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The initial-value problem for slightly viscous, two-dimensional, spatially periodic 
waves is examined. Matched asymptotic expansions in space for small wave amplitude 
a and multiple scales in time allow the boundary layers and viscous attenuation to be 
described. The bottom and surface boundary layers of thickness 6 are equivalent to 
those of Longuet-Higgins except that wave attenuation is included. For progressive 
waves one solution for the interior motion independent of the magnitude of 6/u is an 
attenuating version of the conduction solution of Longuet-Higgins, but with modified 
structure, the O(a2) vorticity at the boundaries ultimately diffusing into the entire 
field. There are certain critical depths for which there is secular behaviour and these 
do not correspond to quasi-steady flows. Other solutions may be possible. For standing 
waves the interior flow depends on the magnitude of the steady-drift Reynolds number 
R,cc ( ~ / 6 ) ~  introduced by Stuart. When R, 1, the interior is viscous with an O(a2) 
vorticity ultimately diffusing into the entire field. When R, % 1 there is a double- 
boundary-layer structure on the bottom and on the surface. Within the outer layers, 
the O(a2) steady drift decays to the potential flow interior. A direct analogy with the 
flow structure on a circular cylinder oscillating along its diameter is introduced and 
pursued. Finally, all of the above fields are converted to Lagrangian fields so that mass- 
transport profiles can be obtained. Comparisons are made with previous theoretical 
and experimental work. 

1. Introduction 
It was shown by Stokes (1847) for an inviscid progressive water wave of small 

amplitude a that the particles of fluid possess, apart from their closed orbital motions, 
steady-drift velocities O(a2) in the direction of wave propagation. Since then, various 
experiments (e.g. Caligny 1878; Bagnold 1947) have confirmed the existence of non- 
zero mean velocities but the profiles are not predicted by the Stokes theory. 

Longuet-Higgins (1953) showed that even for the very high Reynolds numbers 
,encountered in experiment viscous effects significantly modify the drift (also see 
Harrison 1909). Longuet-Higgins posed the existence of boundary layers of thickness 6 
on the channel bottom and at  the free surface. Just outside the bottom boundary layer 
there is a constant mean drift O(a2) while outside the surface boundary layer there is a 
mean drift gradient O(a2) .  For the interior motion (outside both boundary layers) 
Longuet-Higgins suggested two possibilities. The interior motion is called ‘conduction’ 
if a 4 6 while it is called ‘ convection ’ if a $ 6. In the latter case only an ad hoe ‘ solution ’ 

t Present address: Dynamics Technology, Inc., Torrance, California 90503. 
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is obtained. Subsequent workers, most notably Dore (1971,1974,1975), have followed 
this approach and extended the range of application to other systems. 

There are certain deficiencies in the Longuet-Higgins analysis. Huang (1970) points 
out that the (Lagrangian) mass-transport velocity on the surface becomes unbounded 
as the depth d approaches infinity. The Longuet-Higgins analysis reveals the role 
played by Reynolds stresses in producing drift in a slightly viscous fluid. However, 
a second effect of viscosity, seemingly of comparable importance, is neglected. Unless 
the external world supplies energy (e.g. through a wave maker), the whole wave field 
attenuates. Hunt & Massoud (1962) found that an O(a2) shear stress on the surface 
is required to maintain the field. 

Sleath (1973) attempts to assess the spatial decay of the drift in progressive waves 
for shallow water and claims to show non-uniqueness of the drift solutions. However, 
various approximations make the results uncertain. 

The most complete set of experimental data on mms transport in progressive waves 
is that of Russell & Osorio (1957). Since a typical value of S/a is 0.03, the Longuet- 
Higgins (1953) ‘conduction solution’, which is proposed for S/a % 1, should not apply. 
However, Russell & Osorio (1957) find that the mass transport correlates best with the 
Stokes inviscid theory when the water depth is large while for shallower water the 
conduction solution is the best available comparison. However, they conclude tha t  
apart from the profile at  the bottom of the channel, no theory satisfactorily predicts 
mass transport. Unliiata & Mei (1970) concluded that the Longuet-Higgins theory 
predicts the drift better than any other available theory. 

Experimental measurements of the mass-transport velocity in the bottom boundary 
layer in standing waves were carried out using dye-streak and solid-particle methods 
by Noda (1968), and the experimental evidende is in rough qualitative agreement with 
the theory of Longuet-Higgins. 

The present study is an analysis of the initial-value problem of two-dimensional 
water waves that are spatially periodic. Both progressive and standing waves are con- 
sidered. As time passes, the viscous attenuation in time is examined and the full 
Eulerian wave field is calculated by matched asymptotic expansions in space for small 
wave amplitude a and by multiple scales in time. The slow time t”, which was obtained 
by Lamb (1932, p. 627) for linearized theory and measures the viscous decay, is derived 
from the condition of zero normal stress at the surface (surface tension is neglected). 
This temporal decay can be converted to spatial decay with distance from a wave maker 
through the group velocity (e.g. see Phillips 1966). 

To leading order, the wave attenuation does not modify the velocity profiles in the 
boundary layers, apart from an exponentially decaying envelope that depends on 8. 
The slow decay of the field strongly modijies the structure of the interior even apart from 
the slowly decaying envelope. The Reynolds number R, characteristic of the steady 
drift is introduced. For progressive waves, the vorticity will diffuse inwards from the 
boundary layers. A quasi-steady, fully viscous solution, a modified version of the 
Longuet-Higgins ‘conduction’ solution, then exists for all R,, i.e. all a/S for almost all 
depths d .  However, there are certain depths at  which no quasi-steady state will be 
reached. For large R, other solutions may exist as well. For standing waves, when 
R, 9 I ,  Stuart (1966) argues in a different context that the steady drift is confined to an 
outer boundary layer within which the steady drift decays to the potential solution. 
The outer-layer problem for standing waves displays a cellular structure and is shown 
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to be equivalent to the outer layer on a circular cylinder oscillating along its diameter 
(Davidson & Riley 1972). The analogy is pursued in detail. For R, < 1 ,  the interior 
motion is fully viscous. The analysis of the interior flows is the principal feature of the 
present work. 

