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Reflection and transmission at the ocean/sea-ice boundary
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Abstract

The scattering of water waves by the edge of a semi-infinite ice sheet in a finite depth ocean is solved using the residue
calculus technique. We consider both the case where the obliquely incident plane wave is from the open sea region and
the complementary problem where the wave is incident from the ice-covered region. Exact solutions to these problems are
obtained, equivalent to those that can be obtained if the Wiener–Hopf technique is used. Contrary to popular belief, the
solutions are easy to evaluate numerically.
© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The effect of a thin sheet of sea ice, modelled as an elastic plate, on the propagation of surface gravity waves
in the ocean has been the subject of extensive study. A classic problem is that of a plane wave obliquely incident
from an open ocean of constant finite depth on an ice sheet in the form of a half-plane. This problem was solved
using the Wiener–Hopf technique by Evans and Davies[1]. In their report Evans and Davies wrote of part of the
solution process “Unfortunately, the determination of the constants. . . presents enormous computational difficulties
. . . ” and ever since their appears to have been a general feeling that the Wiener–Hopf solution to this problem is
cumbersome and impractical. Actually this is not the case and numerical computations based directly on Evans and
Davies’ formulation, incorporating some judicious algebraic simplifications, have been performed in[2].

The Wiener–Hopf technique was also used for the normal incidence and infinite depth version of the above
problem in[3] though no numerical results were presented. More recently it has been shown that this problem can
be solved by first formulating it as a singular integral equation, and computations of the reflection and transmission
coefficients have been reported[4].

In an attempt to overcome some of the perceived drawbacks in Evans and Davies’ formulation, Balmforth and
Craster[5] presented an analysis which, as well as incorporating a more general model for the ice flexure, aimed to
make the numerical calculation of results more straightforward. This involved the evaluation of certain integrals via
quadrature which seems to us a backward step since, as shown in[2] and as demonstrated in this paper, the evaluation
of the solution from the explicit exact solution is actually straightforward and extremely efficient. Computations
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based on the explicit Wiener–Hopf solution have also been presented recently[6–8], for the case of normal incidence
in both finite and infinite water depth.

An alternative to the Wiener–Hopf approach is to use mode-matching. The velocity potentials in the open ocean
and ice-covered regions are expanded in appropriate eigenfunctions found through separation of variables and then
the two expansions are matched at their common boundary. The first numerical results for the problem tackled
by Evans and Davies were obtained in this way in[9] (computations for normal incidence were reported in[10])
though the matching process used (the minimisation of a certain error integral) is somewhat unsatisfactory. A similar
approach was taken in[11]. Despite the presence of an exact solution, improved mode-matching analyses continue
to be developed, e.g.[12,13].

The aim of this paper is twofold. On the one hand we aim to derive the exact solution to Evans and Davies’
problem in a form which will demonstrate that the computation of results from it is a straightforward matter, and
on the other we will show that one does not need to use the elaborate Wiener–Hopf machinery to generate it.
The method that we use is the so-called residue calculus technique described in[14] and adapted for water-wave
problems in[15]. One sets up the problem exactly as in the mode-matching approach, but instead of solving the
matrix equation that is generated by the matching numerically, a complex function is constructed in such a way
that the unknowns of the problem correspond to the residues at the function’s poles. These residues are then easily
evaluated. This technique has been used to solve the simpler problem in which the ice sheet is replaced by a rigid
dock in [16], where it formed part of the solution to the finite dock problem. We note that approximate reflection
and transmission coefficients for a finite ice sheet have been determined in terms of the semi-infinite ones (in the
case of normal incidence) in[17].

We begin inSection 2by formulating the boundary-value problem to be solved and setting up the various depth
eigenfunctions that will be used. The particular non-dimensionalisation that we have adopted[18] has the advantage
that it allows tank tests to be designed to have flexural responses that are equivalent to field tests, though we will not
dwell on these issues here. InSection 3the classic problem of Evans and Davies is solved using residue calculus
theory and then inSection 4we solve the complementary problem in which a wave is incident from the ice-covered
region. In both cases it will be shown that there are substantial simplifications if attention is restricted to normal
incidence. Finally, inSection 5, we show how these two scattering problems are related and discuss the computation
of the solution.

