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We present mathematical methods for the interpretation of high frequency radar sea-echo measured 
by narrow-beam and CODAR systems. (CODAR is a small transportable radar with a scanning broad 
beam). These methods are based Barrick's equations for the ocean radar cross section in terms of the 
directional ocean waveheight spectrum and surface current, using a dimensionless mathematical formu- 
lation. In this paper, we describe the simulation of narrow- and broad-beam radar sea-echo from both 
deep and shallow water, discussing the effect of ocean surface currents, including vertical and horizon- 
tal current shear. This paper provides the mathematical tools for the modeling of common experi- 
mental situations in HF radar oceanography; such models are used in subsequent papers that describe 
the extraction of sea-state information from HF radar sea-echo data. 

1. INTRODUCTION 

The potential of high frequency (HF) radar devices 
for the remote monitoring of sea-surface parameters 
has been recognized since Crombie [1955] observed 
and identified the distinctive features of sea-echo 
Doppler spectra. Rapid advances in the imple- 
mentation of quantitative measurement techniques 
ensued after the derivation by Barrick [1972a, b-I of 
the exact theoretical formulation that expresses the 
HF sea-echo Doppler spectrum in terms of the ocean 
waveheight directional spectrum and the surface cur- 
rent velocity. Interpretation and inversion of these 
theoretical relationships allows ocean surfac• param- 
eters to be derived from observed data without resort 

to the empirical models required, for example, for the 
interpretation of microwave scatterometer measure- 
ments [Barrick and Swift, 1980-I. 

On the basis of antenna beamwidth, two types of 
HF radar systems may be identified. The first com- 
prises narrow-beam systems, which were developed 
initially for the over-the-horizon detection and track- 
ing of military targets. Narrow-beam systems have 
been employed both in groundwave and skywave 
modes for the remote observation of sea-surface 

properties [Lipa et al., 1981-I. Although the interpre- 
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tation of the narrow-beam signal backscattered from 
the sea is simpler, the disadvantage of narrow-beam 
systems for most applications is their huge physical 
size, and consequent high installation and operating 
cost. It is mainly for this reason that the second class 
was developed: small transportable systems with 
broad beams that rely on novel antenna concepts to 
provide adequate angular resolution of sea-surface 
features. These systems are termed CODAR (for 
Coastal Ocean Dynamics Applications Radar). Orig- 
inal CODAR concepts were developed in NOAA's 
Wave Propagation Laboratory for the measurement 
of surface currents; these research investigations em- 
ployed a separate transmit antenna along with 3- and 
4-element monopole arrays for receive [Barrick et at., 
1977]. In later efforts to extend CODAR to measure 
coastal directional wavefields and overcome technical 
difficulties with the 4-element array, an even more 

compact antenna system was developed [Barrick and 
Lipa, 1979-1, consisting of three elements: two crossed 
loops and a monopole, now used for both transmit 
and receive. This system is about 2 m high and 0.6 m 
wide; it measures both the ocean waveheight direc- 
tional spectrum [Lipa and Barrick, 1982b] and the 
;urface-current field [Lipa and Barrick, 1983], from 
the coast and from offshore platforms. This is now 
the only CODAR antenna system in use within the 
USA, although the older CODAR antenna system is 
still operated in Canada and West Germany. 
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Fig. i. A. 84-sample sea echo power spectrum recorded by 
the S•[ s•ywavc radar on 
The first-order Bra• peaks occur at •0.395 Hz. The dashed lines 
indicate the positions of the four s•cond-ord•r peaks produced by 
a 12-s swell. 

In previous publications, we have demonstrated 
the validity of narrow- and broad-beam HF radar 
measurements for directional waveheight spectral 
measurements [Lipa et el., 1981; Lipa and Barrick, 
1982b]. Analytical and computational techniques for 
the modeling and inversion of narrow-beam HF 
radar sea-echo have been described in report form by 
Lipa and Barrick 1-1982a]. However we have not yet 
presented details of the methods which are imple- 
mented as automatic, operational software for 
CEDAR measurement of the directional spectrum, 
as we have done for surface currents [Lipa and Bar- 
rick, 1983-]. The mathematics required for the inter- 
pretation and inversion of the second-order radar 
spectrum to give sea-state is far more complicated 
than that for currents. It is the purpose of this and 
subsequent papers to present and demonstrate these 
methods. 

The measurement of the statistical waveheight 
spectrum with any instrument requires averaging 
over time and/or area. The accuracy obtainable for a 
given resolution depends on the measurement tech- 
nique; for HF radar, waveheight directional spectra 
can typically be obtained every « hour over areas as 
small as 25 square kilometers. Due to the properties 
of the second-order integral, the frequency resolution 
of the derived wave spectrum decreases with wave 
period; this sets a lower limit of about 3.5 sec on the 
period of the recovered information. Within the 
radar scattering region, the directional spectrum 
must either be homogeneous or able to be math- 
ematically modeled. Because of these restrictions, HF 
radar wave measurements are made with fairly 

simple configurations: for example from an island or 
platform in the open ocean or from a simple coast. 
line with a clear ocean view. This excludes from con. 
sideration operation in rivers, straits, estuaries and 
any constrained areas with highly inhomogeneous or 
unstable conditions. (These constraints do not apply 
to CEDAR measurements of surface currents, which 
have been made in many such areas). Also excluded 
is the surf zone close to the beach due to the highly 
nonlinear wave dynamics; in any case, that region is 
automatically excluded from HF radar measure. 
ments by receiver shutdown to allow the transmit 
pulse to escape the area. 

2. NARROW-BEAM RADAR SEA ECHO 

Figure 1 shows a typical, measured HF Doppler 
spectrum of radar echo backscattered near grazing 
incidence from the sea at 15 MHz. The dominant 
contribution is produced by first-order scatter from 
specific spectral components of the ocean wavefield. 
These surface-height spectral components are termed 
"Bragg waves"; their wavelength is exactly one-half 
the radar wavelength, and they move directly toward 
or away from the radar station. These peaks are evi. 
dent in Figure 1; their amplitude is two orders of 
magnitude high.er than the surrounding continuum, 
from which they are separated by well-defined nulls. 
In the absence of ocean current, the first-order peaks 
occur at frequencies that depend only on the radar 
transmitter frequency. The surrounding continuum is 
due to higher-order scatter, the greater part of which 
arises from second-order interaction between pairs of 
ocean waves constituting the total ocean wavefield. It 
is from the interpretation of this portion of the spec- 
trum (normalized by the first-order energy) that we 
derive the directional ocean waveheight spectrum. 
The random appearance of the radar spectrum is due 
to the random height of the wavetrains composing 
the surface of the sea. The scatter of the resulting 
spectral points is described by a Z •' (chi-squared) dis- 
tribution with 2N degrees of freedom, where N is the 
number of spectra averaged [Barrick and Snider, 
1977]. 

