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Abstract

The scattering of water waves by the edge of a semi-infinite ice sheet in a finite depth ocean is solved using the residue
calculus technique. We consider both the case where the obliquely incident plane wave is from the open sea region and
the complementary problem where the wave is incident from the ice-covered region. Exact solutions to these problems are
obtained, equivalent to those that can be obtained if the Wiener—Hopf technique is used. Contrary to popular belief, the
solutions are easy to evaluate numerically.
© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The effect of a thin sheet of sea ice, modelled as an elastic plate, on the propagation of surface gravity waves
in the ocean has been the subject of extensive study. A classic problem is that of a plane wave obliquely incident
from an open ocean of constant finite depth on an ice sheet in the form of a half-plane. This problem was solved
using the Wiener—Hopf technique by Evans and Dafd¢sIn their report Evans and Davies wrote of part of the
solution process “Unfortunately, the determination of the constanfzresents enormous computational difficulties
..." and ever since their appears to have been a general feeling that the Wiener—Hopf solution to this problem is
cumbersome and impractical. Actually this is not the case and numerical computations based directly on Evans and
Davies’ formulation, incorporating some judicious algebraic simplifications, have been perforf2éd in

The Wiener—Hopf technique was also used for the normal incidence and infinite depth version of the above
problem in[3] though no numerical results were presented. More recently it has been shown that this problem can
be solved by first formulating it as a singular integral equation, and computations of the reflection and transmission
coefficients have been reportg.

In an attempt to overcome some of the perceived drawbacks in Evans and Davies’ formulation, Balmforth and
Crastel[5] presented an analysis which, as well as incorporating a more general model for the ice flexure, aimed to
make the numerical calculation of results more straightforward. This involved the evaluation of certain integrals via
quadrature which seems to us a backward step since, as shi&yamd as demonstrated in this paper, the evaluation
of the solution from the explicit exact solution is actually straightforward and extremely efficient. Computations
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based on the explicit Wiener—Hopf solution have also been presented rd6efi{lyor the case of normal incidence
in both finite and infinite water depth.

An alternative to the Wiener—Hopf approach is to use mode-matching. The velocity potentials in the open ocean
and ice-covered regions are expanded in appropriate eigenfunctions found through separation of variables and the
the two expansions are matched at their common boundary. The first numerical results for the problem tackled
by Evans and Davies were obtained in this waydh(computations for normal incidence were reportelio])
though the matching process used (the minimisation of a certain error integral) is somewhat unsatisfactory. A similar
approach was taken [ti1]. Despite the presence of an exact solution, improved mode-matching analyses continue
to be developed, e.§12,13]

The aim of this paper is twofold. On the one hand we aim to derive the exact solution to Evans and Davies’
problem in a form which will demonstrate that the computation of results from it is a straightforward matter, and
on the other we will show that one does not need to use the elaborate Wiener—Hopf machinery to generate it.
The method that we use is the so-called residue calculus technique describétand adapted for water-wave
problems in[15]. One sets up the problem exactly as in the mode-matching approach, but instead of solving the
matrix equation that is generated by the matching numerically, a complex function is constructed in such a way
that the unknowns of the problem correspond to the residues at the function’s poles. These residues are then easil
evaluated. This technigue has been used to solve the simpler problem in which the ice sheet is replaced by a rigic
dock in[16], where it formed part of the solution to the finite dock problem. We note that approximate reflection
and transmission coefficients for a finite ice sheet have been determined in terms of the semi-infinite ones (in the
case of normal incidence) [A7].

We begin inSection 2by formulating the boundary-value problem to be solved and setting up the various depth
eigenfunctions that will be used. The particular non-dimensionalisation that we have gd&pteas the advantage
that it allows tank tests to be designed to have flexural responses that are equivalent to field tests, though we will not
dwell on these issues here. Section 3the classic problem of Evans and Davies is solved using residue calculus
theory and then isection 4we solve the complementary problem in which a wave is incident from the ice-covered
region. In both cases it will be shown that there are substantial simplifications if attention is restricted to normal
incidence. Finally, irBection 5we show how these two scattering problems are related and discuss the computation
of the solution.