2. Formulation

The boundary-value problem under consideration can be non-dimensionalised in a variety of different ways. We
introduce a characteristic length scale�c and a characteristic time scaletc, defined by

�c =
(
D

ρg

)1/4

, tc =
(
�c

g

)1/2

. (2.1)

Hereρ is the water density,g is the acceleration due to gravity, andD is the effective flexural rigidity of the ice sheet,
related to the effective Young’s modulusE viaD = Eh3/12(1−ν2),hbeing the thickness of the ice sheet andν being
Poisson’s ratio for sea ice (taken to be 0.3). All the variables which appear below have been non-dimensionalised
with respect to these quantities. The length scale�c was shown in[19] to remove all the physical parameters from
the governing equations for static flexure of floating ice and in[18] it was shown that it was also appropriate for
dynamic responses. One of the consequences of this non-dimensionalisation is that the flexural response of the ice
sheet is most significant close to non-dimensional frequencyω = 1.

Cartesian coordinates are chosen so that the undisturbed free surface lies in the(x, y)-plane andz points vertically
upwards. The elastic plate covers the regionx > 0 and if we seek solutions which are time harmonic with angular
frequencyω the boundary-value problem we wish to solve is[2]

(∇2
xz − l2)Φ = 0, −H < z < 0, (2.2)
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ω2Φ = Φz on z = 0, x < 0, (2.3)

ω2Φ = ((∂2
x − l2)2 + 1 − δ)Φz on z = 0, x > 0, (2.4)

Φz = 0 on z = −H. (2.5)

Hereδ = mω2, wherem is the mass per unit area of the ice sheet, non-dimensionalised byρ�c. For this linear
boundary-value problem to be valid we must havem � 1. The conditions at the ice edge, assumed free, are

c2 − νl2c0 = 0, c3 − ν1l
2c1 = 0, (2.6)

representing zero bending moment and zero shear stress, respectively, where

ci = lim
x→0+

∂i+1Φ

∂z∂xi

∣∣∣∣
z=0

, (2.7)

andν1 = 2− ν. To complete the specification of the problem we need appropriate radiation conditions and then the
velocity potential is given by Re[Φ(x, z)ei(ly−ωt)].

We begin by defining an orthogonal set of functions which are the appropriate depth eigenfunctions for the region
x < 0. Thus

φn(z) = N−1
n coskn(z+H), N2

n = 1

2
H

(
1 + sin 2knH

2knh

)
, n ≥ 0, (2.8)

wherekn are the solutions to the water-wave dispersion relation

ω2 + kn tanknH = 0. (2.9)

Herek0 = −ik (k > 0) is purely imaginary andkn, n ≥ 1 are real and positive. We note thatknH = nπ − ω2H/

(nπ)+ O(n−3) andNn = O(1) asn → ∞. These depth eigenfunctions form an orthonormal set since∫ 0

−H
φn(z)φm(z)dz = δmn. (2.10)

For the regionx > 0 we use the following set of functions:

ψn(z) = M−1
n cosκn(z+H), M2

n = 1
2(Hω

2 − (5κ4
n + 1 − δ) sin2κnH), n ≥ −2, (2.11)

whereκn are the solutions to the elastic-plate dispersion relation

ω2 + (κ4
n + 1 − δ)κn tanκnH = 0. (2.12)

Hereκ−2 = s + it (s > 0, t > 0), κ−1 = s − it = κ̄−2, κ0 = −iκ (κ > 0), andκn, n ≥ 1 are real and positive. We
note thatκnH = nπ + O(n−5) andMn = O(1) asn → ∞. These depth eigenfunctions are not orthogonal, but

ω2
∫ 0

−H
ψn(z)ψm(z)dz = δmn + (κ2

n + κ2
m)ψ

′
n(0)ψ

′
m(0). (2.13)

Which of k andκ is the greater depends on the values ofδ andω2 in (2.9) and (2.12). For δ = 0 we always have
κ < k and sinceδ � 1, we will assume in what follows thatκ < k. This puts a lower bound on the values ofω2

that can be used, but will be true for any parameter values of practical importance.
For future reference we note that∫ 0