Finally, all the Eulerian drift fields are converted to Lagrangian mass-transport 
fields and compared with previous work, both theoretical and experimental. 

2. Formulation 
Let us consider two-dimensional gravity waves in a channel of mean depth d .  The 

liquid has constant density p, viscosity /L and v = p/p. We define a system of Cartesian 
co-ordinates with the x axis horizontal and the z axis anti-parallel to gravity g. The 
origin lies at the mean surface position. An x-periodic wave of amplitude a, wave- 
number k and phase speed c is assumed to evolve in time t from a harmonic initial form. 
We wish to follow the time evolution and decay. 

We non-dimensionalize the governing system of equations with the following scales: 

length --f l l k ,  
speed 

pressure -+ pet, 

time -+ (kc0)- l .  

-+ co = ( g  tanh kd/k)*, 

The flow is governed by the non-dimensional Navier-Stokes and continuity equations, 
and the following non-dimensional numbers emerge: 

a = ka, p = k2d2, R = co/kv. 

The flow Reynolds number R is considered large. The boundary conditions for these 
viscous waves are zero cross-flow and no slip at  the bottom z = - 1/p. On the displaced 
level z = h(x, t )  there is the kinematic condition, zero shear stress and, if we neglect 
surface tension, zero normal stress. At time t = 0,  the vorticity is zero and 

(2 .1 )  

The existence of viscosity in the liquid forces the motion to decay with a time scale t. 
We shall determine f in $ 6  from the condition of zero normal stress; it  turns out that, 

h(x, 0) = a cos x + O(a2). 

t = 2 t / R .  (2.2) 

All dependent variables are hence functions of both t and 8 through a multiple-time- 
scale procedure (Nayfeh 1973, chap. 6). 

We seek solutions of the governing system for small values of a as follows: 

h = ah, + a2h, + o(a3), ( 2 . 2 a )  

(u, w) = a(%,, w1) +012(u2, w2) + O(a3),  ( 2 . 2 b )  

p = z/tanhdp + ap, + a2p2 + O(a3), 

c = l+O(aZ).  

( 2 . 2 c )  

( 2 . 2 4  

The O(a) correction to c is known to vanish (Wehausen & Laitone 1960). 
3 F L M  81 
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3. Potential theory 

solutions (Wehausen & Laitone 1960) for progressive waves a t  order a are as follows: 
Since we consider that R % 1, we first examine the initially irrotational flow. The 

hl = A(t)cos(x-t), 

cos (x - t ) ,  
cosh ( z  + 4/3) 

sinh J/3 

ainh J/3 
cosh ( z  + .Jp) 

a, = A(t )  

8, = ~ ( t ) ~ ~ ~ ~ ( ~ + Z / P ) , i n ( , - t ) ,  

cos (x - t ) .  $1 = A (’) sinh 4/3 
At order a2 we have 

h, = &A2(t)D cos2(x-tj, 

cosh 2(2 + 4s) 
sinh 2 4/3 

sinh 2(2 + ,/P) 
sinh 24/3 

cos 2(x - t),\ a, = 2A2(f)B 

8, = 2A2(t)B sin 2(x--t), 

where 2 + cosh 24/3 3(coth,/p- tanh4p) 
4tanh2 J/3 * 

~ D =  B =  
tanh2 J/3 sinh 24F’ 

The solutions for standing umes ht order a are as follows: 

h, = A ( t )  cos x cos t ,  

2, = - A ( $ )  cash (z + 4/31 sin sin t ,  

8, = ~ ( t )  sinh ( z  + 4/31 cos x sin t, 
sinh ,//3 

cash ( z  + p1 = - A @ )  

sinh J/3 

cos x cos t. 
sinh J/3 

At order a2 we have 
h, = gA2(8)D cos 2x cos 2t, 

a, = 2AZ(t)B cash 2(* + JP’ sin 2x sin 2t, 
sinh 2 ,//3 

sinh 2 4/3 
2, = 2A2(t)B sinh 2(2 + 4/31 cos 2x sin 2t .  

( 3 . 1 ~ )  

(3.lb) 

( 3 . 1 ~ )  

(3.ld) 

( 3 . 2 ~ )  

(3.2b) 

(3 .2~)  

(3.3u) 

(3.3b) 

(3.3c) 

(3 .34 

( 3 . 4 ~ )  

(3.4b) 

(3.4c) 

Higher-order terms are obtainable directly. We shall not consider that /3 is small, but 
allow /3 to be arbitrary. 

The amplitude A, which charts the viscous decay of the fields with slow time t, is a t  
this stage unknown apart from its initial value, given by condition (2.1), i.e. 

A(0)  = 1 .  (3.5) 
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4. The boundary layer at the bottom 
The irrotational flow solutions of 3 3 slip over the bottom. In order to enforce the 

no-slip condition, we insert a boundary layer of thickness S = (2u/w)*, where w = kc,. 
The result is a modified Stokes layer which in non-dimensional form has a stretched 

(4 . la)  
normal co-ordinate 7 = ( z +  J/3)/A for R --f 00, 

where A = kd = (2/R)3. We scale the normal velocity on A as well: 

to = AW for R+m, (4 . lb)  

so that W = O(a) in the boundary layer. The boundary-layer equations take the form 

Ut + uu, + wu, = -p ,  + iu,,, 

p ,  = 0, u,+ w, = 0. 
The boundary conditions are 

u = W = O  on 7 = 0  

and the matching condition is 

u-+ a(x, -4p) as 7 -+ 03, 

where the .ti is the potential solution of 4 3. The pressure is initially given hy 

$(x, - JP, 0). 