2. Formulation

The boundary-value problem under consideration can be non-dimensionalised in a variety of different ways. We
introduce a characteristic length scéleand a characteristic time scale defined by

D\ Y4 PRNL:
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Herep is the water density is the acceleration due to gravity, abds the effective flexural rigidity of the ice sheet,
related to the effective Young’s modulBisria D = Eh®/12(1—v?), h being the thickness of the ice sheet aring
Poisson’s ratio for sea ice (taken to be 0.3). All the variables which appear below have been non-dimensionalised
with respect to these quantities. The length séalas shown irf19] to remove all the physical parameters from
the governing equations for static flexure of floating ice anfl. 8] it was shown that it was also appropriate for
dynamic responses. One of the consequences of this non-dimensionalisation is that the flexural response of the ic
sheet is most significant close to non-dimensional frequeneyl.

Cartesian coordinates are chosen so that the undisturbed free surface ligs jiyti@ane and points vertically
upwards. The elastic plate covers the region 0 and if we seek solutions which are time harmonic with angular
frequencyw the boundary-value problem we wish to solvgZk

(V3 —1)®=0, —H<z<0, (2.2)
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0P = @&, onz=0, x<0O, (2.3)
0?0 =((?-13)?+1-8P, onz=0, x>0, (2.4)
&,=0 onz=-H (2.5)

Heres = mw?, wherem is the mass per unit area of the ice sheet, non-dimensionalisgd.b¥or this linear
boundary-value problem to be valid we must haveg 1. The conditions at the ice edge, assumed free, are

¢y — vl%co = 0, c3 —l%c1 =0, (2.6)
representing zero bending moment and zero shear stress, respectively, where
3i+l€D
Cci = lim

. , 2.7
x—>0+ 9zax' |,_g 2.7)

andvy = 2—v. To complete the specification of the problem we need appropriate radiation conditions and then the
velocity potential is given by Rej(x, z) €Y1,

We begin by defining an orthogonal set of functions which are the appropriate depth eigenfunctions for the region
x < 0. Thus

¢n(z) = N;1cosk,(z + H),  N?= %H(l—i— %Zkhbl) n>0, (2.8)
wherek,, are the solutions to the water-wave dispersion relation

w? + ky tank, H = 0. (2.9)
Hereko = —ik (k > 0) is purely imaginary and,, n > 1 are real and positive. We note thgtH = nw — v’ H/
(nm) + O(n—3) andN,, = O(1) asn — oc. These depth eigenfunctions form an orthonormal set since

/ : ®n(2)Pm (z) dz = S, (2.10)
For the regionc > 0 we use the following set of functions:

Yn(2) = My tcosi, (z + H), M7= 3(Ho® — (5¢) +1— ) sink, H), n> -2, (2.11)
wherex, are the solutions to the elastic-plate dispersion relation

@ + (ki + 1 — 8)ky tank, H = 0. (2.12)
Herek_o =s+it(s > 0,7 > 0),k_1 = s — it = k_2, ko = —ix (k > 0), andk,, n > 1 are real and positive. We

note thatc, H = n + O(n—°) andM,, = O(1) asn — oo. These depth eigenfunctions are not orthogonal, but
0
0 [ @ &z = b+ 2+ 2)05,004,0) (2.13)
—H

Which of k andx is the greater depends on the values ahdw? in (2.9) and (2.12)For§ = 0 we always have
k < k and sinceS <« 1, we will assume in what follows that < k. This puts a lower bound on the valuesst
that can be used, but will be true for any parameter values of practical importance.

For future reference we note that

0 AnBu
/_H En (@Y () dz = 57— 7. (2.14)

where
A, = N cosk, H, B, = M, Y(k, sink, H + ? cosk, H), (2.15)
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both of which are O(1) a8 — oo and we define
an = K2+, =2+ 1D)? (2.16)

with the square root always chosen to have positive real part, or, if the real part is zero, negative imaginary part. We
have, as1 — oo,

nmw H? 5 202 3 niw H?I? 3
=1 2 (P-Z2) )+ omd, =2 (14— ) +0omd). 2.17
¢ H( +2n2712< H)) (. P H( +2n2712> ) .17

3. Waveincident from the ocean

We consider first the diffraction of an incident plane wave making an @ngligh the positiver-axis. Such a wave

can be represented by the potential @x@ox)¢o(z), wherel = k siné, ag = —ik cosd) = —i(k? — 19)1/? = —ia,
say. Clearly we must have< k. The appropriate radiation conditions are
D ~ (79" 4 Re")¢p(z) asx — —oo, (3.1)
@~ Te Poyp(z) asx— oo if [ <« (3.2)
®—-0 asx—> o0 if [ >k, (3.3)

whereR andT are the reflection and transmission coefficients, respectively. Note that with this defihisamt
the ratio of the amplitude of the transmitted to the incident wave, though this is easily recovered if we multiply
T by ¥4(0)/¢5(0). If I > « the incident wave is totally reflected and the wave field in the elastic plate remains
localised to the plate edge, whereas i « a plane wave is transmitted to infinity through the plate making an
angledt = sin~1(I/k) with the positivex-axis and we writg8g = —ix costr = —i(k% — 12)1/2 = —ig, say.

