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This shows the relationship between the slow spatial
rate of change of wave amplitude and the space deriv-
ative of compressive stress in the pack. Therefore, when
the group velocity is very small at high compressive
stress area, the wave energy density will increase with
distance under conditions where the compressive stress
in the pack is increasing in the wave propagation di-
rection. We have neglected the effects of dissipation
on wave amplitude. But dissipation can only redistrib-
ute momentum and cannot destroy it. More frequent
ridge formation observed after the ice breakup may be
caused by the transfer of wave momentum to the ice
pack compression.

7. Nonlinear effects on wave development

The preceding analysis of wave propagation only
considered linear effects and neglected the nonlinear
terms in the equations. This gives good approximations
for wave propagation over moderate distances, such as
a few tens of wavelengths. For propagation over longer
distances, the nonlinear effects will accumulate and give
rise to wave packet formation and possibly consequent
wave breaking. For waves in an ice pack, the ice may
break at large wave amplitude.

Here we shall discuss the consequences of varying
amplitude and finite amplitude for waves on an ice
covered ocean. First, the envelope function S(x, ¢) for
the wave field, with the relationship to surface deflec-
tion #(x, t), is defined by

n(x,t) = Re[S(x, 1) expz(kx -at)]. (21)

The complex envelope function S can be shown to
satisfy the nonlinear, cubic Schrédinger equation (Mei
1983)

as azs

% + 1[3
The asterisk indicates the complex conjugate. We shall
next examine how the coeflicients in the equation
change for an ice-covered ocean.

In general, the effect of pack compression can, under
some circumstances, limit the distance required for the
nonlinear effects to develop and thus further limit the
range of validity of results of linear analysis. It is es-
pecially noteworthy we find that unstable wave packets
can under favorable condition grow over a hundred
times faster in the ice pack than in open water.

In this analysis, we will continue to neglect viscosity,
so that we can assume irrotationality and continue to
represent the water velocity field in terms of a velocity
potential ¢(x, z, t), with velocity components

d¢ ¢
u o’ w 3 (23)
Incompressibility requires that the velocity potential ¢
satisfy the Laplace equation (1).
In the dynamic boundary condition, we now include

> + ivS2S* = 0. (22)
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the nonlinear terms in the hydrodynamic pressure act-
ing on the ice and in the deflection of the ice cover, so
that it reads

p (L) + 2o n D

x?\R ar?
09 u? + w? 3
== & S At z=q (24)
where R is the radius of curvature and is given by
1 62 Mm\27P2
+{= :
7w/ (5] @)

The quantities B, @ and M have been defined earlier.
Let us now change to a coordinate system moving with
the phase speed of the waves. We imagine a basic cur-
rent with velocity potential ¢ = —Cx in the x-direction
and a superimposed steady finite wave motion. Then
the time derivative on the right side of Eq. (24) reap-
pears as spatial derivative, and the second time deriv-
ative on the left side can be written as a space derivative
and incorporated into the compression term. By as-
suming that the surface slope is small and only includ-
ing terms up to third order, the dynamic boundary
condition becomes

a* 9?
[B + Qo ax 3 + 14 ]

a 4
uwr+w? 3 M
2 2 [6x (ax) o o

+2(;")]+%Qg; (i’ﬂ),at z=1 (26)

where Qp = Q@ + MC?, and we have used

(8] 2(2).

The kinematic boundary condition also needs to be
satisfied at the bottom of the ice, rather than at z = 0,
and the condition for a steady wave motion is

an 9%y 3>y

@7

_dn_ 9 _
wQa’t ( C+u)6x at z=n. (28)

We now express ¢, n and the phase speed as power

series of the small (amplitude ) parameter e:

¢p=—Cx+edV+ 9D+ 39D+ .. (292)
=W+ @+ 4 ... (29b)
C=C0+€C|+€2C2+ e (290)

We shall expand Egs. (27) and (28) in Taylor series
around z = 0; fora term () thatis

(o= oot 52O
=0

2
+Z[S O]+ oo
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Carrying out the expansions and equating terms of the
same power in ¢, we obtain a sequence of equations
for successively higher order terms.