The Doppler spectrum can be expressed as the 
radar cross section per mean surface area per rad/s, 
bandwidth a(ro, •b), which is a function of the Dop- 
pler frequency shift co from the carder and the bear- 
ing angle qb of the radar beam with respect to an 
arbitrary fixed direction. 
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Fig. 2. Illustration of the second-order interaction process. The incident radar wave (wavevector •o) interacts 
with the first ocean wavetrain (•) to produce an intermediate scattered wave (•. This interacts with a second 
wavetrain (•') to produce a wave which is scattered back towards the radar. Integration point (p, q) of the 
second-order integral is at the intersection of the wavevectors •, •, •'. The perpendicular from (p, q) to the p-axis is 
useful for proving many of the equations in the text. 
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2.1. The narrow-beam deep-water radar cross section 

Barrick's [1972a] equation for the first-order radar 
spectral cross section in deep water in the absence of 
ocean of surface current is given by 

aøl(co, •b) = 2%rk• • $(-2m'•o)6(co - m'co•) (1) 
m,--- + 1 

where m' = _+ 1 denotes the sign of the Doppler shift, 
•o is the radar wave vector (of magnitude ko pointing 
toward the scattering patch), and S( ) is the direc- 
tional waveheight spectrum. The Bragg resonance 
condition is imposed by the delta-function constraint. 
Thus, ideally, the first-order 'peaks are impulse func- 
tions at the Bragg frequencies q-tot, defined in terms 
of the radar wavenumber ko for deep water by the 
dispersion equation 

where g/is the gravitational acceleration. 
In practice, these peaks are broadened somewhat 

by current turbulence, ionospheric motions (in a sky- 
wave radar), and systems effects. The amplitudes of 
the first-order peaks are proportional to the direc- 
tional ocean-wave spectrum at the Bragg wave vec- 
tors q-2•o. At normal HF frequencies, these corre- 
spond to short, saturated waves (e.g., 2-s period for a 
radar frequency of 25 MHz). 

Barrick's equation (1972b) for the second-order 
radar spectral cross section at a Doppler shift to is 
given by 

6(co -- m x//•- m' •/'•) dp dcl (3) 
Here, the spatial wavenumber p is defined to lie 
along the radar beam, with q perpendicular. In the 
second-order scattering process, a first set of waves of 
wavevector fc interacts with the incident radar wave 
(No) to produce a scattered wave • (Figure 2). A 
second interaction with waves of wavevector [' takes 
the incident intermediate wave and scatters it back 
toward the radar. The scattering wave vectors • and 
•' are defined by 

• = (• - •o, •) •'= (-(p + •o), -q) (4) 

and hence they obey the constraint 

i + f•' = -2•o (5) 
The lengths of the scattering wave vectors are denot- 
ed by k and k'. The values of m and m' in (3) take the 
values + 1 and - 1, defining the four possible combi- 
nations of direction of the two scattering waves. The 
coupling coefficient F is given by 

F = rn + F•.u (6) 

where Un and I¾.u are the hydrodynamic and elec- 
tromagnetic components defined by 

r•=-y •+ - •,•/•(•_•)J 

r;.• = • [!•' •oX•' ß •o)/•g - 2• ~ 
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Fig. 3. Normalized constant Doppler frequency contours, r/, vs. wavenumbers, k and k', for the two ocean wave 
vectors • and •' producing second-order backscatter, for I tol > t% (i.e., m = m'). Shown is the mathematically 
singular situation at I r/I = v/•, where the two dosed contours break apart. The dashed circle shows the electro- 
magnetic "corner reflector" condition, where • and •' are at right angles (• ß •' = 0); this circle is tangent to the 
Doppler frequency contour l r/l= 23/4, producing a mathematical stationarity or peak at this frequency. The 
contours are symmetric about the q axis. 

The derivation of these coupling coefficients is dis- 
cussed in Appendix A. Equation (3) for the second- 
order radar spectrum is a perturbation solution of 
the nonlinear hydrodynamic and electromagnetic 
boundary conditions at the ocean surface to second 
order in both waveslope and the perturbation pa- 
rameter ko h, where h is the rms waveheight. For this 
solution to be applicable, the perturbation parameter 
must be less than unity, which sets the following ap- 
proximate limit on the waveheight for a given radar 
wavenumber: 

h < 1/ko (9) 

If the sea-state exceeds this limit, the second-order 
radar spectrum begins to saturate, and the value of 
the ocean waveheight predicted through interpreta- 

tion of (3) will be too low; in this case a lower trans- 
mit frequency should be used. 

Frequency contours are defined by the delta func- 
tion constraints in (3). They are the loci of the points 
(p, q) in Figure 2 giving the lengths and directions of 
the two interacting wave vectors, œ and •', that con- 
tribute to second-order scatter at a given, constant 
Doppler frequency. We will now prove that the dif- 
ferent combinations of m and m' define disjoint 
ranges of Doppler frequency. 

2.1.1. The case m = m'. Squaring the argument 
of the delta function in (3) gives the relation 

o• • = o(• + •' + 2,d•) (lo) 
where k and k' are the lengths of the scattering wave 
vectors. It follows from Figure 2 that because the 
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sum of two sides of a triangle is always greater than 
the third we have 

k -4- k' > 2ko (11) 

Since (kk') •/2 is positive, it follows from (10) and (11) 
that 

co2 > 2gko (12) 

This therefore defines the regions of Doppler fre- 
quency outside the Bragg lines; i.e., 

co > 2V/•o m = m' = +1 (13) 
co< 2x/•o m = m' = -- I (14) 

The frequency contours are plotted in Figure 3. The 
Bragg frequencies ñcos define the points (p, q)= 
(+_ko, 0) where one of the two interacting ocean 
wavenumbers is zero (i.e., infinite wavelength). Such 
ocean waves do not exist, and the corresponding di- 
rectional spectral value in (3) will be zero, together 
with the value of the second-order radar cross sec- 
tion. This is the reason for the nulls between the first 
and second-order spectra that can be seen in Figure 
1. Close to the Bragg frequency, the frequency con- 
tours are almost circular in shape, and have a radius 
much smaller than the radar wavenumber ko. There- 
fore both of the scattering wave vectors [ and •,' are 
almost constant in length around the frequency con- 
tour with the longer approximately equal in length to 
2k0. The eccentricity of the contours increases with 
departure from the Bragg frequncy until a caustic 
occurs when Ice I= x/•ros. This gives rise to singu- 
larities in the radar spectrum at these frequencies. 

2.1.2. The case m • m'. Squaring the argument 
of the delta function now gives 

to 2 = g(k + k'- 2,d/'•) (15) 

If we consider first the half plane of (iv, q) spa• for 
which k < k', then leads to the inequality 

w 2 < g(k' - k) (16) 

It can be seen from Figure 2 that the maximum value 
of (k' - k) equals 2ko and occurs when the vectors lie 
in opposite directions along the p axis. Therefore 
from (16) 

co•' < 2gko (17) 

which defines the region between the Bragg lines: 

0 < re <_ co s m= 1, m'= --1 

-ms < co <_ 0 m = -1, m' = 1 
(18) 

A similar proof applies to the left-half plane with the 
results 

0<co<_cos m=--l,m'=l 

--cos < co • 0 m= 1, m' ---- --1 
(19) 

Frequency contours are shown in Figure 4. As for 
the case m = m', they are almost circular close to the 
Bragg frequency but in this case change shape in a 
regular fashion with increasing frequency displace- 
ment from the Bragg line. 

2.1.3. Calculation of the deep-water radar cross 
section. We now describe how to calculate values 
for the second-order radar cross section for a model 
of the ocean directional waveheight spectrum. It is 
convenient to transform (1) and (3) to a dimension- 
less form, which is achieved by expressing the prod- 
uct re s a(2)(co) as a function of the normalized vari- 
ables k/2ko and m/cos. Results for any calculation 
then apply to a family of ocean spectral models and 
radar frequencies having the same values of the nor- 
malized parameters. The delta-function constraint is 
used to perform one of the integrations in (3); the 
other must generally be performed numerically. 