We again represent the solutions in powers of tl as in ( 2 . 2 ) .  
For progressive waves, at order a we have 

I e-7 

2 
+-sin (x- t +7)  - 8 cos (x- t )  - i s i n  (x- t )  , 

( 4 . 2 ~ )  

(4.2 b, c)  

(4.2d) 

(4.2e) 

(4.3a) 

(4.3b) 

(4.3c) 

At order a2 there are two types of term: thcse having dependence like e 2 i ( X +  and those 
independent of x - t .  The solutions corresponding to the former are easily obtainable. 
Those corresponding to the latter are the steady-drift contributions that arise from the 
order-a terms through the generation of Reynolds stresses. These are governed by the 
following system : 

%UIZ+ w,, = 652,,, ( 4 . 4 ~ )  

where the bars indicate the t average over one cycle. There is no pressure contribution 
since the pressure gradient has zero mean. Note that to this order there is no local time 
derivative as large as the viscous force. The appropriate boundary conditions on U 2  are 

Z , = O  on 7 = 0 ,  (4.4b) 

(4.4c) 
3-2 
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The solution of (4.4a, b )  is 
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-1  
2 

e-7 cos 7 + te-27 - e-7 sin 7 

However, as 7 -+ co in (4.5a), 
;i12 -+ 3A2(f)/4 sinh2 dp, 

( 4 . 5 ~ )  

(4 .5b)  

which does not satisfy the matching condition (4.4~). Solution (4.5) agrees with that in 
Phillips (1966, p. 42). 

For standing waves a t  order 01 we have 

A ( i )  sin x 
sinh Jp u1 = --- (sin t - e-7 sin ( t  - y)), ( 4 . 6 ~ )  

e- 7 e-7 7 sin t + - sin (t - 7) - - 2 cos ( t  - 7)  + 3 cost - isin t 
2 

w,= 

( 4 . 6 ~ )  

At order a2, we again examine only the time-independent part of the solution. Again 
( 4 . 4 ~ )  governs the steady drift while (4.4b,c) give the boundary conditions. The 
solution of (4.4a, b )  is 

- A2(i) sin 2 x 
= 8 sinh2 Jp ( - 3 + 8-27 + (8 + 27) e-vsiny + 2(1-y) e-7 cosy). ( 4 . 7 ~ )  U 

However, as 7 -+ 00 in ( 4 . 7 ~ )  

(4.7b) 
- 
u2 -+ - 3A2(t) sin 2x18 sinh2 Jp. 

Solution (4.7) was first obtained by Noda (1968). 

(4.7)] the slow time variation enters only through the envelope function A .  
Note that both for progressive [equations (4.5)] and for standing waves [equations 

5. The boundary layer at the surface 
The irrotational flow solutions of 9 3 have non-zero shear stress at the top. In order 

to enforce the condition of zero shear stress, we insert a boundary layer of thickness 6. 
The result is a layer of modified Stokes type. 

Since the boundary-layer thickness may be small compared with the wave amplitude, 
it is hardly satisfactory to apply the surface boundary condition at  the mean water 
level z = 0. The alternative (Longuet-Higgins 1953) is to use a system of curvilinear 
co-ordinates (s, n,  t )  in which the free surface is a co-ordinate line. Let K be the curvature 
of the surface, and let s and n be co-ordinates along and perpendicular to the surface. 
The elements of length along the surface and the normal are (1 +m) ds and dn 
respectively. Let vtS) and dn) denote the corresponding components of velocity. We 
scale the normal co-ordinate and normal velocity on A ;  

7 = n/A, v(n) = A V n )  for R -+ co. (5.1) 
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The boundary-layer equations then become 

w P ) + [ ( l + ~ n )  V(n)Ill = 0. 

The boundary conditions are 

(5 .2b )  

( 5 . 2 ~ )  

V(n)  = 0, A - l v v ) - ~ v ( S )  = 0 on 7 = 0 ( 5 . 2 d )  

and the matching condition is 

dS) -+ G(z, h) as 7 + - co. ( 5 . 2 e )  

The solutions are expressible in the form of an asymptotic series in the small para- 
meters a and A: 

(v("), V")) = a(@, V i m ) )  + aA{(vp), V',")) + a(v',s), V p ) )  + O(a2)} ,  (5.3a) 

p = ap1+ aA{pz  + ap3 + O(a2)} .  (5 .3b)  

The pressure field is given by potential theory. The curvature K ,  which is positive when 
the surface is concave downwards, is written as 

K = a K 1  + O(a2). (5.4) 

Forprogressive waves, we can choose a reference frame moving with the wave. In  this 
frame, the motion is steady apart from the slow attenuation. Jn the surface layer, then, 
let U = - c + u ,  where ( c I  9 1 . 1 .  At O(a) we have 

.I"' = A ( t )  coth Jp cos s, ( 5 . 5 ~ )  

V p )  = A (t)  7 coth Jp sin s, (5 .5b)  

(5.5C) p l  = A ( t )  coth Jp cos 8. 

This will be the same as the irrotational solution a t  the surface, and so there is no 
viscous perturbation to the first order. At O(aA) we have 

up)  = A(t){q coss + ell sin (s - 7) - ell cos (s - T)}, ( 5 . 6 ~ )  

V p )  = A ( t )  {if sins + coss - er cos (s - v)}, (5 .6b )  

( 5 . 6 ~ )  

At O ( a 2 A ) ,  there are two types of term. We are only interested in the s-independent 
part and this arises as a consequence of the Reynolds stresses. The resulting steady 
velocity gradient is determined by the following system : 

vpv$s,' + Vy)vg + v p v g  = ivgj;, ( 5 . 7 ~ )  

where the bars indicate the s average over one wavelength. The appropriate boundary 

o(') 3T/ = K 1 U 1 on 7 = 0, ( 5 . 7 b )  

p2 = A ( f )  7 cos S. 

