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ABSTRACT

Ice concentration is a critical parameter of the polar marine environment because of the large effect sea
ice has on the surface albedo and heat exchange between the atmosphere and the ocean. Simulations of the
energy exchange processes in models would benefit if the ice concentration were represented more accu-
rately. Reanalysis simulations that use historical wind and temperature fields may develop erroneous ice
concentration estimates; these can be corrected by using observed ice concentration fields. The ice con-
centration assimilation presented here is a new method based on nudging the model ice concentration
toward the observed concentration in a manner that emphasizes the ice extent and minimizes the effect of
observational errors in the interior of the pack. The nudging weight is a nonlinear function of the difference
between the model and the observed ice concentration. The simulated ice extent is improved with the
assimilation of ice concentration but is not identical to the observed extent. The simulated ice draft is
compared to that measured by upward-looking sonars on submarines and moorings. Significant improve-
ments in the ice draft comparisons are obtained with assimilation of ice concentration alone and even more
with assimilation of both ice concentration and ice velocity observations.

1. Introduction

A major method for understanding the state of the
Arctic marine environment and how it is changing is to
perform reanalyses of the system over the historical
period of record using coupled ice–ocean models. The
model used here is forced with surface pressure and
temperature fields that are closely linked to observa-
tions so that the simulated ice thickness and concentra-
tion is a reasonably faithful recreation of the actual
fields. The simulated ice thickness can then be used to
determine the major modes of variability of the ice
thickness and the physical processes that are important
in their formation.

The simulations from the model alone suffer from
several sources of error: parameterizations of physical
processes, limitations of temporal and spatial resolu-
tion, and uncertainties in the forcing fields. These er-
rors in the reanalysis may be reduced through assimi-
lation of data directly related to the true state of the
system. The two parameters in the Arctic marine envi-

ronment most frequently and widely observed both at
the surface and from space are the ice extent and ice
velocity. In addition, ice thickness is now also estimated
from space with a variety of methods (Yu and Lindsay
2003; Laxon et al. 2003; Kwok et al. 2004) and may
eventually be a candidate for data assimilation.

The ice extent has been reported in ship observations
at selected locations for centuries, while ice extent and
ice concentration observations from satellites date back
to 1973 (for a history of satellite observations, see Glo-
ersen et al. 1992). The ice concentration measured by
satellites is subject to errors (Kwok 2002), particularly
during the summer when extensive melt ponds on the
surface of the ice are easily confused with open water in
the passive microwave signals. There is more confi-
dence in the satellite record of ice extent (the area of
ice with concentrations greater than 0.15). Hence, we
focus on assimilating ice concentration in a method that
emphasizes the ice extent.

The ice velocity has been routinely measured from
the daily changes in the locations of manned ice stations
since the drift of the Fram (1893–96), but abundant ice
drift data began with the inception of the International
Arctic Buoy Program (IABP) in 1979. Typically, 10–20
buoy trajectories are now available to determine the ice
drift velocity. In addition, the drift of the pack ice can
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be determined by comparing satellite images of the sur-
face taken at different times (Filly and Rothrock 1987;
Emery et al. 1991). The satellite sensors can be passive
microwave, active microwave (radar), thermal, or vis-
ible. The satellite measurements have extensive spatial
coverage and differing temporal resolution and cover-
age. We have previously reported our methods for as-
similating ice velocity (Zhang et al. 2003), and focus in
this study on the assimilation of ice concentration.

This paper is organized as follows: the model is de-
scribed in section 2; the data assimilation methods are
presented in section 3; comparisons with observed ice
draft measurements are made in section 4; and com-
ments and conclusions are found in section 5.

2. Model description

Our coupled ice–ocean model that has been used in a
wide variety of studies. The ice model is a multicategory
ice thickness and enthalpy distribution model with the
following five main components: 1) a momentum equa-
tion that determines ice motion, 2) a viscous-plastic ice
rheology with an elliptical yield curve that determines
the relationship between ice deformation and internal
stress, 3) a heat equation that determines ice tempera-
ture and ice growth or decay, 4) two ice thickness dis-
tribution equations for deformed and undeformed ice
that conserve ice mass, and 5) an enthalpy distribution
equation that conserves ice thermal energy. The first
two components are described in detail by Hibler
(1979). The ice momentum equation is solved using the
Zhang and Hibler (1997) numerical method for ice dy-
namics. The heat equation is solved, over each cat-
egory, using Winton’s (2000) three-layer thermody-
namic model, which divides the ice in each category
into two layers of equal thickness beneath a layer of
snow. The ice thickness distribution equations are de-
scribed in detail by Flato and Hibler (1995). The ocean
model is based on the Bryan–Cox model (Bryan 1969;
Cox 1984), with an embedded mixed layer described by
Kraus and Turner (1967). Detailed information about
the ocean model is in Zhang et al. (1998).