The first-order approximation yields the equations

Ve =0 (31a)
e+ B4 LA ] 0 = Gy = 0
at z=0, (31b)
—~Conx"— ¢, =0 at z=0. (31c)
The first-order solutions are .
7" = g sinkx, (32a)
¢ = —aChe®* coskx, (32b)
where
Co* = go/k; 8o = g + Bk* — Qok?
00> = gok. (33)

These are the same first-order results as obtained before,
however they are now the result of a formal expansion
process, and the higher order dynamics can also be
analyzed.

For the second-order terms, we have the following
three equations

V2@ =0 (34a)

BXF= Zral ] D — €19V — Coe?

+ % V2426, M2 — CnWgP =0 at z=0
(34)

~Cone® = Cin @ + 6,0, D — ¢,
- =0 at z=0. (34c)

The solutions at the second order are as follows:
¢?@ = ¢,e* sin2kx, (35a)

(35b)

Next, we solve for the unknown constants ¢, and 7,.
First, we combine Eqs (34b) and (34c) to give

[g+B & T+ O ]qb,m

+ Co’¢? + 2C,akg, coskx

7® = g, cos2kx.

— akCy(15 Bk* — 3Qok?) sin2kx = 0. (36)
One may conclude that
C, =0, (37a)
2 4 _ 2
, a“kCo(15 Bk* — 3Qok?) (37b)

g+ 15Bk* — 3Q0k*
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a’gok(—g + 45Bk* — 9Q:k?)
2(g + 15Bk* — 3Quk?)(g + 16 Bk* — 4Qk?)
(37¢)

m=
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Tt is to be noted that for open-ocean conditions, B = Q'
= 0, we have ¢, = 0 and . = —a*k/2. The presence
of a second-order potential function is thus peculiar to
waves on an ice-covered sea. The third-order terms
give the equations:

Vi =0 (38a)
[g +Bo— 4 23 ] @~ -;— B[n,%;a 12 + 6n, Dn @ n L. + 2n“”] 2 D20 ® — Cop
- am‘” - Cz¢x“’ +6:09:P = CnVol + 0V VoL + 1V Vo
— Con@eW — 3 Con M9 + L P =0, (38b)
—Conx® + 71 V9D = Cine® + 0PV = Cony D = 9,
FnOnOpW — gD — e — ZyM2pM = 0. (380)

Taking the x-derivative of Eq. (38b) and operating on
Eq. (38¢c) with the operator (g + B3*/dx* + Qy9%/
dx?), and then equating the coefficient of coskx to
zero, we obtain, after some algebraic manipulation

280C; = a*k*Colg + 127 Bk* — 10Q0k?* — 30k?)
— 36kn,Co[10Bk* — Quk?]
— 2k¢o[7g + 187 Bk* — 25Q0k?]. (39)

These results enable us to calculate the coefficients in
the nonlinear cubic Schrédinger equation (22).

"~ We have for v, which expresses effect of the depen-
dence of wave speed upon amplitude, the value (Mei
1983)

vy = Cik/a*. (40)

If v is positive, the wave speed increases with ampli-
tude, while if v is negative the wave speed decreases
with increasing amplitude.

The other constant 3 provides the dispersive effect
discussed by Mei (1983)

1 3%
2 dk?
= {g%(1 + 4kM) — 6gBk*(5 + 8kM + 4k*M?)
+ 2gQk*(3 + 2kM + 2k*M?) — 3Q%k*
— B*®(15 — 20kM + 8k*M?)}/
[803(1 + kM)*). (41)

This should be compared to the open water surface
values which are, for B = Qp = 0,

" (42a)

and

(42b)

It is worth noting that the signs of both these crucial
coefficients can change with ice parameters, and that
it is possible to change the character of the higher order
wave dynamics (Liu and Benney 1981).

The main results of the precedmg analysis of weakly
nonlinear waves are

1) The presence of a second harmonic dependence
in the velocity potential showing that waves on ice-
covered water differ from Stokes waves, although the
waves still are waves of permanent type in the sense
that they preserve their shape in the same manner as
Stokes waves.

2) The new terms in the equation for modulational
dynamics, the nonlinear cubic Schrédinger equation,
showing that ice parameters enter into the wave mod-
ulation process. As shown in the next sections, the
growth rate of wave packets on an initially uniform
amplitude wave train on ice-covered water can be many
times higher than that for open water.

8. The Weddell Sea example

We again return to the Weddell Sea case to compare
the analytical results with observations. For the Wed-
dell sea case, we have a value of y = —=2.15 X 10> m?