Any model for the ocean-wave spectrum may be 
used; we choose as an example the product of a 
Pierson-Moskowitz nondirectional spectrum [Mos- 
kowitz, 1964] and a cardioid directional factor. The 
wave vector •. defined in (4) may be written in polar 
coordinates as (k, 0 + qb), where 0 is the angle with 
respect to the radar beam and qb is the angle between 
the radar beam and the fixed reference direction. The 

model ocean wave spectrum is defined by 

$(•)--f(k)g(O + cp) (20) 

where the Pierson-Moskowitz spectrum f(k) de- 
scribes the characteristic falloff of saturated waves 

above a cutoff region defined by wavenumber kc' 

O.005e- ø' w(kc/k)2 

f(k) = k• (21) 
and we express the directional factor as a Fourier 
series over angle' 

1 2 

g(•) = • • c•tf,(o0 (22) n • --2 

in which c. are Fourier angular coefficients and tf.(=) 
are trigonometric functions defined by 

tf.½) = cos (n•) n > 0 

= sin (-n=) n < 0 (23) 
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Fig. 4. Normalized constant Doppler frequency contours, r/, vs. wavenumbers k and k', for the two ocean wave 
vectors • and [:' producing second-order backscatter, for I c01 < •% (i.e., m -- -m'). The dashed drcle representing 
the electromagnetic "corner-reflector" condition is not tangent to any Doppler frequency contour; therefore there 
are no peaks due to this phenomenon between the Bragg lines. The contours are symmetric about the q axis. 

The Fourier series can represent a wide range of di- 
rectional distributions; for example we consider a 
cardioid distribution given by 

g(•) = cos'* |•|// cos* dc• (24) 

it has Fourier coefficients defined by 

c_ 2 = sin 

c_ x - 4 sin (a*)/3 

Co = 1 (25) 

cx = 4 cos (•*)/3 

c2 = cos (2c•*)/3 

The wave spectrum is normalized so that the inte- 
gral over k is equal to the mean-square waveheight 
h e; i.e., 

h 2 = s(k)k dk d0 

We define the following normalized variables: 

Wave vector 

Wavenumber 

Frequency 

RMS waveheight 

Coupling coefficient 

2ko 

K = k/2k0 œ'= k'/2ko 

Y] •-- 0,)/0.) B 

H = 2k o h 

2ko 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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Nondirectional spectrum 

F(K) = (2ko)'•f(k) (32) 

Ocean-wave directional spectrum 

Z(/•) = (2ko)'•S(•) K c = kc/2k o (33) 

Note that with these definitions, the integral over 
Z(/•) is equal to the normalized mean-square wave- 
height/_/2. It is also convenient to define through the 
following equations two new parameters: a dimen- 
sionless variable u, which is the magnitude of the 
normalized frequency shift from the Bragg line, 

u = re(r/- m') (34) 

and a parameter L, which is + 1 outside the Bragg 
lines (where m = m') and - 1 within (where m % m'): 

L = mm' (35) 

The indices m, m' define the four second-order re- 
gions of the Doppler spectrum: (1) m = m' = + 1 cor- 
responds to t/> 1 or co > co•; (2) m = -1, m' = +1 
corresponds to 0 < r/< 1 or 0 < co < co•; (3) m = 
+1, m'=-I corresponds to -l<r/<0 or 
- ro• < co < 0; (4) m = m' = - 1 corresponds to t/< 
-1 or co < -co•. From the definitions (7) and (8) for 
Fu and FE•t the normalized coupling coefficients can 
be written as 

._ 

•,• = •- K + -- •--K•_•7(• • 1• (36) 

where •0 is the unit vector pointing from the radar to 
the scattering patch. In terms of the dimensionless 
variables, the delta-function constraint becomes 

(38) 

By symmetry, the values of the integral in (3) taken 
over the right and left half planes are identical; we 
will therefore take the integral only over the right 
half plane (where K < K') and double the result. We 
use as integration variables the polar coordinates K, 
0 of the shorter scattering wave vector; it can be 
shown from Figure 2 that in terms of these variables 
the coordinates of the longer wave vector are 

K' = x/K 2 + 2K cos 0 + 1 
0' = sin-• (K sin O/K') + •r 

(39) 

(40) 

We can now redefine the first- and second-order 

radar cross sections (1) and (3) in the following di- 
mensionless form, using equations (27) to (40) 

ax(t/, ½) = co s aO)(w) = 4x • Z(- m'l•o)rS(•/ -- m') (41) 
m •= • 1 

•(n, •) • • •(w) 

ß Z(mK)Z(m'K')K dr dO 02) 

One of the integrations in (42) is easily perfomed 
using the delta function constraint on the variables. 
The form of (42) suggests the definition of new vari- 
ables as follows: 

y=• (43) 
h(y, O) = my + m' • (•) 

I(y, O) = 2•l y•laZ(mg)Z(m•')y • (45) 

Substituting these debitions in (42) gives the follow- 
ing simple fore: 

= I(y, 0)•(• - h(y, 0)) • dh dO (46) o 

where the hctor I Oy/Oh l0 can be obtained by differ- 
entiating (44). 

0• 0 1 (47) = [1 + Ly(y 2 + cos 0)/(1 + 2y 2 cos 0 + y•)a/• I 

This factor has an integrable singularity at the 
where 0 = • and y = 1/•, and at I•l= • (see 
Figure 3). 

The equation 

• - h(y*, 0) = 0 (48) 

is solved numerically using a Newton-Raphson 
method to give y* as a function of 0. The integral (46) 
then reduces to 

where 0[ defines the limiting angle. 
It can be seen from Figure 3 and 4 that for inte•a- 

tion over the right-half plane, the value of 0 de•ed 
by a frequency contour usually ranges from -• to 
However for •2 > 2, •e contour inters•ts the q ahs, 
and the limits on 0 must be obtained by solving for 
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Fig. 5. Simulated spectra showing the effect of increasing 
waveheight on the normalized Doppler radar spectrum, using the 
cardioid model defined by (24) for the directional distribution and 
the Pierson-Moskowitz nondirectional spectrum defined by (21). 
Ocean-wave direction is 45 ø with respect to the radar beam; nor- 
malized waveheight; 1.87 (continuous line), 0.66 (long-dashed), 
0.17 (short-dashed). This corresponds to normalized cutoff wave- 
numbers of 0.1, 0.2, 0.5. The whole spectrum is smeared in nor- 
malized frequency using a Gaussian window of width 0.05. 

the points of intersection. It follows from Figure 2 
that at the q axis, where K and K' are equal, the 
limiting values 0z• are given by 

0•. = _+ [r• -- cos- • (2/r/2)] r/2 > 2 (50) 

The integration in (49) must be performed numeri- 
cally as a closed form solution does not exist in gen- 
eral. We used the trapezoidal rule except in the im- 
mediate vicinity of a singularity in the electro- 
magnetic coupling coefficient, which occurs when the 
scalar product/if./•' in the denominator of (37) be- 
comes zero. The condition/• ß/if' = 0 defines a circle 
in the (p, q) plane which is shown in Figures 3 and 4, 
marking the transition between propagating and eva- 
nescent intermediate radio waves scattered between 
the two ocean wave trains. To allow for the effect of 

the singularity, we integrated separately over the seg- 
ment of frequency contour bounded by the two cir- 
cles defined by 

K. K'= _+0.01 (51) 

Over this segment a variable transformation was 
used so that the distance between quadrature points 
decreases exponentially as the singular circle is ap- 
proached, 

The electromagnetic singularity causes a peak in 
the radar cross section at a value of normalized fre- 

quency equal to 2 s/'•, where the frequency contour is 
tangential to the circle of singularity. Away from t• 
region, the radar cross section is insensitive to the 
precise value of the normalized surface impedance A 
and, as discussed in Appendix A, we have found it 
adequate to use an average value given by 

A = 0.011 --i(0.012) (52) 