In x < 0 we can expand the potential as an eigenfunction series as follows:

D =" po(2) + Y an € p (2). (3.4)
n=0

whereas inx > 0 we expandb as

o= b€ Y. (3.5)

n=—2

Herea,,n > 0, andb,, n > —2, are unknown complex coefficients, aRd= ag, T = bo.
The continuity of® and®, acrosst = 0, the orthogonality of the functiong, (z), Eq. (2.14) and the fact that
B2 — a2 = k2 — k2, can be used to show that

m

o0

Som + am = Aw Y ﬁf"_—B;’[z, m >0, (3.6)
n=—2"n""%m
—aodom + mam = —Ap i /fznb_ns; , m >0, (3.7)
o Pn — iy
from which
200A  Som = i l;’:—B;”, m >0, (3.8)

n=—2
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-1
2oan A, = —
n=-2

b, By
ﬂn*‘am’

m > 0. (3.9)

The first of these is an infinite system of equations for#fis, the solution of which will involve two arbitrary
constants. These constants will be determined by the application of the edge cor{@itipaad then they,’s can
be found from(3.9).

Consider the function

G2+ y1z+ y2) lo—o[ 1-z/oy
(z—B-2z—p-1—Po) 3 1-2/Bn '

whereG, y1, andy, are constants to be determined. The infinite product is uniformly convergent on compact sets

excluding the pointg, and it is possible to show thgtz) = O(z 1) as|z| — oo provided we avoid these points

(se€[15, Section 5.2.1]for example). We then consider the numbers

1 2(2) 1 / 8(2)
C

Iy = lim — dz, Jp= lim —
" NS0 2mi N &= Om " NS o0 271 v 2Ty

g(z) = (3.10)

dz, m=>0, (3.11)

whereCy are contours chosen to avoid the discrete set of points mentioned above and onzvhiehco as
N — oo. The behaviour of for largez implies that/,, = J,, = 0 and then Cauchy’s residue theorem gives

[e¢]

R(g: B,
dmog (o) + Z % =0, m=>0, (3.12)
n:_z n m
R 0
g(—am) + Z ﬂ(g+§ =0, m=>0, (3.13)

where Rg : zo) means the residue gfz) atz = zg.
Comparison with(3.8) and (3.9shows that

by =B, 'R(g: B an = Anon) Tg(—aty) (3.14)
providedG is chosen so thaf(ao) = —2a0Ay*, i.e. with

200(2% + Y12+ 12) -
8(z) =— > 8(2), (3.15)
Ao(ag + y100 + v2)

where

0 00
sy — T %0~ B 1 A= 2/ew)d —ao/Bu)
0= nlz__[z 2= Pn 1:[1 (1—z/B)(1—ao/ay) (3.16)

Botha, andb, are Qn—2) asn — oo. This completes the solution apart from the evaluation of the two constants
y1 andy, from the edge conditions.
In the region under the plate we now have

&= B,'R(g:B)e " V,), (3.17)

n=-2

and so the numbers which appear in the edge conditions are given by

o0

= 3 BIRG: (B VL0) = 3 Rig: ) ’3”)4, (3.18)

n=-—2 n=—2
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where(2.11), (2.12) and (2.1%)ave been used. If we write

By
§— K

]

Si = Z R(g . ,Bn)

n=-2

(3.19)

then the condition§2.6) can be written as a 2 matrix equation for the unknowng andy;:
S3—vI?Sy  Sp —vi%S 1Sy — S
3 v21 2 vzo iy _ v22 4\ (3.20)
S4 — vll Sz Sg — vll Sl Y2 vll 53 — S5
If the quantityAg is real, which happens whén- «, we can show thaf; = exp(i¢)S;, where is independent af

from which it follows thaty; andy» must both be real.
The reflection coefficient is given, fro(3.14) by

e ¢]

a2 — 100 + 2 fﬁ 0 — B I]:(l+-ao/aﬁﬂl-—ao/ﬁn)

R=ao=— , 3.21
ao af+yico+y2 21, —e0— B o 5 (1+ao/B) (1 —ao/an) (3:21)
w,, (@) (a — iBo) .
= ——— exp[2 : 3.22
wF@ (@ F1fo) Pl @] (3:22)
where
wh =x% tiyix — o, (3.23)