! which compares to an open water value with the
same wave period, ¥ = 3 X 107> m? s~!. This shows
that there is a change in sign and an increase of two
orders of magnitude from open water to the Weddell
sea ice conditions.

Figure 2 shows the effects of compression and flex-
ural stiffness on the nonlinear wave speed. Notice that
when A > 285 m, the wave speed increases with in-
creasing amplitude due to the nonlinear wave speed
term C, being positive. Now for the case A < 285 m,
the wave speed decreases with amplitude since the sec-
ond order correction C; is negative. Figure 3 shows the
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FIG. 2. Ice compressive and flexural effects on nonlinear wave
speed with ice thickness # = 2 m and wave period T = 18 sec.

nonlinear and dispersive coefficients for wave modu-
lation. BA > 0 for almost all wavelengths except near
the wavelength of 290 m. As demonstrated next in the
stability analysis, a uniform wave train is unstable if
By > 0, and a finite amplitude wave packet will emerge.
Therefore, waves of 18 sec period are unstable for al-
most all values of compressive stress; the stress deter-
mines the wavelength plotted in the figure.

9. Stability analysis

The stability analysis of Benjamin and Feir (1967)
can be carried out using the nonlinear cubic Schrédin-
ger equation, which in a frame moving at group velocity
can be written

as 3%s

ot 8 x?
Take a uniform wave train of constant amplitude as
the initial condition,

+ ivS2S* = 0. (22)

So = a exp(—ia*yt). (43)

Now introduce small sideband perturbations, letting

the field be described as

S = {a+ be'®kx— 4 de-iakx=0} expn{ —iva’t},
(44)

where a » b, a > d, and k > Ak. Substituting Eqs.

(44) into (22) and linearizing about the state S, results
in the relation

Q2 = (Ak)*(B%Ak? ~ 2Bva?). (45)

The question of stability now reduces to determining
the sign of Q2. Clearly, Q? is positive whenever 8y < 0,
and then the wave train is stable to sideband pertur-
bations. When By > 0, the stability boundary is at val-
ues of Ak given by

Ak = V2a(vy/B) V2. (46)
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The instability domain is then given by
0 < Ak/k < V2a/k(v/B)"/>. (47)
The maximum instability occurs for
Ak = Akmax = a(v/B8)'"?, (48)
with the maximum growth rate given by
(IMQ) o = |y |a% (49)

For the Weddell Sea case, we find that (ImQ) max
=2.1 X 107357 = 1/(8 min) for waves of one meter
amplitude and Akp. = 0.0023 m™! = 27/(3 km).
These results indicate that the e-folding time of mod-
ulational instability is 8 minutes and the wave packet
length is about 3 km. The formation of wave packets
takes place much faster than in open water. It should
be noted that the experimental results of Lake and
Yuen (1977) for modulational development in open-
water wave fields agreed with the predictions obtained
from the Schrédinger equation. The larger growth rate
that we find for the Weddell Sea case suggests that wave
packet formation in a region of high compressive stress
may be a contributory element in ice breakup and
pressure ridge formation.

10. Refraction of waves at the ice edge

Wind waves are generated in the open ocean, and
the waves that penetrate into the ice pack have received
their energy from the wind before they encounter the
ice pack. The open-ocean wind wave field results from
a complicated combination of linear and nonlinear
processes. The wave field is broadband both in fre-
quency and wavenumber, and propagates over a range
of directions. For low values of compressive stress, Eq.
(6) shows that the wave propagation speed is higher
inside the ice pack than that in the open water. This
makes total reflection possible for certain wavenumbers
and directions of impingement. Based on Snell’s law,
waves that propagate in a direction with an angle to
the normal larger than 6., where the critical angle sat-
isfies

B (102 ws )
=
(1524 ¢ 01) 4

2/

‘)
~

-4 s L \ s I
300 400 500
XNCn)

F1G. 3. Nonlinear and dispersive effects on wave modulation
with ice thickness 2 = 2 m and wave period T = 18 sec.
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sinfe(0) = k2(0)/k1(0), (50)

will be totally reflected. The subscript 1 stands for the
value of the wavenumber in the open ocean, while the
subscript 2 denotes the value inside the ice pack.