Figures 5 and 6 give examples of simulated spectra 
calculated from (41) and (42). To simulate the firrite 
frequency resolution of a practical system, we have 
smeared the theoretical Doppler spectrum in normal. 
ized frequency using a Gaussian window of normal. 
ized width 0.05. Figure 5 illustrates the effect of 
changing waveheight; the Doppler spectrum is 
shown for three different values of waveheight at the 
same dominant ocean-wave direction (45 ø with re. 
spect to the radar beam). For the ocean-wave spec. 
tral model used, increasing waveheight is equivalent 
to increasing the peak waveperiod. The resulting am- 
plitude of the second-order spectrum increases rela. 
rive to the first, and the spectral peak moves closer to 
the Bragg line. Figure 6 illustrates the effect of 
changing the dominant wave direction at constant 
waveheight; the Doppler spectrum is shown for three 
values of dominant wave direction, •z*, relative to the 
radar beam (0 ø, 45 ø, 90ø). The degree of symmetry 
about zero Doppler increases as the wave direction 
tends to perpendicular. 

i ' t 

NormaJjzed Frequency 

Fig. 6. Simulated spectra showing the effect of changing 
ocean-wave direction. The ocean-wave spectral model and the fre- 
quency smearing are the same as for Figure 5, the normalized 
cutoff wavenumber is 0.1, the dominant ocean-wave directions 
with respect to the radar beam are 90 ø (long-dashed), 45 ø (continu- 
ous), 0 ø (short-dashed). 
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2.2, The narrow-beam shallow-water radar cross 
section 

The analysis of the preceding section must be re- 
vised in shallow water to allow for modifications in 
the coupling coefficients, the dispersion equation and 
the directional spectrum. We only consider water of 
sufficient depth, however, that the effects of wave 
energy dissipation such as breaking may be ignored; 
as a general rule, this assumption is valid when the 
water depth is greater than 1/20 the deep-water 
wavelength. 

The equations for the backscattered signal Dop- 
pler spectrum (1) and (3) must first be altered to ac- 
count for the lowest-order shallow-water dispersion 
relation. To first-order in scatter, we have the follow- 
ing spatial and temporal wavenumbers: 

= -2o 
(53) 

co', = re'coB = m' x/2gko tanh (2ko d) 
where d is the water depth and k',, co' s are the spatial, 
temporal wavenumbers of the first-order ocean wave 
component producing the ba6kscatter. The analo- 
gous relationships for second-order backscatter are 

ks + •; = -2•.o 
(54) 

rnx/gk s tanh (k,d) + m' x/gk's tanh (k'.,d) = co 

where here •s and •'• are the spatial wavevectors of 
the two shallow-water, first-order ocean waves inter- 
acting to produce second-order backscatter. 

The electromagnetic coupling coefficient in (3) has 
the same form as in (8), with the shallow-water wave- 
vectors used in place of the deep-water ones: 

li(•, ~ ~, - 2 - •':1 (55) ß ko)(k,. ko)/k o - 2k,. 

However, the hydrodynamic coupling coefficient, 
derived by Barrick and Lipa [-1986] through solution 
of the equations of motion and continuity, is a func- 
tion of water depth given by 

(56) 

where the equivalent deep- and shallow-water spatial 
wavenumbers have the following relationship' 

k: k s tanh (k s d) k' = k; tanh (k; d) 

In normalized form we have 

{ .r' (:t + y•: rd2/•o :T K + + L • k, 1---•J 

(x//•+ Lx/•)(K 3/2 csch 2 (K,D)+ LK '•12 csch (K', a)).} tanh D(1 - r/z) 

(57) 

where the normalized depth is defined by 

D •- 2ko d (58) 

As illustrated in Figure 7, the hydrodynamic cou- 
pling coefficient increases as the water depth de- 
creases (at constant wavenumber, K•, of the domi- 
nant wave component), and also with decreasing 
wavenumber at constant depth. This can also be seen 
from the asymptotic limit as/•. D--} 0, when (57) has 
the simple form 

•F cosos 1 Y": 'L•a•-ff • •))'] (59) 
where 0, is the angle between the radar beam and the 
shallow-water ocean wave. This behavior can be un- 

derstood physically as follows: if one considers a soli- 
tary, periodic (Stokes) wave, then F• represents the 
second-harmonic spatial correction to its height pro- 
file, which to lowest order is a sinusoid. This second 
spatial harmonic, as it increases, causes the crests to 
steepen and the troughs to become flatter, until insta- 
bility causes the wave to break, dissipating its energy. 
This is a phenomenon which can be observed at a 

j 4 

o I 
5O 100 

Water Depth (m) 

Fig. 7. The ratio of the hydrodynamic coupling coefficient in 
shallow water to that in deep water for a 16-s ocean wave parallel 
to the radar beam, radar frequency 25.4 MHz. 
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Wave,•. t Radar Beam 

PerpendlculaK• •.• ,- • • - 
Deep /••o• 
Shallow / • - -- •. . ,- r • Wave . 

Fig. 81 Schematic geometry of the radar beam and an ocean 
wave train at a depth discontinuity, denoted by the dashed line. 

beach when waves rise up and break as they come 
into very shallow water from a seemingly calm sea in 
the distance. 

In the following analysis, it is assumed that all 
inhomogeneity in the directional wave spectrum 
arises from wave refraction in shallow water; i.e. the 
corresponding directional spectrum in deep water is 
homogeneous. It follows from linear wave theory 
that since the total energy in the wavefield (neglect- 
ing energy dissipation) must be conserved, the 
shallow-water wave spectrum expressed in the appro- 
priate variables has exactly the same value as the 
deep-water spectrum [-Kinsman, 1965'] 

= (60) 

where the transformation between shallow- and 

deep-water wave vectors comes from SnelI's law and 
the dispersion equation: 

cos (0 + •) = ks cos (0, +/•) (61) 

k = ks tanh (k s d) (62) 

with /• the angle between the radar beam and the 
depth contour, and 0•, /9 the angles between the 
radar beam and the shallow, deep water ocean 
waves, respectively (see Figure 8). The normalized 
equations for the first- and second-order radar cross 
sections in shallow water are given by 

•(r/, qS, D, •) = 4re Z Zs(-rn'•o)õ(t / -- m') (63) 

-m' x/K; tanh (KiD))Ks dK• dO• (64) 

where the wavenumbers of the scattering waves are 
related through (54): 

K's = (K• 2 + 2K• cos 0• + 1) TM (65) 
To compute the second-order integral in (64)we 

choose as integration variables y, = • and the 
deep water angle 0. In terms of these variables (64) 
becomes: 

a•.(rl, ok, D, tg) = I(ys, O)•J(rl - h(y,, 0)) Oh o dh dO 
(66) 

where 

h(y•, 0) = rny•x/tanh (y•2 D) + m'x/• (67) 

12 Z(mg)Z(m' I•')y•( 2'-•O•s'• (68) I(y•, 0) = 2%17•. ou/• 
The factors (30•/30)y and I c3ydr3h l0 are obtained by 
differentiating (61) and (67) 

sin (0 + fl) 

(00,/00)•, = tanh (ys 2 d) sin (0s + fl) (69) 

OY• o I ys 2 D sech2 (y•2 D) L Oh = x/tanh (y•2 d) + x/tanh (Y• D) + • 

{ K s D scch 2 (Ks D) (y•3 + Ys cos Os ß x/[anh (K'sD) + v/tanh (K;D) 
+Dy•3 sech 2 (y•2 D)sin 0• c_os (Os+/•}] (70) mn (O s + 

The integration in (66) is performed using the nu- 
merical methods described in the preceding section. 
First it is reduced to a single dimensional integral by 
solving the delta function constraint. Frequency con- 
tours are defined by 

- heys*, 0) = o 

Due to wave refraction, the shallow water angle 0• 
and the value of K• at a given Doppler frequency 
have discontinuities when the incidence angle of the 
deep water wave at the depth contour is 0 ø or 180 ø, 
i.e., from Figure 8 when 

Examples of frequency contours in the (p, q) plane 
given in Figure 9 show gaps due to these dis- 
continuities. Similarly, a gap occurs in the singular 
contour of the electromagnetic coupling coefficient 
defined by 

Rs'/•; = 0 (73) 



LIPA AND BARRICK' EXTRACTION OF SEA STATE FROM RADAR ECHO 

qlk 0 
(a) 

q/k O, 
1, 

Fig. 9. Examples of frequency contours for water of depth 5 m. (continuous line) compared with the corre- 
sponding contours for deep water (dashed line). Angle between the radar beam and depth contour is 60 ø . Normal- 
ized frequency: (a) 1.4 (inner curve), 1.6 (outer); (b) 0.6 (inner), 0.4 (outer). Contours are symmetric about the q axis. 
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which from (65) is equivalent to 

K• = --cos 0• (74) 

An example of the singular contour is given in Figure 
10. 