14

and, with_» = _1 =0 +irt,

_1. 1 fx+T 1f{x—T > EYEAW 1 x
x() = 57+ tan (—U >+tan (—G )+I1Z::l(tan <ﬂn> tan <an))' (3.24)

If I > k, the quantityBg is real and, since in this case arey» are both real, we then hay®| = 1 as required.
If I < k, the transmission coefficient is given by

20— pui (P

T=by= AoBow? (@) P, (3.25)
where
p_ (o — ?ﬁfz)(a - iﬂfl) l—[ (1+ ?ﬂ/an)(1~l— ia/lgn). (3.26)
B=i-2)(B—1B-1) 3 A+1B/B) (L +ia/an)
The phase of is then readily determined, since
P .
3= expl2i(x(@) — x(B)], (3.27)

where x(-) is defined in(3.24) The modulus ofl’ can of course be obtained fro(8.25) but it is most easily
calculated fron{(3.22) noting that

B

—_ 2 —
ST =1 (3.28)

|RI? +

This result, which represents the conservation of energy, can be found by applying Green’s thedrandtis
complex conjugate which leads to the equation

@
Im / cDa— ds =0, (3.29)
on
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the integral being taken around the boundary of the fluid domain, including vertical lines atco. The derivation
is lengthy, but standard. Note that the relat{8r28)has a much simpler form than the equivalent expressi¢iyin
due to the particular form of the normalisation factdfsandM,,.

For normal incidencel (= 0) there is clearly considerable simplification, and in the éase$ = 0 it turns out
that we can solve the system far andy, explicitly. In this case we have

o0
Si=— Y R@: kK™ (3.30)
n=-—2

Fori = 4, 5 we can write the sum as an integral
Si=— / 27 dz, (3.31)
r

wherer is a contour from—ico to ico indented to pass to the left of the polezat kg = —ix. The equivalence

of the two expressions follows by closing the contour in the right-half plane and notingat O(z~3) as

|z] = oo. On the other hand, closing the contour in the left-half plane showsSthat S5 = 0. Thus for normal
incidence and = 0, we havey; = y» = 0. A similar simplification was noted if8] for this special case when the
Wiener—Hopf technique is used. It then follows that the reflection and transmission coefficients take the forms

— kK .

= e ePI2icb) (3.32)
2k .

= +°”K exp[2i(x (k) — ()], (3.33)

wherey(-) is defined in(3.24), but witho, 7, o, 8, replaced by, ¢, k,,, «,,, respectively.

4., Waveincident from theice

We consider next the diffraction of an incident plane wave from the ice region making aroangfle the x-axis.
Such a wave can be represented by the potentialBexjpyo(z), wherel = ksiné,, fo = —i = —ikcost, =
—i(k? — 1%1/2, Clearly we must havé < «. The potential for this problem will be labelled and the appropriate
radiation conditions are now

U~ Te%po(z) asx — —oo, (4.1)
W~ (eP0" L RePoN)yg(z) asx — oo. (4.2)
Sincex < k there is always a transmitted wave in this case, making an apgtesin—1(// k) with the x-axis and

we writeag = —iae = —ik costr = —i(k — 19)1/2,
In x < O we can expand the potential as an eigenfunction series as follows:

o
=) 0 g,() (43)
n=0
with 7= ag, whereas i > 0 we expandV as

¥ = Yo() + ) bue Y (2) (44)

n=-2
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with R = bg. The equations which result from matching acress 0 are

B . b,B
0=—"2 nn o m >0, (4.5)
IBO + oy 2 ﬂn — Uy

B . buB,
0y P mso (4.6)

20(,,1amA*1 = ) >
" Bo — am —t Bn + oy

To solve(4.5) consider the function

F(z% + p1z + p2) ﬁ 1—z/ay
(z = B-2)(z — B-1)(z + Po) 1—2z/Bn
whereF, n1, anduy are constants to be determined. This function is of the same fogtzaslefined in(3.10)

except that an extra zero (@) and an extra pole (at8p) are included. Applying Cauchy’s residue theorem as
before, we find

R(f:—Fo) o R(f:Bn)

fl2) =

4.7)
n=0

————=0, m=>0, (4.8)
—Bo — om — Bn — om
R(f:=Bo) , v~ R(f:B) _
flmem) + =g = HZZ_Z Bta =0 m=0 (4.9)
Hence
by =B 'R(f 1 B).  an = AgQun) L f(—aty) (4.10)

providedF is chosen so that& : —Bo) = Bo, i.e. with
_ Bo(z®+ iz + u2) -

) = , 4.11
where
~ B —+ 6 ,B + ,37 1 - n n 4
f( ) ( 0 2)( 0 l) l—[ ( Z/Ol )(1 ‘l'/gO/ﬂ ) ( .12)