In order to further illustrate how the critical angle
for total reflection varies with wave frequency, one
takes its derivative with respect to frequency, to obtain

@=i(.l__i)
“doe K \Ca GC)°

When there is no compressive stress in the ice pack,
such as in the marginal ice zone, the wave group ve-
locity is always higher than one half of the phase speed
as evident from Eq. (11). Therefore, according to Eq.
(51) db./d e is always negative, which means that the
shorter (high frequency) waves will tend to be totally
reflected at incidence angles closer to the normal than
would be the case for waves of lower frequency. Re-
fraction of waves from the ice edge is thus selective in
wavelength; longer waves being transmitted while
shorter waves are totally reflected for a given incidence
angle.

When a wave is totally reflected, its momentum
component normal to the ice pack edge also has to be
reversed. This requires a stress upon the wave field,
and its reaction will be found as a sum of mean current
momentum and compressive stress in the ice pack.

cosd (51

11. Discussion

As reported by E. Augstein, the chief scientist of the
Polarstern in the Weddell Sea, the effects of the wave
arrival were impressive; in a few hours the previously
continuous ice cover was split into small floes, with
few floes being over 50 m in diameter. P. Wadhams
and V. Squire also made some wave measurements
after the pack stress had been relieved by failure in the
ice pack and wave-induced breakup. They found
- wavelengths in the range of 500 to 600 meters while
the wave period stayed more or less the same. It is
interesting to note that this dispersion relation fits the
open-water wave case. This would apply once the ice
cover had broken up and no longer would be able to
support compressive stress.

The observation reported from the Polarstern while
in the Weddell Sea has provided a touchstone for our
analysis of wave dispersion with the effects of compres-
sion and ice thickness added. We have shown that wave
energy can be concentrated because of pack compres-
sion through two very different mechanisms, namely
a very small group velocity caused by high compressive
stress and the increased instability of nonlinear mod-
ulations also caused by pack compression. The very
high growth rate involved in wave packet formation
under high compressive stress is surprising, and it may
be significant in the process of ice cover breakup and
pressure ridge formation.
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The other effect discovered in modulational dynam-
ics, namely the sign reversals of both the last two terms
in the nonlinear cubic Schrodinger equation, is difficult
to interpret physically. One then wonders if a wave
packet initially steepens at the forward or backward
side, and, when a wave packet involves initial ice fail-
ure, if the packet radically changes its structure and
causes intensive rafting. There are a number of such
unanswered questions left. An important remaining
problem is the rate of wave damping. As shown in the
Appendix, the viscous damping for a uniform ampli-
tude train of waves is not necessarily modest, so waves
should not be able to penetrate 560 km into the ice
pack without possible focusing effects as demonstrated
in the nonlinear development of wave packets.

We may therefore speculate about the sequence of
processes that cause ice pack breakup, pressure ridge
formation and the formation of open bands of water.
First, pack compression seems an important parameter.
Pack compression can result from the radiation stress
from waves totally reflected at the pack edge and from
strong wind stress by storm. Compressive stress can
also be caused by wave damping, since waves will have
to give up their momentum to the mean stress and
velocity fields. Then, due to two-dimensional inhomo-
geneities in the ice field, waves may be focused as from
a lens, and because of pack compression, waves can be
concentrated by caustic formation, where the group
speed approaches zero. The wave energy concentration
due to the convergence in the wave energy density,
aided by the stronger tendency to form wave packets
can lead to pack failure and wave dissipation. The mo-
mentum carried by these waves and the strong wind
stress from storm can then push individual ice floes
together and form rafts and pressure ridges. A reduction
in flexural stiffness due to rafting, i.e., floes sliding over
one another, may also be accompanied by a reduction
of the compressive stress. .

The next wave train coming in may encounter pres-
sure ridges, while the leads may have closed due to
residual pack stresses. The pressure ridge, while being
a region of thicker ice, is insufficiently consolidated to
have a large flexural stiffness, since the rafted floes may
still slide over one another, and will have relatively low
group velocity. Wave energy may concentrate and fur-
ther contribute to pack failure, rafting and ridge growth
may occur. Figure 4 illustrates the interactions between
waves, pack modification through momentum transfer,
the effects of pack parameters on wave processes, and
the resulting rafting and pressure ridge formation from
wind and waves. This description is highly idealized
and oversimplified, but the results of our analysis sug-
gest that all the needed elements for such a process are
present. Also, our analysis suggests an explanation for
the change in wave dispersion observed from the ship
between the time of first arrival of the waves and after
the pack was partially broken up by the first waves.
The example offered by the Weddell Sea observations
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FIG. 4. Schematic diagram of wave-ice interaction.