- - ~ -  

- 
conditions on v&) are - -  

v g  3 0 as 7 3  -m. (5 .7c )  
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The solution of (5.7a, b )  is 
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However, as r] +-m in (5.8a), 
- 
v&) -+ $A2(t) coth JP, (5 .8b )  

which does not satisfy the matching condition (5.7 c). In  contrast to the constant drift 
velocity in the bottom boundary layer, there is a mean velocity gradient induced just 
outside the surface boundary layer. 

The co-ordinate transformation from (2, x )  to (s, n)  can be written in powers of a as 
follows : 

(5.9) n = z-acosx+O(a2), 

s = x-axsinx+O(a2). 

At the edge of the boundary layer, then, the interior flow sees a non-zero velocity 
gradient a;i;',")/an [equation (5 .8b ) ] ,  which can be converted to a value of a5,/az a t  z = 0 
by using the fact that a is small. The result is 

a5,(x, O)/& = 2A2(t) coth JP. (5.10) 

For standing waves, the nodes are fixed but the free surface is a moving boundary. 
We adopt the intrinsic co-ordinates (s, n, t )  introduced by Longuet-Higgins (1953). 

(5.1 1 a) 
At order a, we have vy) = - A@) coth JP sins sin t ,  

V p )  = A(f) r] coth JP cos s sin t ,  (5.1 1 b )  

p1 = - A ( t ) c o t h J P ~ ~ s ~ c o s t .  
At order ah, we have 

( 5 . 1 1 ~ )  

up) = A($) sins{ - r] sin t + eq[sin ( r ]  + t )  - cos ( r ]  + t)]), (5.12 a)  

(5 .12b)  

p 2  = -A(t)~cosscost.  (5.12~) 

At order $A, we again examine only the time-independent part of the solution. Again 
( 5 . 7 ~ )  governs the steady velocity gradient while (5.7 b,  c) give the boundary conditions. 
The solution of ( 5 . 7 a ,  b )  is 

vg) = & 4 2 ( f )  coth JPsin 2s{r]e~ cos 7 + ( r ]  - 3) e l  sin r]} .  ( 5 . 1 3 ~ )  

As 7 -+-cc in ( 5 . 1 3 ~ )  v g  -+ 0.  (5 .13b)  

Hence there is an automatic matching [equation (5.13b)l  of the velocity gradient at  
the edge of the boundary layer to the potential flow at the surface. There may still be 
an order a2 constant velocity, 5, = constant as r] -+ -a, allowed but we do not yet 
know this at the present stage. 

Again, both for progressive [equations (5.8) and (5.10)] and for standing waves 
[equations (5 .13 ) ]  the slow time variation enters only through the envelope function A. 

V p )  = A(t )  coss{ev cos (7 + t )  - cost), 

- 
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6. The two-time-scale problem 
We are doing an initial-value problem. The presence of viscosity will cause the wave 

field to  decay with time. We can describe this wave attenuation through a two-time- 
scale analysis. 

We introduce the two time scales 

t = hot ’ ,  t = (2 /R) t ,  (6.1) 

(6.2) 

where t‘ is the dimensional time. The time derivative is transformed according to the 
chain rule: 

The aim is to develop asymptotic solutions for small A and to find the wave attenuation 
A ( f ) .  Thus we write in the surface layer 

(u, W )  = a{(%, al) + A(u2, ~ 2 )  + A2(u3, w3) + O(A3)},  ( 6 . 3 ~ )  

(6.3b) 

At order a, we have potential flow, equations (3.1). In  the surface boundary layer we 
rescale the normal co-ordinate and normal velocity on A :  

alat + a/at + AZ alaf. 

p = a{@, + Ap2 + A2p3 + O(A3)}.  

7 = ( z - h ) / A ,  w = AW for R+m. (6.4) 

At order aA, we have the boundary-layer solution 

u2 = A ( t )  ev{sin (x - 7 - t )  - cos (x - 7 - t ) } ,  ( 6 . 5 ~ )  

W, = A(t )  (COS (Z - t )  - eq cos ( X  - 7 - t ) }  + ahl/af, (6.5b) 

p ,  = 0. ( 6 . 5 ~ )  

At order a2A2, the boundary-layer equations are 

U3t - 4u3,, = -P3z - %f, 

P3, = 0, 
with the boundary conditions 

u,, = 0 on 7 = 0, 

( 6 . 6 ~ )  

(6.6b) 

( 6 . 6 ~ )  

u 3 , w 3 + 0  as q + - m ,  (6.6d) 

p ,  =al, on q = 0. (6.6e) 

Unless suppressed, the terms on the right-hand side of ( 6 . 6 ~ )  would give secular 
terms. If we use the normal-stress boundary eond.ition (6.6e) to eliminate p 3  on the 
right-hand side of (6.6a), then the suppression of the right-hand side leads to the 
equation 

with the initial condition (3.5). Hence 

A + A  = 0, 

A ( f )  = exp ( -  t).  (6-7) 

This result was found by Lamb (1932, p. 627) far linear theory of deep-water waves. 
This temporal decay exp ( - y r t ’ )  can be converted directly to spatial decay 
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(Phillips 1966, p. 145) exp ( - y,x') through the group velocity cg, which is given by 
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cg = d(kc)/dk. 

However, since c N co + O(a2) [see (2.2d)l  

cg = d(kco)/dk + 0(a2) (6.8) 

(Wehausen & Laitone 1960). Hence the dimensional spatial decay rate ys is given by 

ys = 2k2v/cg, 

while the dimensional temporal decay rate yT is given by 

(6.9) 

yT = 2k2~ .  (6.10) 

The above derivation focused on progressive waves but precisely the snme results 
apply to standing waves as well. 