(z = B-2)(z = B—1) (@ + Po) ; + (1—2/B)(1+ Bo/ow)

n=0

The matrix equation for the unknowpg andpu is (3.20)exactly as before, though because of the presence of the
incident wave in the ice-covered region we must now defirtey

(—B0) | = oo B,
S = R(f : Bn . 4.13
8_K3+n;2 b5 (4.13)
In the casé = § = 0 we again havet; = o = 0.
The reflection coefficient is now
wi(B) (« — p)
R=bo=—- exp[-2ix(B)]. 4.14
0 or ) @+ ) pl Al (4.14)
and the transmission coefficient is given by
2A0B " _
Teao= — 240808 0@ 5y (4.15)

(@ — B+ B)? wy (B)
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where P is given by(3.26) The modulus i is best determined from the conservation of energy equation which
is now

2
IR + %mz —1 (4.16)
For normal incidence antl= 0 the results are particularly simple:
R = Z J_FZ exp[—2ix ()], (4.17)
T= — 2 expl2ice) — 2] (4.18)
= ————— —_— K , .
okt ) S PEXE =X

wherey(-) is as in(3.32) and (3.33)

5. Discussion

The reflection and transmission coefficients for the two problems solved above are related. If we apply Green’s
theorem to the two potentias and¥ we obtain

IRI=[RI, BT =T, (5.1)
and if we used and¥ we find that
G146 =20+, (5.2)

where argR = ©1, argR = @7, and argl’ = arg7 = ©. These relations (which are equivalent to those derived
using a time-reversal argument[iti’]) can be used as checks on the numerical results.

The computation of reflection and transmission coefficients from the formulas given in the preceding sections
involves three main steps. These are the evaluation of the roots of the dispersion réf@dm@sd (2.12)the
evaluation of the functiory defined in(3.24)and various infinite products, and the evaluatiowfy» andu1, w2
from (3.20) None of these steps presents any great difficulty.

As far as the dispersion relations are concerned the only possible difficulty is the computation of the complex
rootk_s (k_1 is just its complex conjugate) which lies in the positive quadrant. However, a simple application of
Newton’s method beginning with the naive choice 6f 1appears to work perfectly well.

The terms in the summation in the definitionyofire Qn—3) asn — oco. This is computationally acceptable, but
the series is easily accelerated if we subtract off the leading order asymptotics of the summand. ThH@sliiing
we obtain

o (tan-t () - tan—t (X)) = X ”( _11>_ SYEAWE.LTS
; (tan (ﬁn ) tan (an )) =-=5 0+ ngl tan~t{ 2 ) —tan (- )+ S5 )
(5.3)

in which ¢ is the Riemann zeta function and the terms are naw®) asn — oo. All the infinite products can be
accelerated in the same way after first taking their logarithms.

In view of the fact that the qualitative nature of the results for this problem are evident from the many results
previously presented, one set of accurate results will suffice. These are preserabteitifor easy comparison.
The table shows the values|@|, ®1, and®- (from which|T|, | T |, and® are easily evaluated) for the case when
8 =0,6, = 20, andh = 0.2r, for values of the non-dimensional frequency between zero and the critical frequency
above which there is total reflection.

The analysis presented in this paper shows how the classic problem of wave scattering by a semi-infinite ice sheet
in an ocean of finite depth can be solved exactly without having to resort to the Wiener—Hopf technique. Moreover
the solution is presented in a form which makes its computation straightforward.
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Table 1

Modulus and phase of the reflection coefficieRits- |R| €1 andR = |R| €92 whens = 0,6, = 20°, andh = 0.2
w |R| ®1 &)

0.2 0.0008 —2.3160 2.3175
0.4 0.0124 —1.3698 1.4164
0.6 0.0463 —0.4354 0.6674
0.8 0.0939 0.3203 0.1670
1.0 0.1452 0.9067 —0.1986
1.2 0.1979 1.3736 —0.5204
1.4 0.2531 1.7591 —0.8494
1.6 0.3154 2.1000 —1.2353
1.8 0.4097 2.4718 —1.7973
1.9 0.5316 2.7290 —2.2884
1.95 0.7321 2.8954 —2.7534
1.96 0.8580 2.9326 —2.9545
1.963 0.9830 2.9439 —3.1208
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