lends some more realism to the analysis, and we suggest
that our results may prove useful in designing experi-
ments to investigate ice pack dynamics, and may also
serve as a guide to attempts at parameterization of ice
pack processes.
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APPENDIX A

Viscous Attenuation of Swell by an Ice Sheet

The direct calculation of the effects of viscosity on ,

wave propagation using a streamfunction and a velocity
potential can be carried out as follows. Introduce the
potential

¢ = Ae** exp[i(kx + nt)], (AD)
and streamfunction
¥ = De™ expl[i(kx + nt)], (A2)

here, # is a complex angular frequency. Using the lin-

earized form of the Navier-Stokes equation written in
terms of the streamfunction:

v
— = V2P, A3
o (A3)
This gives
m?=k*+ n/v, (A4)

where v is the kinematic viscosity of water.
The kinematic boundary conditions (28) results in
k
n= > (A + iD) exp(ikx + nt). (AS)

The linearized dynamic boundary condition when the
effects of viscosity are included, is

84 9?2 92
[%7*%3“‘457]"
_ 8¢
=% gn 2"0’ (A6)
where
¢ OV ¢ oV
= =—=+— A
ox 0z’ az+6x (A6)

Consider the ice to be a thin elastic plate with neg-
ligible extension in the outer fibers. The inclusion of
viscosity requires no-slip at the ice-water interface, 1.e.,

ikA — mD = 0. (A7)
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By substituting (A1), (A2), (A5 )and (A7) into (A6),
we obtain

—(Bk* — Qk* + Mn* + 2)k(1 — k/m) = n?,
Eliminate m using Eq. (A4) to find
[n2(1 + kM) + kP)?
+ nvk*[n*(1 + 2kM) + 2kG]1 = 0, (A9)

where G = g + Bk* — QK.
If k*v < o, to a first order approximation, we recover
the dispersion relation ny = *is, where ¢ is given by

Eq. (6).
For the second-order approxlmauon, we have

VokVo
2Y2(1 + kM)’

(A8)

n = - (A10)

where the correction to the dispersion (imaginary part)
is neglected. It is to be noted that, for a free surface
case B = M = Q = 0, this attenuation rate reduces to

I 3/
‘ 2V2

This agrees with the result of Phillips (1977) who an-
alyzed the case of waves under a layer of densely packed
surface film of very viscous oil.

This temporal decay rate can be converted to a spa-
tial decay rate through the group velocity C,, as orig-
inally done by Gaster (1962), and it gives

Qx = n,/Cg.

For wave damping in the presence of very thin brash-
ice layer, i.e., a® = gk, Eq. (A12) reduces to the result
by Weber (1987).

In the Weddell Sea, if using v = 1.8 X 10 ° m?2s™!
for the kinematic viscosity of water, we have

(Al1)

(A12)

n =067X105s" = 1/(41.5h). (A13)
For an average C, of 4 m s™', we find
a, = 1/(600 km). (A14)

However, the ice~water interface is rough with raft-
ing and ridging activities. In general, the boundary layer
beneath the ice is turbulent and in which the small-
scale processes may be parameterized by an eddy vis-
cosity coefficient. The eddy viscosity is not a physical
but a phenomenological parameter, which can only be
determined as a function of the flow conditions. In the
Arctic Ocean, the eddy viscosity was estimated by
Brennecke (1921) to be 160 cm?s ! under the ice, and
by Hunkins (1966) to be 24 cm? s~! from ice drift.

For a 250 m wave w1th average C, of 4 m s™' in the
ice pack and », = 24 cm? s, the decay rate is

=1/(17 km). (A15)
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In the marginal ice zone with negligible compressxon
stress, the decay rate is

a, ~ 1/(120 km) = 1/(50 km)

fora 510 m wave with C; =~ 15m s~ and v, ~ 24 —
160 cm? s~'. These results of dampmg rate compare
reasonably well with observations in the marginal ice
zone (Wadhams 1978; Weber 1987 ) for shorter waves.
These results show that waves can not penetrate far
into the pack without possible focussing effects as dis-
cussed in the nonlinear development of wave packets.
However, the damping rate (A16) may be overesti-

(A16)

“mated for a continuously covered ice sheet due to the

use of large eddy viscosity.
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