7. Motion in the interior: progressive waves 
Let us now review the evolution in our initial-value problem. First the pressure field 

establishes the potential flow immediately after the wave is imposed. Then the periodic 
motion o f  the fluid produces the boundary layers at both the bottom and the free 
surface. The flow field in the boundary layers is set up with a time scale of a wave 
period. From the moment of starting the waves, the vorticity, which is generated in the 
boundary layers, begins to diffuse into the fluid. I n  the interior of the fluid the motion 
will a t  first be irrotational, since no vorticity can be generated there. Let us investigate 
whether the vorticity will diffuse throughout'the interior or whether it remains confined 
near the boundaries. 

Let us examine the interior flow subject to the boundary conditions determined by 
the boundary layers. At the bottom, (4.5b) g' ives us 

U( - J/3, 2) = $a2A2(f)/ sinh2 J/3, W( - J/3, 2) = 0. (7 . ln )  

At the top, (5.10) g' ives us 

U,(O,t) = 2a2A2(2)c~thJ/3, Z,(O,2) = 0. (7 . lb )  

We can classify the quasi-steady interior flows by introducing the velocity scale 
us = a2co associated with the second-order drift. The intensity us of this drift is 
measured by the Reynolds number R, (Stuart 1966), where 

R, = a2k3d2c0/2v = /3(a/6)2. (7.2) 

When R, 4 1,  the convective nonlinearities of the Navier-Stokes equations are negli- 
gible and the interior circulation is a creeping flow. When R, B 1 ,  the convective non- 
linearities are significant. These two limits correspond to a < 6 and a B S respectively. 

If there is a quasi-steady interior flow (ii, W) explicitly independent o f t ,  then 

apt = ~2 a/at; (7.3) 

hence the local time derivative resulting from the wave attenuation is formally of the 
same order as the viscous forces. 
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The boundary conditions (7.1 a, b) are consistent with a parallel flow solution 
(U(z, t ) ,  0) which satisfies, independent of R,, 

U ( x ,  f) = a2A2(f)  {coth,/psin 2x + a, 
+ (3/4sinh2JP+sin2JPcoth,/p-+fjx) cos2z/cos2JP) (7.5) 

correct to O(a2). This would be established on a dimensional time scale d2/v.  Here the 
retention of the slow time variation a/af significantly modifies the field ii compared 
with the ‘conduction’ solution of Longuet-Higgins (1953), which, if obtained in an 
Eulerian description, would satisfy 

i a 2 i i p z 2  = .p,. (7.6) 

The solution (7.5) is bounded for deep water, /3 -+ CO, whereas the solution of (7.6) is 
unbounded. There are, however, depths for which cos 24P = 0, i.e. 

2kd=&m,  n = l , 3 , 5  ,..., (7.7) 

for which the solution (7.5) is unbounded. An examination of the initial-value problem 
(retaining a/at as well as a/af) shows that a t  these depths no quasi-steady state isattained. 
In  fact, U N A 2 ( f )  f ( t ) ,  where f ( t )  N t as t -+ CO. The slow envelope will ultimately cause the 
field to decay. When depths near these critical values are considered, very long times 
we required before a quasi-steady state is reached. 

The solution (7.5), a modified version of the Longuet-Higgins conduction solution, 
exists for all R,, apart from those critical depths given by (7.7). However, when R, is 
large, this solution could well be unstable; other interior solutions would then exist. 

8. Motion in the interior : standing waves 

the boundary layers. At the bottom, (4.7 b) g’ ives us 
Let us examine the interior flow subject to the boundary conditions determined by 

( & l a )  

At the top, (5.13b) gives us that  

Tie&, 0, f) = 0, WZ(Z, 0, t )  = 0. (8 . lb)  

Again, the wave attenuation effects on the scale t are comparable to the viscous forces. 
Boundary conditions (8.1) are not consistent with an exact parallel flow solution, 
however, and the convective nonlinearities of the Navier-Stokes equations will not 
vanish identically. 

When R, < 1, the governing equation is 
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We find that the local time derivative exactly balances the x-vorticity diffusion and 

+ a 2 q a z 2  = is,. (8 .2b )  

the profile of E is determined by 

Since the total flux must be zero, a pressure gradient is set up, 
- 
p = ---a ,”, 2A 2(t) sin 2x/sinh2 y‘p, ( 8 . 2 ~ )  

and the resulting drift ii is given by 

G(z, 2) = a2A2((t) (&(p - z2) - #}sin 2x/sinh2 zlp (8.2d) 

correct to second order in a. Hence the interior, which to  O(a)  is inviscid, is fully 
viscous to O(a2). 

When R, 9 1, the convective nonlinearities of the Navier-Stokes equations are 
significant and the vorticity produced in the boundary layers decays to zero within a 
layer of thickness 6*, where 

(8.3) 

which is much thicker than the Stokes layer since a << 1. 
This thicker layer will be called the ‘outer’ layer, in contrast to the ‘inner’ layer, 

which is of Stokes type. Again, there exists the possibility of non-uniqueness of the 
solution and instability of the boundary-layer flow. However, we know of no evidence 
confirming that this does occur. 

In  order to obtain the structure of the outer layer on the bottom, we scale the normal 
co-ordinate and velocity component on A*: 

A* = k6* = 8/a = A/a,  

6 = (z +1Ip)/A*, w = A*W for R, -f co. 

The boundary-layer equations then become 

with 

( 8 . 4 ~ )  

(8.4b) 

and the conditions (8.1) become 

( 8 . 4 ~ )  
- 
u = - $a2A2(t) sin 2x/sihh2J/3, = 0 on 5 = 0. 

The matching conditions between the outer layer and the potential flow are 

E , F V - f O  as [-+co. (8.4d) 

Notice that, since a/& is large for R, 9 1, aE/al is negligible compared with the viscous 
forces. 