−H
φn(z)ψm(z)dz = AnBm

κ2
m − k2

n

, (2.14)

where

An = N−1
n cosknH, Bn = M−1

n (κn sinκnH + ω2 cosκnH), (2.15)
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both of which are O(1) asn → ∞ and we define

αn = (k2
n + l2)1/2, βn = (κ2

n + l2)1/2 (2.16)

with the square root always chosen to have positive real part, or, if the real part is zero, negative imaginary part. We
have, asn → ∞,

αn = nπ

H

(
1 + H2

2n2π2

(
l2 − 2ω2

H

))
+ O(n−3), βn = nπ

H

(
1 + H2l2

2n2π2

)
+ O(n−3). (2.17)

3. Wave incident from the ocean

We consider first the diffraction of an incident plane wave making an angleθI with the positivex-axis. Such a wave
can be represented by the potential exp(−α0x)φ0(z), wherel = k sinθI , α0 = −ik cosθI = −i(k2 − l2)1/2 = −iα,
say. Clearly we must havel < k. The appropriate radiation conditions are

Φ ∼ (e−α0x + Reα0x)φ0(z) as x → −∞, (3.1)

Φ ∼ T e−β0xψ0(z) as x → ∞ if l < κ, (3.2)

Φ → 0 as x → ∞ if l > κ, (3.3)

whereR andT are the reflection and transmission coefficients, respectively. Note that with this definitionT is not
the ratio of the amplitude of the transmitted to the incident wave, though this is easily recovered if we multiply
T by ψ′

0(0)/φ
′
0(0). If l > κ the incident wave is totally reflected and the wave field in the elastic plate remains

localised to the plate edge, whereas ifl < κ a plane wave is transmitted to infinity through the plate making an
angleθT = sin−1(l/κ) with the positivex-axis and we writeβ0 = −iκ cosθT = −i(κ2 − l2)1/2 = −iβ, say.

In x < 0 we can expand the potential as an eigenfunction series as follows:

Φ = e−α0xφ0(z)+
∞∑
n=0

an eαnxφn(z), (3.4)

whereas inx > 0 we expandΦ as

Φ =
∞∑

n=−2

bn e−βnxψn(z). (3.5)

Herean, n ≥ 0, andbn, n ≥ −2, are unknown complex coefficients, andR = a0, T = b0.
The continuity ofΦ andΦx acrossx = 0, the orthogonality of the functionsφn(z), Eq. (2.14), and the fact that

β2
n − α2

m = κ2
n − k2

m, can be used to show that

δ0m + am = Am

∞∑
n=−2

bnBn

β2
n − α2

m

, m ≥ 0, (3.6)

−α0δ0m + αmam = −Am

∞∑
n=−2

βnbnBn

β2
n − α2

m

, m ≥ 0, (3.7)

from which

2α0A
−1
0 δ0m =

∞∑
n=−2

bnBn

βn − αm
, m ≥ 0, (3.8)
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2αmamA
−1
m = −

∞∑
n=−2

bnBn

βn + αm
, m ≥ 0. (3.9)

The first of these is an infinite system of equations for thebn’s, the solution of which will involve two arbitrary
constants. These constants will be determined by the application of the edge conditions(2.6)and then thean’s can
be found from(3.9).

Consider the function

g(z) = G(z2 + γ1z+ γ2)

(z− β−2)(z− β−1)(z− β0)

∞∏
n=1

1 − z/αn

1 − z/βn
, (3.10)

whereG, γ1, andγ2 are constants to be determined. The infinite product is uniformly convergent on compact sets
excluding the pointsβn and it is possible to show thatg(z) = O(z−1) as|z| → ∞ provided we avoid these points
(see[15, Section 5.2.1], for example). We then consider the numbers

Im = lim
N→∞

1

2πi

∫
CN

g(z)

z− αm
dz, Jm = lim

N→∞
1

2πi

∫
CN

g(z)

z+ αm
dz, m ≥ 0, (3.11)

whereCN are contours chosen to avoid the discrete set of points mentioned above and on which|z| → ∞ as
N → ∞. The behaviour ofg for largez implies thatIm = Jm = 0 and then Cauchy’s residue theorem gives