Simulated shallow water radar spectra are shown 
in Figure 11. The energy in the second-order spec- 
trum increases as the water depth decreases. This 
effect becomes apparent close to the Bragg line, 
where the second-order spectrum arises from interac- 
tions between the radar wave and the longest ocean 
waves. These are steepened due to second-order non- 
linearities, as manifested by the increasing value of 
the coupling coefficient as the water depth decreases. 
Similar increases in the second-order Doppler peaks 

q/k o ' 
1 

i i 

p/k 0 

Fig. 10. The singular contour Ks.K's=O of the electro- 
magnetic coupling coefficient (continuous line) for water of depth 
5 m. compared with that for deep water (dashed). 

with decreasing water depth occur for any radar/ 
wave angle. 

2.3. The effect of ocean surface currents 

When an incident radar wave fq interacts with an 
ocean wavetrain that is transported by a current of 
velocity 6 to produce a scattered wave •s, the Dop- 
pler shift imposed is given by 

&o = -[ci. • + •,. • (75) 

Normalized Frequency 

Fig. i1. Simulated spectra showing the effect of decreasing 
water depth. The ocean wave spectral model and frequency smear- 
ing are the same as for Figure 5; normalized cutoff wavenumber 
0.1, dominant ocean-wave direction 45 ø with respect to the radar 
beam, which is perpendicular to the depth contour. The second- 
order peak increases as the depth decreases, the three curves cor- 
responding to water depths of 5 m., 10 m. and infinite depth. 
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Fig. 12. Sketch of the CODAR beam pattern showing a circu- 
lar range ring. The scan angle ½, the coastline angle y and a 
general angle qb are defined with respect to the bisector of the 
partial ring of sea. 

For the first-order scatter by a Bragg ocean wave this 
becomes 

&o (•> = -2J•o ß ff (76) 

whereas for the second-order interaction illustrated 

in Figure 2, the total Doppler shift is the sum of the 
contributions from the two separate interactions' 

&o(2) = -•o ' ff + •' if' - •' tr - •0 ' ff (77) 

where the wavetrains are transported with velocities 
t• and if. 

For a constant surface velocity, t• is equal to •' and 
thus the whole spectrum is shifted uniformly by an 
amount proportional to the current velocity. As the 
first-order peak frequency in the absence of currents 
is known (2), such shifts are readily identified and 
removed from the data. 

We now examine the effect of current gradients on 
the narrow-beam radar sea-echo. Vincent [1979] and 
Peregrine [1976] show that the wave dispersion 
equation is unaffected by horizontal variations of 
current with respect to the moving parcel of water at 
a given point. Therefore, since the cell area of a 
narrow-beam radar is nearly always small compared 
to the scale of horizontal current variations, we can 
ignore their effect on narrow-beam radar spectra. 
Vertical current shear produces a small frequency de- 
pendent shift over the Doppler spectrum since the 
phase speeds of long and short waves are affected in 
different measure; it is shown in Appendix B that this 
frequency differential is negligible in practice. 

3. CODAR SEA ECHO 

Lipa and Barrick ['1983] give a detailed description 
of the CODAR system and its application to ocean 
current measurement. CODAR electronically forms 
and scans a broad beam over a circular range cell. In 
this section, we describe how CODAR's output is 
represented in terms of the directional ocean wave 
spectrum and ocean surface current and discuss the 
effects of inhomogeneous ocean conditions over the 
scattering region. 

The CODAR system presently in use has a cora. 
posite receiving antenna consisting of two crossed 
loops and a monopole. Lipa and Barrick [1983] de. 
scribe how the voltage time series from the separate 
elements are Fourier transformed to give complex 
voltage spectra. The averaged voltage cross spectra 
are combined to effect the rotation of a broad beam 

(with a cos '• (0/2) pattern with respect to the beam 
maximum). The experimental situation is demon. 
strated in Figure 12. The broad beam return at a 
scan angle ½ is the convolution of the narrow beam 
radar cross section and the antenna pattern: 

(c0, cos .(re, 4,) a4, (78) 
where the angle subtended by the coastline at the 
radar is 2y. The right hand side of (78) may be ex. 
pressed as a Fourier series with exactly five nonzero 
coefficients: 

1 2 

•(co, ½) = • Z b,(•)•,(½) (79) n = --2 

where the trigonometric functions are defined in (23). 
Lipa and Barrick [1983] show how the Fourier coef- 
ficients b,m) are expressed in terms of the raw data 
and derive their relationship to the narrow-bern 
radar cross section: 

= q.- (80) 
Y 

where q_2 = q2 = l/8; q_• = q• = l/2; qo=3/8. 
The five Fourier coefficients may be regarded as con- 
venient intermediate data products; note that if a 
narrow beam (i.e., an angular impulse function) could 
be rotated in a similar hshion, an infinite number 0f 
Fourier coefficients could be produced. 

We define the following d•ensionless fern for the 
Fourier coefficients in the first and second order re- 

gions: 

ms b,(m)y f_ q• 
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Fig. 13. Simulated radar Fourier coefficient spectra for deep water platform operation. The ocean-wave spec- 
tral model and frequency resolution used are the same as for Figure 5; normalized cutoff wavenumber 0.1; 
ocean-wave direction (a) 90 ø, (b) 45 ø, (c) 0 ø. The upper/lower half of each figure represents positive/negative spectral 
values, plotted on a logarithmic scale. 

where cq.2(r/, ½) are the normalized narrow beam 
radar cross sections defined by (41) and (42) for deep 
water, or by (63) and (64) for shallow water. In gener- 
al, the integration over azimuth angle must be per- 
formed numerically; we have used a simple trap- 
ezoidal rule with an angular increment of 10 ø. 

3.1. Homogeneous ocean wave spectrum 

If the water depth and the ocean wave spectrum 
are homogeneous over the entire range cell, the 
narrow-beam radar cross section has the same func- 

tional form at each azimuth angle. As an example, we 
have simulated results for the ocean spectral model 
described in section 2 and deep water completely sur- 
rounding the radar (i.e., y = 180ø). This simulation is 
appropriate to operation from a deep-water platform 
at close range. The radar Fourier coefficients B•'2(r/) 

are then symmetric/antisymmetric functions of fre- 
quency for even/odd values of n, This follows from 
(81), since for homogeneous conditions the advanc- 
ing, positively shifted sea echo at azimuth angle ½ 
has the same magnitude as the receding, negatively 
shifted echo directly on the other side of the radar, 
i.e., 

,:,'•..,(t/, ½) = %.,2(-t/, 4' + •:) (82) 

Substitution of (82) into (81) gives 

B•,2(r/) = (-- 1)"B,,t,'2'(--r/) (83) 

In this case, closed form solutions exist for the 
first-order sea-echo. Substitution of (41) into (81) 
gives 

rn•-- ::k 1 

(84) 
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Fig. 14. As for Figure 13, but for operation from a straight coastline. 

where from (20), (21), (22), and (33) 

Integration over azimuth angle gives 

B•(r/) = 0.02ne-ø'37•:% •'. •(rt - rn')(-1) 
nv= + ! 