The system (8.4) is equivalent to that governing the outer layer on a circular cylinder 
oscillating along its dia.meter, a problem that has been solved numerically by Davidson 
& Riley (1971). Figure 1 shows the analogy between the outer layer on the cylinder and 
the bottom outer layer in standing waves. The jet-like natures of the steady streaming 
are equivalent. The entrainment velocity W, into the outer layer is seen to be negative 
for all values of x. Near the points x = nn, where n is an integer, jets emerge from the 
bottom boundary layer. The corresponding points on the cylinder are labelled equi- 
valently, A 0  and CO are axes of oscillation. B is a node point with maximum entrain- 
ment velocity into the outer layer. A t  the points A and C, the outer layers from the t’wo 
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FIGURE 1. The analogy between (a) the outer boundary layer on a cylinder oscillating along its 
diameter and (b)  the outer boundaiy layer a t  the bottom of a water channel containing standing 
waves. In the latter, there are antinodes at points labelled 0 and a node at  the point labelled N .  

sides collide. After impact the outer-layer fluid moves in the directions A D  and CE.  
The jets which emerge along the axis of oscillation will have the prciperty that the 
momentum flux along them will be invariant; this may be seen from the work of 
Bickley (1937) and Davidson & Riley (1971). The surface outer layer is driven by the 
bottom outer layer owing to  conservation of mass since no drift-velocity gradient is 
possible [equation (5.13b)l. Figure 2 shows sketches of the streamlines and the circula- 
tion of steady drift in standing waves having different Reynolds numbers R,. Note the 
double cell structure in the vertical. 

I n  summary then, when R, is small, there is no outer layer. The vorticity will diffuse 
inwards from the boundary layers a t  the bottom and the free surface until a quasi- 
steady state, given by the viscous solution, is obtained. The interior motion contains 
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@) 
FIGURE 2.  A sketch of the mean-drift streamlines for standing waves when (a) R, 1 and ( b )  R,  4 1. 
The profile of the x component of the drift is sketched in each case. The inn&- and outer-layer 
thicknesses are indicated by A and A* respectively. A t  the surfaces there are antinodes at x = 0, rn 
and nodes at x = ?pr. 

a second-order vorticity determined by the oscillatory layers a t  the boundaries. The 
time taken for the vorticity to diffuse into the interior and for a quasi-steady state to  be 
reached will be of the order of d 2 / v .  When R, is large, there are two outer layers within 
which the steady drift decays to the potential flow. Outside the outer layers there will 
be an inviscid flow. The drift motion of the fluid forms a cellular structure. The whole 
wave field is exponentially decaying with the slow time f. 
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9. Mass-transport velocity 
The previous analysis has been in Eulerian variables, but if we are interested in the 

motion of individual fluid elements, a Lagrangian description is Iequired. The 
Lagrangian properties of the motion are derivable from the Eulerian solutions already 
found (Longuet-Higgins 1953). 

Let U(x,, t )  denote the velocity of the particle whose co-ordinates at  time t = 0 are x,. 
Then we have 

by a Taylor series expansion. Since U is of the same order as u, we assume that 

u = a ~ ,  + m, + 0 ( ~ 3 ) ,  (9 .2)  

whence, on substituting into (9 .1 )  and equating to zero coefficients of like powers of a, 
we have 

U, = B,, U, = B, + 1, u,dt . grad u,, (9 .3a ,  b )  

where the bar denotes the mean value with respect to time over a complete period with 
X, fixed. The first-order motion is periodic in time, so we have 

- - t 

- u, = B, = 0. (9 .4)  

The components of the mass-transport velocity are defined as follows: 

(9 .5a )  

m2 = w2 + [Ju,dtl WIZ + [Iw,dtl W I Z .  (9 .5b)  

In  the bottom boundary layer, the Eulerian velocity ( 4 . 5 ~ )  for progressive waves 

( 9 . 6 ~ )  

becomes through ( 9 . 5 a )  

8, = (A2(t)/sinh2 Jp) (9 - 2e-7 cos 7 + f e c 2 7 } .  

This is plotted in figure 3 (a).  When 7 -+ co, this mass-transport velocity becomes 

U, --f fA2(t)/sinh Jp + O(a3). (9 .6b)  

In  the bottom boundary layer, the Eulerian velocity ( 4 . 7 ~ )  for standing waves becomes 
through ( 9 . 5 ~ )  

U, = (A2@)  sin 2x18 sinh2 Jp) { - 3 + 3e-21 + 8e-7 sin 71. ( 9 . 7 ~ )  

This is plotted in figure 3(b ) .  When 7 -+ 00, this mass-transport velocity becomes 

g, -+ - $A2@) sin 2x/sinh2 Jp+ O(d3). (9 .7b)  

Apart from the attenuation envelope results (9 .6b )  and (9 .7b )  are identical with 

In the surface boundary layer, the mass-transport velocity is defined by (Longuet- 
those obtained by Longuet-Higgins (1953).  

Higgins 1953) 

( 9 . 8 ~ )  
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(4 (b) 
FIQURE 3. Sketches of the profiles of mass-transport velocity in the bottom boundary 

layer for (a) progressive waves and (a) standing waves. 

and the vertical gradient of the mass-transport velocity can be found by differentiation: 

(9.8b) 

where (9, n) denotes the rate at  which the co-ordinates of a particular element of fluid 
are increasing with time. 

For progressive waves, the Eulerian velocity (5.8~) relative to the surface boundary 
becomes through (9.8 b )  

(9.9a) aD2/an = 4A2(f) coth Jp(1- ev cos q}. 