δm0g(α0)+
∞∑

n=−2

R(g : βn)

βn − αm
= 0, m ≥ 0, (3.12)

g(−αm)+
∞∑

n=−2

R(g : βn)

βn + αm
= 0, m ≥ 0, (3.13)

where R(g : z0) means the residue ofg(z) at z = z0.
Comparison with(3.8) and (3.9)shows that

bn = B−1
n R(g : βn), an = An(2αn)

−1g(−αn) (3.14)

providedG is chosen so thatg(α0) = −2α0A
−1
0 , i.e. with

g(z) = − 2α0(z
2 + γ1z+ γ2)

A0(α
2
0 + γ1α0 + γ2)

g̃(z), (3.15)

where

g̃(z) =
0∏

n=−2

α0 − βn

z− βn

∞∏
n=1

(1 − z/αn)(1 − α0/βn)

(1 − z/βn)(1 − α0/αn)
. (3.16)

Bothan andbn are O(n−2) asn → ∞. This completes the solution apart from the evaluation of the two constants
γ1 andγ2 from the edge conditions.

In the region under the plate we now have

Φ =
∞∑

n=−2

B−1
n R(g : βn)e−βnxψn(z), (3.17)

and so the numbersci which appear in the edge conditions are given by

ci =
∞∑

n=−2

B−1
n R(g : βn)(−βn)iψ′

n(0) =
∞∑

n=−2

R(g : βn)
(−βn)i
δ− κ4

n

, (3.18)
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where(2.11), (2.12) and (2.15)have been used. If we write

Si =
∞∑

n=−2

R(g̃ : βn)
βin

δ− κ4
n

(3.19)

then the conditions(2.6)can be written as a 2× 2 matrix equation for the unknownsγ1 andγ2:(
S3 − νl2S1 S2 − νl2S0

S4 − ν1l
2S2 S3 − ν1l

2S1

)(
γ1

γ2

)
=
(
νl2S2 − S4

ν1l
2S3 − S5

)
. (3.20)

If the quantityβ0 is real, which happens whenl > κ, we can show that̄Si = exp(iζ)Si, whereζ is independent ofi,
from which it follows thatγ1 andγ2 must both be real.

The reflection coefficient is given, from(3.14), by

R = a0 = −α2
0 − γ1α0 + γ2

α2
0 + γ1α0 + γ2

0∏
n=−2

α0 − βn

−α0 − βn

∞∏
n=1

(1 + α0/αn)(1 − α0/βn)

(1 + α0/βn)(1 − α0/αn)
, (3.21)

= w−
γ (α)

w+
γ (α)

(α− iβ0)

(α+ iβ0)
exp[2iχ(α)], (3.22)

where

w±
γ = x2 ± iγ1x− γ2, (3.23)

and, withβ−2 = β̄−1 = σ + iτ,

χ(x) = 1

2
π + tan−1

(
x+ τ

σ

)
+ tan−1

(
x− τ

σ

)
+

∞∑
n=1

(
tan−1

(
x

βn

)
− tan−1

(
x

αn

))
. (3.24)

If l > κ, the quantityβ0 is real and, since in this caseγ1 areγ2 are both real, we then have|R| = 1 as required.
If l < κ, the transmission coefficient is given by

T = b0 = 2α(α− β)w+
γ (β)

A0B0w
+
γ (α)

P, (3.25)

where

P = (α− iβ−2)(α− iβ−1)

(β − iβ−2)(β − iβ−1)

∞∏
n=1

(1 + iβ/αn)(1 + iα/βn)

(1 + iβ/βn)(1 + iα/αn)
. (3.26)

The phase ofT is then readily determined, since

P

P̄
= exp[2i(χ(α)− χ(β))], (3.27)

whereχ(·) is defined in(3.24). The modulus ofT can of course be obtained from(3.25), but it is most easily
calculated from(3.22), noting that

|R|2 + β

αω2
|T |2 = 1. (3.28)

This result, which represents the conservation of energy, can be found by applying Green’s theorem toΦ and its
complex conjugate which leads to the equation

Im
∫
Φ
∂Φ̄

∂n
ds = 0, (3.29)
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the integral being taken around the boundary of the fluid domain, including vertical lines atx = ±∞. The derivation
is lengthy, but standard. Note that the relation(3.28)has a much simpler form than the equivalent expression in[1]
due to the particular form of the normalisation factorsNn andMn.