(86) 

i.e., the radar Fourier coefficients are directly pro- 
portional to the ocean wave spectral Fourier coef- 
ficients. The second-order results must be obtained 

by numerical integration. Results are given in Figure 
13. 

When the radar operates from a straight coastline 
(¾- 90ø), the frequency symmetry (83) no longer 
holds; thus the CODAR output contains more infor- 
mation on the directional spectrum when it operates 
from shore. Figure 14 gives the simulated radar Fou- 
rier coefficients for this case. 

3.2. Inhomogeneous ocean wave spectrum 

If the directional spectrum varies around the range 
cell, the functional form for the narrow-beam radar 
cross section in (81) is different at each azimuth. This 
would apply, for example, to operation from a plat- 
form at distant ranges where the range cell extends 
over a wide area of ocean. In this case the spectral 
symmetry described by (83) would no longer be ex- 
pected to hold. 

As another example of inhomogeneous conditions, 
we consider operation from a coast where the range 
cell extends over water of varying depth (Figure 15• 
In this case, the range cell is divided into N segments 
by its intersection with selected depth contours. In 
the jth segment, bounded by azimuth angles •bj and 
•bj+ 2, we define an average angle between the radar 
beam and constant-depth contour (//•) and an 
average depth D•. The radar coefficients are then de- 
fined by 



LIPA AND BARRICK: EXTRACTION OF SEA STATE FROM RADAR ECHO 95 

'BROAD-BEAM 

i DE•PTH C/ONTOURS 
? / 

ß 

/ ., 

/ 

EGMENT j 

RADAR RANGE CELL 

Fig. 15. Schematic diagram of CODAR operation from a 
coast over shallow water of varying depth, showing the division of 
the range cel! into segments by constant depth contours. 

B•'2(r/) = •.2(•/, •, D.•, ]•j)tfn(qb) d• 
j=t 

where Figure 15 shows that by symmetry 

(87) 

Dj = D N_.•+ 1 (88) 

At the normal CODAR operating frequency of 
25.4 MHz, the water depth must be less than 2 m to 
affect the 2-s first-order Bragg-scattering waves sig- 
nificantly. Hence the problem is simplified by the fact 
that the first-order Doppler spectrum is always ef- 
fectively the deep-water result; shallow water need be 
considered only for the second-order return pro- 
duced by the longer ocean waves that are first af- 
fected by decreasing water depth. 

3.3. Effect of ocean surface currents 

3.3.1. Uniform current. For a narrow-beam 
radar, a current velocity in the scattering region 
causes the whole spectrum to be displaced by an 
amount proportional to the current velocity, defined 
in (76). However the extended CODAR range cell 
has a different value of radial current velocity at each 
azimuth angle, resulting in frequency smearing in the 

spectrum. For a current velocity pattern defined by 
radial components vc,(•b), (80) becomes 

b,ro) qn x = ,, •(co- 2k0 v•,(•), •)tA(•) • (89) 

We define a nomMized velocity V(&) such that 

•(•) = v•,(•)/%• (90) 

where vv• is the phase velocity of the first-order 
Bragg-scattering wave trains, which is •ven in terms 
of the radar wavenumber for deep water by 

vv•=;• (91) 
In normalized form, (89) becomes 

B•':(n) = az.:(• -- V(•), &)•(&) d• (92) 

Inserting (41) into (92) gives for the first-order region' 

B•(•) = 4• • Z(-m•o)a• - m' 

- •(&)<(&) •& (93) 

Therefore the first-order peak is not only displaced in 
frequency (as it is for a narrow beam) but is also 
broadened into a form that depends on the cu•ent 
velocity pattern. It is by interpretation of the radar 
data in terms of (93) that the current velocity map is 
derived [-Lipa and Barrick, 1983]. Similarly, the 
second-order spectrum in the presence of current 
smearing is obtained by substituting (42) into (92). 

Simulated results for a uniform current flowing 
past a platfore are shown in Figure 16, for the spec- 
tral model described in section 2. A uniform current 

of speed • and angle &• has a velocity pattern de- 
scribed by 

r(6) = • cos (• - &•) (94) 

Substituting (85) and (94) into (93) gives a closed 
fo• solution in the first-order re,on: 

In-m'l!• 
(9•) 

=0 In-m'l>• 

where the angle &* is defined by the delta function 
constraint to be 

•*=• +cos- 
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Fig. 16. The nondirectional Fourier spectral coefficient for increasing current velocity, deep-water platform 
operation, with the ocean-wave spectral model and frequency smearing as for Figure 13. Normalized current 
velocity: (a) 0, (b) 0.66, (c) 0.132. This is equivalent to a radar transmitter frequency of 25.4 MHz and current 
velocities of (a) zero, (b) 20 cm/s, (c) 40 cm/s. 

Thus the first-order region which in the absence of 
surface current is an impulse function is now spread 
over a region with normalized frequency width 2V•. 
The second order spectrum must be obtained by nu- 
merical integration. It is easy to show that for a uni- 
form current (for which V(•b) = - V(•b + •) the sym- 
metry property (83) still holds. This follows from (84) 
by noting that for a homogeneous directional spec- 
trum 

a•,•[-•/- V(•), •] = a•.2(r/+ g(•), • + re) 

= a•,2(r / -- V(qb + r 0, (p + •z) (97) 

The current smearing of the ideal spectrum evident 
in Figure 16 results in a loss of frequency resolution 
in the directional spectrum derived from CODAR 
output. For a strong current velocity, this effect can 
be reduced by use of a lower radar transmit fre- 
quency. 

3.3.2. Horizontally shearinq current. It is shown 
in Appendix B that the effects of typical vertical cur- 
rent shears on the radar spectrum are small. In sec- 
tion 1, we concluded that horizontal current gradi- 
ents do not affect the narrow-beam Doppler spec- 
trum significantly. This is not necessarily true for 
CODAR observations which are made over an ex- 

tended range cell. For horizontal current variation 
along the direction of flow, both Pere#rine [1976'] 
and Vincent [1979] show that the greatest interac- 
tion occurs when the current is parallel to a wave- 
train. Although the phase velocity of the wave rela- 
tive to a stationary observer is increased by the cur- 
rent velocity, the wave dispersion equation between 

the spatial and temporal wavenumbers is unchanged. 
The wave amplitude and hence the wave spectrum 
varies with position on the current trajectory but this 
variation is insignificant for normal CODAR oper- 
ation; for example analysis of Peregrine's equations 
for onshore tidal flow in typical coastal situations 
with water depths of ~20 m. shows that the vari- 
ation in wave amplitude is less than 10% over dis- 
tances of the order of 150 km and can therefore be 

ignored over a 30 km Codar range cell. 
Current variations across the direction of flow 

cause refraction of waves with changes in direction, 
height, wavenumber and steepness. In Peregrine's de- 
tailed analysis, it is assumed that the scales of current 
variation are far greater than a wavelength, that both 
waves and currents are steady state, that there is no 
energy exchange between waves and currents and no 
energy dissipation. The wave dispersion equation is 
unaffected and wave refraction occurring on a hori- 
zontal shear obeys laws similar to those governing 
refraction in shallow water: 