When q + - 03, this mass-transport gradient becomes 

aD2/an 3 4A2(t) coth j p .  (9.9b) 

For standing waves, the Eulerian velocity gradient in the surface boundary layer 
becomes through (9.8b) 

an2/& = - 2A2(t) coth j/3 e7 sin7 sin 2x. (9.10) 

When 7 3 - co, the mass-transport velocity gradient is zero. 

by Longuet-Higgins (1953). 

and (7.5). It follows from (9.5a) that 

Apart from the attenuation envelope these results are identical with those obtained 

In  the interior forprogressive waves, we have already found the velocity field, (3.1 b, c) 

3 
g2 = A 2 ( f ) [ c o ~ ~ ~ ~ ~ $ p )  + coth Jpsin 22 + (4 cos 2 Jp sinh2 J/? 

- 
+tan24/3coth J/3- )cos 2 2 + 9 } .  (9.11a) 

2 cos 2 Jp 

Longuet-Higgins (1953) wished to  apply his results to waves in a closed tank. He 
attempted to simulate this effect by imposing a pressure gradient p ,  so that the volume 
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FIGURE 4. The profiles of mass-transport velocity in the interior in progressive waves for J/3 = 0.50. 
_-_ , Longuet-Higgins (1953) conduction solution; -, present analysis for 1 = 0;  ....*., present 
a.nalysis for t = = 0.25; + , data of Russell & Osorio (1957) for a = 11.7 cm, o = 4.2 rad/s, 
d = 50.8 cm. 

flow rate across any vertical section would be zero. This induced pressure gradient is 
given by 

At the surface, the mass-transport velocity is then found to be 

3 
2 sinh2 ,I/?+ 4 cos 2 ,//? sinh2 ,/p 

+tan2,//? 

However, for deep water, /3 1 ,  it  can be seen that 'p, can no longer be maintained 
constant. This reflects the fact that the convection terms in the momentum equations 
are important and hence the return flow can be defined only if the conditions at  
x -+ i oc) are specified. 

The diffusion time scale for the vorticity to diffuse into the whole interior and for the 
quasi-steady state to be reached will be t' = O(d2/v). Figures 4 and 5 show our parallel 
flow profiles of interior mass-transport velocity for progressive waves having respec- 
tively ,//? = 0.50 and 1.25. The dashed curves are those given by the Longuet-Higgins 
(1953) conduction solution while the solid curves are those of the present analysis with 
t = 0. Notice that the z structures differ from those of Longuet-Higgins, the discrepancy 
becoming greater for larger depths d ,  i.e. larger p. However, neither set of curves gives 
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FIGURE 5. The profiles of mass-transport velocity in the interior in progressive waves for ,//3 = 1.25. 
_ _ _  , Longuet-Higgins (1953) conduction solution; -, present analysis for .f = 0; .*...., present 
analysis for 2 = f / 3 =  0.39; + , data of Russell & Osorio (1957) for a = 11.7 cm, w = 2.1 rad/s, 
d = 5043cm. 

remarkable agreement with the plotted experimental results of Russell & Osorio (1957). 
The direct formal conversion of our results tdthose having spatial decay ((j 6 )  results 
in the following estimates. If d = 50 cm, k = 0.01 cm-l (JP = 0.50), a = 5 cm, 
c,, = 80cm/s, cg = 80cm/s and u = 0.01 cm2/s, then from (6.lOb) 

YT = 2 x 10-6s-1, (9.12 a )  

and from ( 6 . 1 0 ~ )  ys = 2.5 x lo-* cm-I. (9.12 b )  

Russell & Osorio (1957) found that varying their measurement station from 40ft to 
140 f t  downstream from the wave maker resulted in a small deviation in their dIift data. 
This is borne out by evaluating exp ( - ysAx’) for Ax‘ = 1 O O f t :  exp ( - ys Ax’) w 0.9993. 
They also obtained a deviation in their data by waiting for times comparable to the 
diffusion time. The decay (in time) after At’ = d2/u assuming that there is no wave maker 
(external energy supply) would be given by exp ( - yT At’) = exp ( - yTd2/u = exp ( - 2,8) 
so that for ,/@ = 0.50 and 1.25, exp ( -  yTAt’) decays to 0.606 and 0.044 respectively. 
Since the m a s  transport is proportional to [exp ( -  yTAt’)I2 this decay would, indeed, 
be substantial. The dotted curves on figures 4 and 5 correspond to t‘ = 0-50d2/u and 
0.12 d2/u respectively and are included only as an indicator of the types of profiles to be 
expected when no energy source’exists. We do not claim that the seeming improvement 
of the agreement is  necessarily real since the experiment and analysis do not apply to 
identical systems. At best our rough comparisons may be applicable away from a wave 
maker, in whose neighbourhood very complicated initial values (in space) would be 
appropriate. The sentiments of Russell & Osorio (1957) still seem valid for progressive 
waves: “For the surface and interior of the fluid there is no strictly applicable theory.” 
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For standing waves, the mass-transport velocity field in the interior region is the same 
as the Eulerian velocity field since the second and third terms on the right-hand side of 
( 9 . 5 ~ )  are identically zero. A sketch of the streamlines and the circulation of mass 
transport in a standing wave is shown in figure 2. 

10. Mean vorticity just beneath the surface boundary layer 
For progressive waves, it  was shown by Phillips (1966), that, in an Eulerian des- 

cription of the motion, the wave momentum is contained in the region of space above 
the wave troughs. Hence a decrease in the mean momentum of this region must be 
accompanied by a mean stress across horizontal planes below the free surface, which is 
clearly of the second order. In  Cartesian co-ordinates (z, z, t )  a vertical integration of 
the horizontal momentum equation from a level z = -zo just beneath the surface 
boundary layer at  the wave troughs to the free surface (figure 6 )  followed by a time 
average over one cycle leads to 

Owing to the wave attenuation (7.1~) and the O(a)  potential solution (3.1), the first 
term is then 

(10.2) 

In  Cartesian co-ordinates, owing to the wave decay, we found from ( 6 . 5 b )  and ( 3 . 1 ~ )  

- - 
u,h = A2u;h = - A2u,h, = - &a2A2A(t) coth J/3+ O(a3).  

that 
W2 = -A(t)ercos(x-y-t). 