For normal incidence (l = 0) there is clearly considerable simplification, and in the casel = δ = 0 it turns out
that we can solve the system forγ1 andγ2 explicitly. In this case we have

Si = −
∞∑

n=−2

R(g̃ : κn)κ
i−4
n . (3.30)

For i = 4,5 we can write the sum as an integral

Si = −
∫
Γ

g̃(z)zi−4 dz, (3.31)

whereΓ is a contour from−i∞ to i∞ indented to pass to the left of the pole atz = κ0 = −iκ. The equivalence
of the two expressions follows by closing the contour in the right-half plane and noting thatg̃(z) = O(z−3) as
|z| → ∞. On the other hand, closing the contour in the left-half plane shows thatS4 = S5 = 0. Thus for normal
incidence andδ = 0, we haveγ1 = γ2 = 0. A similar simplification was noted in[8] for this special case when the
Wiener–Hopf technique is used. It then follows that the reflection and transmission coefficients take the forms

R = k − κ

k + κ
exp[2iχ(k)], (3.32)

T = 2kω

k + κ
exp[2i(χ(k)− χ(κ))], (3.33)

whereχ(·) is defined in(3.24), but withσ, τ, αn, βn replaced bys, t, kn, κn, respectively.

4. Wave incident from the ice

We consider next the diffraction of an incident plane wave from the ice region making an angleθI with thex-axis.
Such a wave can be represented by the potential exp(β0x)ψ0(z), wherel = κ sinθI , β0 = −iβ = −iκ cosθI =
−i(κ2 − l2)1/2. Clearly we must havel < κ. The potential for this problem will be labelledΨ and the appropriate
radiation conditions are now

Ψ ∼ Teα0xφ0(z) as x → −∞, (4.1)

Ψ ∼ (eβ0x +Re−β0x)ψ0(z) as x → ∞. (4.2)

Sinceκ < k there is always a transmitted wave in this case, making an angleθT = sin−1(l/k) with thex-axis and
we writeα0 = −iα = −ik cosθT = −i(k − l2)1/2.

In x < 0 we can expand the potential as an eigenfunction series as follows:

Ψ =
∞∑
n=0

an eαnxφn(z) (4.3)

with T = a0, whereas inx > 0 we expandΨ as

Ψ = eβ0xψ0(z)+
∞∑

n=−2

bn e−βnxψn(z) (4.4)



50 C.M. Linton, H. Chung / Wave Motion 38 (2003) 43–52

withR = b0. The equations which result from matching acrossx = 0 are

0 = B0

β0 + αm
−

∞∑
n=−2

bnBn

βn − αm
, m ≥ 0, (4.5)

2αmamA
−1
m = B0

β0 − αm
−

∞∑
n=−2

bnBn

βn + αm
, m ≥ 0. (4.6)

To solve(4.5)consider the function

f(z) = F(z2 + µ1z+ µ2)

(z− β−2)(z− β−1)(z+ β0)

∞∏
n=0

1 − z/αn

1 − z/βn
, (4.7)

whereF , µ1, andµ2 are constants to be determined. This function is of the same form asg(z) defined in(3.10)
except that an extra zero (atα0) and an extra pole (at−β0) are included. Applying Cauchy’s residue theorem as
before, we find

R(f : −β0)

−β0 − αm
+

∞∑
n=−2

R(f : βn)

βn − αm
= 0, m ≥ 0, (4.8)

f(−αm)+ R(f : −β0)

−β0 + αm
+

∞∑
n=−2

R(f : βn)

βn + αm
= 0, m ≥ 0. (4.9)

Hence

bn = B−1
n R(f : βn), an = An(2αn)

−1f(−αn) (4.10)

providedF is chosen so that R(f : −β0) = B0, i.e. with

f(z) = B0(z
2 + µ1z+ µ2)

β2
0 − µ1β0 + µ2

f̃ (z), (4.11)

where

f̃ (z) = (β0 + β−2)(β0 + β−1)