/•2 cos q02 =/q cos ½• 

k2 = k•(1 -- u* cos qbz) 2 

(98) 

(99) 

where (pz and (P2 are the angles between the wavevec- 
tor and current direction before and after refraction; 

kx and k2 are the corresponding wavenumbers; u* is 
the fractional change in current velocity u with re- 
spect to the initial wave phase velocity cz = 

u* = au/cx (100) 
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TABLE 1. Reflection of 10-s Wave on 40 cm/s Velocity Shear, 
With Respect to the Initial Angle Between Wave and Current 

Directions 

deg deg 

0 reflection 

10 reflection 
20 - 10.6 

30 -4.9 
40 -2.8 
50 - 1.6 

60 -0.9 
70 -0.4 
80 -0.1 
90 0.0 

The amount of refraction decreases with wave fre- 
quency and with the angle between the current and 
the wave direction. Wave refraction in regions of 
large current shear such as the Gulf Stream can be 
extreme. These regions also have high current veloci- 
ty with the corresponding smearing of the radar 
spectrum described previously; therefore CODAR 
cannot at present be used to measure waves in these 
regions and we restrict consideration to current 
shears of less than 40 cm/s. For a 10 s ocean wave 
refracting across this maximum shear, analysis of 
(98)-(99) indicates that the wavenumber changes by 
less than 2%; the direction change for a given inci- 
dence angle is given in Table 1. This shows that wave 
reflection is restricted to a cone of 12 ø about the 
current direction and the amount of wave refraction 
occurring outside this cone is less than 11 ø. Since 
these refraction effects are slight, we have not includ- 
ed equations (98)-(99) in the analysis, although this 
could be done in a similar way to the inclusion of the 
equations describing shallow water refraction. 

4. CONCLUSION 

In this paper, we have described analytical tech- 
niques for the modeling of HF radar sea-echo Dop- 
pler spectra, discussing their prominent features and 
their dependence on ocean conditions commonly en- 
countered in experimental situations. Using wind- 
wave models of the ocean waveheight directional 
spectrum, four dominant peaks, two each sur- 
rounding the first-order Bragg peaks, are clearly evi- 
dent in the modeled spectra for both narrow- and 
broad-beam radars. These second-order peaks arise 
from the interaction of the dominant ocean waves 

with the short, first-order Bragg-scattering waves (of 
2.s period at 25 MHz radar frequency). Secondary 

peaks occur at 2 x/2 and 2 3/•' times the Bragg Doppler 
frequency, resulting from integrable mathematical 
and electromagnetic singularities, respectively; these 
are due to the interaction of short waves, and hence 
contain little information on "sea-state" at normal 

HF frequencies. For both narrow- and broad-beam 
radars, increasing the wind speed driving the 
Pierson-Moskowitz ocean spectral model causes the 
second-order peaks to increase relative to the first- 
order; we show that the spectral shape at a given 
wind speed is dependent on the radar/dominant- 
wave direction. This sensitivity of the radar spectrum 
to both waveheight and direction indicates that its 
inversion will yield parameters of the waveheight di- 
rectional spectrum. 

We identify a limiting value of the ocean wave- 
height at which the perturbation solution for the 
radar sea-echo spectrum at a given transmit fre- 
quency becomes invalid due to spectral saturation; 
either a lower transmit frequency must then be used, 
or the theory extended to apply to the saturated 
spectrum. 

Water that is shallow with respect to the dominant 
waves present is usually encountered in coastal 
measurement situations. 'The modeling of the 
shallow-water radar spectrum must account for the 
linear angular refraction and linear spatial wavenum- 
ber transformation that long ocean waves undergo 
when they pass from deep to shallow water. In addi- 
tion, it must include the shallow-water hydrodynamic 
coupling coefficient that produces the second-order 
nonlinear waveheight directional spectrum, and 
hence the second-order radar Doppler spectrum. 
This causes the second-order Doppler peaks to in- 
crease relative to the first as the water depth de- 
creases. Conversely, neglecting the effects of finite 
water depth for the long ocean waves can lead to 
waveheight estimates which are too low as well as 
incorrect long-wave directions. 

Using the narrow-beam expressions for first- and 
second-order sea-echo in the formulation of the 
broad-beam return from a CODAR crossed-loop 
system gives five Fourier angular coefficients as a 
function of Doppler frequency. This is analogous to 
the five Fourier coefficients vs wave frequency ob- 
tained from pitch and roll wave buoys that measure 
the directional spectrum. The CODAR angular coef- 
ficients are shown to depend strongly on the domi- 
nant wave direction when CODAR is operated from 
an island or platform completely surrounded by 
water and the dependence is even stronger when 
CODAR operates from shore. 
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Finally, we describe the effects of ocean surface 
currents on the radar sea echo. Uniform currents 

produce different effects on narrow- and broad-beam 
Doppler spectra. In the former, they produce a fre- 
quency shift of the entire spectrum, which is easily 
identified and removed. In the latter, frequency 
smearing in the entire spectrum results which is rep- 
resentable as a convolution of the radial current pat- 
tern over azimuth angle with the zero-current spec-, 
trum. Strong currents in the broad-beam coverage 
area therefore decrease the frequency resolution in 
the Doppler spectrum and in the retrieved wave- 
height directional spectrum obtained by inversion. 
The inversion process must take account of current 
smearing, employing the knowledge of the current 
pattern derived from the first-order region to inter- 
pret the second-order spectrum. 

We show that the radar spectrum is not signifi- 
cantly affected by vertical current shear. Horizontal 
current gradients leave the wave dispersion equation 
unchanged but cause wave refraction and inhomoge- 
neity in the directional ocean wave spectrum over the 
extended range cells of a broad-beam radar system. 
We show how this effect can be modeled; it has not 
yet been included in the CODAR analysis, as at pres- 
ent we are restricting CODAR wave measurements 
to regions of moderate surface current velocity and 
velocity gradients where both the wave refraction 
and the loss of frequency resolution are unimportant. 

This paper identifies ocean surface parameters to 
which the radar sea-echo Doppler spectrum is sensi- 
tive, and establishes the degree of sensitivity of domi- 
nant spectral features. This step is required before the 
development of inversion methods for the extraction 
of sea-state information from the second-order spec- 
trum, which will be described in a subsequent paper. 
These inversion methods, based on maximum likeli- 
hood, minimize the variance between the data and 
the radar spectral models described here. 

APPENDIX A: THE COUPLING COEFFICIENTS 

The hydrodynamic coupling coefficient, Eq. (7), has 
been derived by Weber and Barrick [1977], and 
physically represents the generation of a second- 
order ocean wave that produces first-order radar 
backscatter by the Bragg mechanism; formed by the 
nonlinear hydrodynamic boundary conditions at the 
surface, the wave is "bound" to the two first-order 
waves that produce it. In this appendix we (i) show 
how the electromagnetic coupling coefficient present- 
ed by Barrick [1972b] is obtained explicitly from 

Rice's [1951'] original work, and (ii) correct and ex- 
plain the meaning of an important term we add that 
avoids a non-integrable singularity in the latter. 