The Reynolds stress can then be found from (6.5a, b )  and (3.1) to be 
- 
u w  = - &a2AZA2(t) coth1/P( - 7 e-1) sin y + (y - 1) eq cosy}. (10.3) 

At the level z = - zo, which is outside the surface boundary layer y --f - co, the Reynolds 
stress is given by - 

- [uw],o = 0, (10.4) 

and there is no contribution to this order from the potential region, the shaded region of 
figure 6. Furthermore, since the surface condition (2.1 f )  of zero shear stress is in 
curvilinear co-ordinates, we must transform co-ordinates (5.9) and convert to Cartesian 
velocity components to obtain 

(au/&)h, = a2A2(t) coth lip. 

If (10.2), (10.4) and (10.5) are substituted into ( l O . l ) ,  we obtain 

which we can write as 
[ a U / a ~ ] - , ~  = 2a2A2(t)  Goth J/3, 

[au/aZ],,, = 2 a w ( t )  coth ~ p ,  

(10.5) 

(10.6) 

(10.7) 

correct to  the second order in a. This is the mean velocity gradient (mean vorticity) 
just outside the surface boundary layer and this result agrees with the matching 
boundary condition for the interior problem in Cartesian co-ordinates (5.10). We see 
from (6.5b) that the O(aA)  vortical flow vanishes outside the surface boundary layer, 
so that it cannot produce an O(a2A2) Reynolds stress there. Hence an O(a2) mean 



82 

-d  
‘T7 

A.-K. Liu and 8. H .  Davis 

1 1 / 1 1 / / / / 1 / / / / / / / / / / / / / / / / / / / / /  / / / / / / / / / / / / / I / / / /  / / / / / / i  

viscous stress is set up as shown in (10.1) on z = - z,, which balances two numerically 
equal effects: half the momentum loss u,hfrom (10.2) and the free shear stress (10.5). 
This is in contrast to the balance between viscous stresses and total momentum loss 
suggested by Phillips (1966, p. 36) although the final results are the same. 

The mean vorticity fi at the outer edge of the surface boundary layer can be found 
from (s, n, t )  co-ordinates (5.8b) and is given by 

- - 
C2 = ?in + KU = 2a2A2(t) coth Jp, (10.8) 

which agrees with the result which Dore (1971) obtained using a (different) set of 
orthogonal curvilinear co-ordinates. 

1 1. Discussions and conclusions 
The present analysis considers an initial-value problem for slightly viscous water 

waves. It is seen that local viscous attenuation in time (of scale t )  can be included in 
the analysis by using the method of multiple scales. The attenuation does not dramati- 
cally alter the boundary-layer structure but it does significantly modify the interior 
motions, where its effect is comparable with that of the boundary-layer corrections. 

For progressive waves the boundary layers a t  the bottom and at  the free surface 
create vorticity that diffuses inwards and determines an interior flow. There an interior 
flow solution is a superposition of an O(a) potential flow plus an O(a2) balance between 
local attenuation and viscous forces which is established on the time scale d3/v for 
vertical diffusion. The Lagrangian version of this interior state is related to the 
‘conduction ’ solution of Longuet-Higgins but since the local attenuation cannot be 
neglected, i t  never coincides with it, the departure being most, pronounced for large 
values of d. This drift is bounded for d -+ 03, again in contrast to the Longuet-Higgins 
solution. However, a t  certain critical depths secular behaviour rather than quasi- 
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steady behaviour is predicted This solution exists independent of the size of the ratio 
S/a and so can more logically be compared with the experiments of Russell & Osorio 
(1957). Figures 4 and 5 make these comparisons. Care, however, is necessary in this 
comparison since time decay in the analysis is equated to spatial decay in the experi- 
ment. This is especially true near a wave maker, where a harmonically ‘pure’ initial 
condition (in space) would probably be an artificial imposition. Sufficiently far down- 
stream, however, the comparison might be reasonable. 

The strong forward velocities near the bottom which are observed in experiment are 
accounted for quantitatively by the theory. We may expect a forward bending of the 
velocity profile near the free surface for progressive waves, but no careful observations 
are yet available because of the experimental difficulty in making measurements close 
to a moving surface and the weak stability of the motion near the surface (Longuet- 
Higgins 1960). 

For standing waves the boundary layers at the bottom and a t  the free surface create 
vorticity that diffuses inwards. The introduction of Stuart’s (1966) Reynolds number 
R, characteristic of the steady drift a,llows us to classify the cases of interior motion as 
viscous or inviscid. When R, $ 1 ,  there is a double-boundary-layer structure both on 
the bottom and on the free surface. The thinner (inner) layers are Stokes layers that 
respectively produce drift and drift gradients on the bottom and top. The thicker 
(outer) layers balance viscous forces with convection and take the drift profiles of the 
thinner layers to the potential flow in the core. The slow decay here enters only through 
the decaying envelope. When R, 4 1 ,  the thicker layers merge, so that the interior flow 
is fully viscous. Here downstream vorticity diffusion balances the slow local accelera- 
tion. In both cases the drift forms the closed cellular structure depicted in figure 2. 
There is an equivalence between the outer layer at  the channel bottom and the outer 
layer found on a circular cylinder oscillating along its diameter (figure 1) .  The outer 
layer a t  the surface is driven by that a t  the bottom. These predictions concerning the 
mass-transport velocity occurring in closed cellular patterns seem capable of an 
experimental test, both for their existence and for their range of applicability. 

The authors wish to acknowledge the partial support by the National Science 
Foundation through grants under the Engineering Mechanics and Atmospheric 
Sciences Programs. 
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