(z− β−2)(z− β−1)(z+ β0)

∞∏
n=0

(1 − z/αn)(1 + β0/βn)

(1 − z/βn)(1 + β0/αn)
. (4.12)

The matrix equation for the unknownsµ1 andµ2 is (3.20)exactly as before, though because of the presence of the
incident wave in the ice-covered region we must now defineSi by

Si = (−β0)
i

δ− κ4
0

+
∞∑

n=−2

R(f̃ : βn)
βin

δ− κ4
n

. (4.13)

In the casel = δ = 0 we again haveµ1 = µ2 = 0.
The reflection coefficient is now

R = b0 = w+
µ(β)

w−
µ(β)

(α− β)

(α+ β)
exp[−2iχ(β)], (4.14)

and the transmission coefficient is given by

T = a0 = 2A0B0β

(α− β)(α+ β)2

w−
µ(α)

w−
µ(β)

P̄−1, (4.15)
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whereP is given by(3.26). The modulus isT is best determined from the conservation of energy equation which
is now

|R|2 + αω2

β
|T|2 = 1. (4.16)

For normal incidence andδ = 0 the results are particularly simple:

R = k − κ

k + κ
exp[−2iχ(κ)], (4.17)

T = 2κ

ω(k + κ)
exp[2i(χ(k)− χ(κ))], (4.18)

whereχ(·) is as in(3.32) and (3.33).

5. Discussion

The reflection and transmission coefficients for the two problems solved above are related. If we apply Green’s
theorem to the two potentialsΦ andΨ we obtain

|R| = |R|, βT = ω2αT, (5.1)

and if we useΦ andΨ̄ we find that

Θ1 +Θ2 = 2Θ± π, (5.2)

where argR = Θ1, argR = Θ2, and argT = argT = Θ. These relations (which are equivalent to those derived
using a time-reversal argument in[17]) can be used as checks on the numerical results.

The computation of reflection and transmission coefficients from the formulas given in the preceding sections
involves three main steps. These are the evaluation of the roots of the dispersion relations(2.9) and (2.12), the
evaluation of the functionχ defined in(3.24)and various infinite products, and the evaluation ofγ1, γ2 andµ1, µ2
from (3.20). None of these steps presents any great difficulty.

As far as the dispersion relations are concerned the only possible difficulty is the computation of the complex
root κ−2 (κ−1 is just its complex conjugate) which lies in the positive quadrant. However, a simple application of
Newton’s method beginning with the naive choice of 1+ i appears to work perfectly well.

The terms in the summation in the definition ofχ are O(n−3) asn → ∞. This is computationally acceptable, but
the series is easily accelerated if we subtract off the leading order asymptotics of the summand. Thus using(2.17)
we obtain

∞∑
n=1

(
tan−1

(
x

βn

)
− tan−1

(
x

αn

))
= −xh2ω2

π3
ζ(3)+

∞∑
n=1

(
tan−1

(
x

βn

)
− tan−1

(
x

αn

)
+ xh2ω2

n3π3

)
,

(5.3)

in which ζ is the Riemann zeta function and the terms are now O(n−5) asn → ∞. All the infinite products can be
accelerated in the same way after first taking their logarithms.

In view of the fact that the qualitative nature of the results for this problem are evident from the many results
previously presented, one set of accurate results will suffice. These are presented inTable 1for easy comparison.
The table shows the values of|R|,Θ1, andΘ2 (from which|T |, |T |, andΘ are easily evaluated) for the case when
δ = 0,θI = 20

◦
, andh = 0.2π, for values of the non-dimensional frequency between zero and the critical frequency

above which there is total reflection.
The analysis presented in this paper shows how the classic problem of wave scattering by a semi-infinite ice sheet

in an ocean of finite depth can be solved exactly without having to resort to the Wiener–Hopf technique. Moreover
the solution is presented in a form which makes its computation straightforward.
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Table 1
Modulus and phase of the reflection coefficientsR = |R| eiΘ1 andR = |R| eiΘ2 whenδ = 0, θI = 20◦, andh = 0.2π