Rice represents the randomly rough, perfectly con- 
ducting surface and the electromagnetic field above it 
as two-dimensional Fourier series. The electro. 

magnetic boundary condition at the surface is ex- 
panded as a perturbational ordering in surface slopes 
and surface height relative to radar wavelength (both 
small for the sea at HF and lower). To second order 
the solution for scatter for a vertically polarized inci- 
dent wave is given by his Eq. (4.2); the second sum- 
mation over k, I of E• of this equation contains the 
desired coupling coefficient for vertically polarized 
scatter. It is reduced to the form given in (8) above by 
(1) noting in Rice's expression that for backscatter at 
grazing incidence av = ko sin 0•-• + k0; am = k o sin 
0• cos tp• -k0; an = ko sin 0• sin tp• • 0 (where 0s 
is the incidence angle from vertical and 0•, q0, are the 
polar and azimuthal scatter angles with respect to 
the incidence plane); (2) substituting wavenumbers 
ak-•p and al• q in order to change from Rice's 
series to our integral representations of (3); (3) 
making the coupling coefficient symmetrical in k and 
k' (the latter ocean wavenumbers are defined in (4) in 
terms of p, q), i.e., by using (5) and replacing terms 
like f(k) by their symmetrical equivalent 
If(k) + f(k')]/2. (The latter two steps are not neces- 
sary for correctness, but only for mathematical con- 
venience in subsequent evaluation of integrals, allow- 
ing use of symmetry to reduce numerical compu- 
tations.) Finally, the extension from Rice's modal 
series solutions valid for random periodic surfaces of 
inifinite extent to random large, but finite, scattering 
patches is done by applying either geometrical argu- 
ments or Kirchhoff-type transformations, both used 
and discussed in Barrick [1972a], Barrick [1970], 
and Peake [1959]. 

The coupling coefficient obtained in the above 
manner from Rice is identical to (8) above, except 
there is no term -k 0 A in the denominator, only 
(k ß k') •/2. The latter can be written as •ci•, with • = 
(p, q), where Eqs. (4) and (5) lead to the physical 
interpretation of •i as the intermediate wavevector of 
the field scattered (either propagating or evanescent) 
between ocean waves with wavevectors it and •'. 
(The presence of •c• = (it. •,)•/2 in the denominator 
can also be established independently by considering 
the combination of two first-order scattering pro- 
cesses for vertical polarization at grazing incidence 
[Barrick, 1972a].) When •t• vanishes, this means the 
intermediate wave is propagating directly parallel to, 
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and is polarized completely perpendicular to the 
mean surface; large energy is then transferred in the 
double-interaction process. This happens when the 
two scattering ocean waves are perpendicular to each 

~ 

other, i.e., k. k'--0, commonly referred to as the 
"corner-reflector" condition [Lipa and Barrick, 
1980]. Left as the only term in the denominator of 
(8), the condition •-•'• 0 in the integration of (3) 
produces a non-integrable singularity. 

However, it is impossible for a vertically polarized 
wave to propagate exactly parallel to any surface 
that is imperfect, and satisfy the required boundary 
conditions at the interface. Both roughness and finite 
conductivity of the medium below the surface force 
an effective boundary condition at the mean interface 
that gives an apparent vertical wavevector compo- 
nent •ciz• -koZ5 (even when (•. •,)•/2 vanishes ) di- 
rected into the surface [Barrick, 1971; Bahar, 1982], 
with z5 being the average, normalized impedance at 
the interface, This justifies the addition of -ko z5 to 
the denominator, as it appears in (8), and corrects 
a+sign error preceding this term in Barrick 
[1972b]. (The sign reversal actually causes negligible 
error in the integration.) Barrick [1971-1 has shown 
that for the rough, imperfect sea at HF, a reasonable 
impedance is A = 0.011- 0.012 at 10 MHz; the 
effect of its slight variation across the HF band is 
significantly minimal in the integration of (3) that it 
can be considered a constant. 

APPENDIX B: EFFECT OF VERTICAL CURRENT 

SHEAR ON THE NARROW-BEAM DOPPLER 
SPECTRUM 

In the text, it has been shown that a current that is 
constant both laterally and vertically across the scat- 
tering patch produces a uniform frequency shift 
across the entire Doppler spectrum. In this appendix, 
we examine the differential frequency shifts produced 
by a vertical current shear and show these effects to 
be negligible in realistic situations. 

Both Stewart and Joy [1974] and Ha [1979] have 
shown that the apparent phase velocity of a wave- 
train with wavevector •, frequency Z and phase speed 
c is increased in the presence of a vertical current 
shear if(z) by the amount 

Ac = • 2•. 3(z)e -2111• dz (B1) 

where z is depth measured downwards from the 
mean surface. This is the perturbation solution to an 
Orr-Sommerfeld differential equation to first order in 

the parameter I•[ a where a is the wave amplitude. 
This solution for infinite depth is obtained with the 
following assumptions, which are shown to be gener- 
ally applicable: 

I•la < 1 13(z)l/c < ! 

I dv(z)/dz [• = o < 1 [ d2v(z)/dz2 I• = o 
z I•lz 

<1 

(B2) 

Applying equation (B1) to equations (2) and (10) or 
(15) for the first and second order Doppler shift due 
to current gives 

&o m= --4ko 2• o ß 3(z)e -4•'ø• dz (B3) 

5co •2) = 2k •: . 3(z)e-2k• dz + 2k' •:' . v(z)e-2k,• dz (B4) 

where • and •' are the wavevectors of the ocean 
waves producing the second-order scatter, and •o is 
the radar wavevector. 

Both theory and measurement show that the cur- 
rent is a maximum at the surface and decreases with 
depth to a constant value. Since we showed in the 
text that a constant term does not produce differ- 
ential frequency shifts, we consider here only an ex- 
ponential depth variation, decaying to zero at an infi- 
nite depth 

f.,(z) = 30 e- 2• (B5) 

This form is predicted for a Stokes drift [Kinsman, 
1965] and is shown by Ha [1979] to be a good ap- 
proximation near the surface. He finds that for ,--12 
knot wind conditions with I vol--15 cm/s, the pa- 
rameter y is approximately 0.35 m -•. Substituting 
(B5) into (B3) and (B4), we obtain the following ex- 
pression for the difference between the first and 
second order current shifts: 

k k' 

2ko (-2•0- 30) (B6) 
2ko + y 

This expression can be seen to tend to zero as y--, 0 
(i.e., no vertical variation), since • + ['= -2•o. It 
also becomes zero at the Bragg frequency, as it--} 0 
and •'• -2•,o; physically this means that the shear 
is not felt by the infinitely long wave. 

The value of the Doppler differential is directly 
proportional to the current speed and has its maxi- 
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TABLE B1. The Bounds on the Doppler Frequency Differential 
for Typical Vertical Current Shear 

Normalized 

Doppler Shift 
From Bragg 
Frequency 

(Equation (34)) 

Doppler Frequency 
Differential, 

Hz 

Maximum Minimum 

-0.97 0.0051 -0.0084 
- 0.83 0.0049 -0.0083 
-0.69 0.0044 -0.0080 
-0.55 0.0037 -0.0069 
- 0.41 0.0028 -0.0049 
- 0.28 0.0016 - 0,0025 
-0.14 0.0005 -0.0007 

0. 0, 0. 

0.14 0.0007 --0.0005 
0.28 0.0026 --0.0016 
0.41 0.0051 --0.0028 
0.55 0.0036 --0.0039 
0.69 0.0023 -0.0048 
0.83 0.0012 --0.0055 
0.97 0.0002 --0.0061 

mum magnitude when the current is directed along 
the radar beam. Calculations of the Doppler differ- 
ential around the frequency contour at each spectral 
point show that it is small over the important region 
of the Doppler spectrum; hence the remaining con- 
stant current shift common to both first- and second- 

order sea-echo is easily removed as before. Results 
are given in Table B1 for y = 0.35 m -x, I vol--20 
cm/s and the CODAR transmit frequency of 25.4 
MHz. The Doppler differential is of the same order 
or less than the CODAR frequency resolution 
!0.0,0745 Hz) over the entire Doppler spectrum. 
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