ω |R| Θ1 Θ2

0.2 0.0008 −2.3160 2.3175
0.4 0.0124 −1.3698 1.4164
0.6 0.0463 −0.4354 0.6674
0.8 0.0939 0.3203 0.1670
1.0 0.1452 0.9067 −0.1986
1.2 0.1979 1.3736 −0.5204
1.4 0.2531 1.7591 −0.8494
1.6 0.3154 2.1000 −1.2353
1.8 0.4097 2.4718 −1.7973
1.9 0.5316 2.7290 −2.2884
1.95 0.7321 2.8954 −2.7534
1.96 0.8580 2.9326 −2.9545
1.963 0.9830 2.9439 −3.1208

Acknowledgements

HC would like to acknowledge the support of the Royal Society of New Zealand’s Marsden Fund.

References

[1] D.V. Evans, T.V. Davies, Wave–ice interaction, Report 1313, Davidson Laboratory, Stevens Institute of Technology, New Jersey, 1968.
[2] H. Chung, C. Fox, Calculation of wave–ice interaction using the Wiener–Hopf technique, New Zealand J. Math. 31 (2002) 1–18.
[3] R.V. Gol’dshtein, A.V. Marchenko, The diffraction of plane gravitational waves by the edge of an ice cover, Prikl. Matem. Mekhan. 53

(1989) 731–736.
[4] A. Chakrabarti, On the solution of the problem of scattering of surface-water waves by the edge of an ice cover, Proc. R. Soc. Lond. A 456

(2000) 1087–1099.
[5] N.J. Balmforth, R.V. Craster, Ocean waves and ice sheets, J. Fluid Mech. 395 (1999) 89–124.
[6] L.A. Tkacheva, Surface wave diffraction on a floating elastic plate, Fluid Dyn. 36 (5) (2001) 776–789.
[7] L.A. Tkacheva, Hydroelastic behaviour of a floating plate in waves, J. Appl. Mech. Tech. Phys. 42 (6) (2001) 991–996.
[8] L.A. Tkacheva, Scattering of surface waves by the edge of a floating elastic plate, J. Appl. Mech. Tech. Phys. 42 (4) (2001) 638–646.
[9] C. Fox, V.A. Squire, On the oblique reflection and transmission of ocean waves at shore fast sea ice, Phil. Trans. R. Soc. Lond. A 347

(1994) 185–218.
[10] C. Fox, V.A. Squire, Reflection and transmission characteristics at the edge of shore fast sea ice, J. Geophys. Res. 95 (C7) (1990) 11629–

11639.
[11] A.E. Bukatov, D.D. Zav’yalov, Impingement of surface waves on the edge of compressed ice, Fluid Dyn. 30 (3) (1995) 435–440.
[12] T. Sahoo, T.L. Yip, A.T. Chwang, Scattering of surface waves by a semi-infinite floating elastic plate, Phys. Fluids 13 (2001) 3215–3222.
[13] B. Teng, L. Cheng, S.X. Liu, F.J. Li, Modified eigenfunction expansion methods for interaction of water waves with a semi-infinite elastic

plate, Appl. Ocean Res. 23 (2001) 357–368.
[14] R. Mittra, S.W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, New York, 1971.
[15] C.M. Linton, P. McIver, Handbook of Mathematical Techniques for Wave/Structure Interactions, Chapman & Hall/CRC Press, London/Boca

Raton, FL, 2001.
[16] C.M. Linton, The finite dock problem, J. Appl. Math. Phys. (ZAMP) 52 (2001) 640–656.
[17] M. Meylan, V.A. Squire, Finite-floe wave reflection and transmission coefficients from a semi-infinite model, J. Geophys. Res. 98 (C7)

(1993) 12537–12542.
[18] C. Fox, A scaling law for the flexural motion of floating ice, in: J.P. Dempsey, H.H. Shen (Eds.), Proceedings of the IUTAM Symposium

on Scaling laws in Ice Mechanics and Ice Dynamics, Fairbanks, AK, 2000, pp. 135–148.
[19] M. Wyman, Deflection of an infinite plate, Can. J. Res. A 28 (1950) 293–302.


	Reflection and transmission at the ocean/sea-ice boundary
	Introduction
	Formulation
	Wave incident from the ocean
	Wave incident from the ice
	Discussion
	Acknowledgements
	References