The model domain covers the Arctic Ocean and the
Barents and Greenland–Iceland–Norwegian Seas. It
has a horizontal resolution of 40 km � 40 km, 21 ver-
tical ocean levels, and 12 thickness categories each for
undeformed ice, ridged ice, ice enthalpy, and snow. The
ice thickness categories and bottom topography can be
found in Zhang et al. (2000). The model domain is il-
lustrated in Fig. 1 and the region of primary interest,
the Arctic Ocean, is marked.

The model is forced with surface wind and tempera-
ture records from the National Centers for Environ-

mental Prediction–National Center for Atmospheric
Research (NCEP–NCAR) reanalysis (Kalnay et al.
1996). The NCEP–NCAR reanalysis is from a global
atmospheric weather prediction model that assimilates
all available weather data to estimate the state of the
global atmosphere. Here we use only the daily aver-
aged sea level pressure (SLP) and the 2-m air tempera-
ture fields (T2m) for the 56-yr period of 1948–2003. The
specific humidity and longwave and shortwave radia-
tive fluxes are calculated following the method de-
scribed by Parkinson and Washington (1979) based on
the SLP and T2m fields. Model input also includes river
runoff and precipitation (Hibler and Bryan 1987;
Zhang et al. 1998).

The model configuration is very similar to that of
Zhang et al. (2003), but in this study we use NCEP–
NCAR reanalysis T2m and SLP fields instead of those
from the International Arctic Buoy Program in order to
analyze a longer period. The geostrophic wind speeds
from the NCEP–NCAR reanalysis SLP fields are in
general greater than those from the IABP pressure
fields. Over the 7-yr period of 1992–98, the geostrophic
wind speed over the Arctic Ocean averaged 6.5 m s�1

for the IABP fields and 7.3 m s�1 for the reanalysis
fields, which is a difference of 12%. To compensate for
this change in the mean geostrophic wind speed when
changing the forcing dataset, the drag coefficient in the
model was adjusted to improve the correspondence be-
tween the simulated ice velocity and that measured by
the buoys when no data assimilation was included. The
seasonally varying drag coefficient follows that of Over-
land and Colony (1994), with a minimum value of 0.97
� 10�3 in the winter and a maximum of 1.42 � 10�3 in

FIG. 1. The gray ocean regions depict the model domain. The
cross-hatched area is the Arctic Ocean, the averaging region for
the ice thickness and ice extent.
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the summer. The model was initialized with an 18-yr
integration using the forcing for the years of 1948–50.

Here we use three model runs. The first includes no
data assimilation, “model only,” and covers the 56-yr
period of 1948–2003; the second includes data assimi-
lation (DA) of ice concentration from the Global Sea
Ice (Gice) dataset, “Gice-DA,” and covers the same
time interval; the third includes assimilation of both the
ice concentration and the ice velocity, “GiceV-DA,”
and covers just the 25-yr period of 1979–2003 when
abundant ice velocity measurements are available.

3. Data assimilation

The ice concentration is from a dataset originally cre-
ated by Chapman and Walsh (1993). The dataset, called
Gice, is obtained from the British Atmospheric Data
Centre [BADC; information available online at http://
badc.nerc.ac.uk/data/gosta; a more recent version is the
Hadley Centre Global Sea Ice and Sea Surface Tem-
perature (HadISST) dataset; Rayner et al. 1996]. It con-
sists of monthly averaged ice concentration on a 1° grid.
In the satellite era it is based largely on various satellite
measurements, and in the presatellite era on ship re-
ports and climatology. In particular, the data for the
first 5 yr of this study, through 1952, are largely based
on climatology. For 2003 only the HadISST ice concen-
trations are used because the Gice dataset ends in 2002.
The monthly data were linearly interpolated to daily
intervals.

The Gice dataset has a uniform value of 1.00 in the
interior of the pack, even in the summer when many
surface observations show the presence of at least some
open water. The model shows summer values of 0.80–
0.99, which are consistent with field observations. Be-
cause of the errors in the summer Gice dataset ice con-
centration in the interior of the pack (as well as errors
in summer ice concentration based on passive micro-
wave observations), assimilation of ice concentration is
accomplished in a method that emphasizes the extent
over the concentration. The observations are weighted
heavily only when there is a large discrepancy between
the model and the observed concentration. Each day
the model estimate Cmod is nudged to a revised estimate
Ĉmod with the relationship

Ĉmod � Cmod � K�Cobs � Cmod�. �1�

For combining two estimates of the same quantity,
the optimal least squares value of the weighting K is
(Deutsch 1965)

K �
Rmod

2

Rmod
2 � Robs

2 , �2�

where R2
mod is the error variance of the model estimate

and R2
obs is the error variance of the observations. How-

ever, this expression assumes normally distributed un-
biased errors, and with a bounded quantity like con-
centration the errors are not Gaussian and may be bi-
ased. We have limited information about the errors for
either the model or the observations, except that in the
interior of the pack the concentration is poorly mea-
sured compared to the variability. We believe that at
the ice edge the observations have a better signal-to-
noise ratio, and if there is a discrepancy between the
model and the observations, the observations should be
weighted heavily. The weighting factor used here is

K �
�Cobs � Cmod��

�Cobs � Cmod�� � Robs
2 , �3�

where Cobs is the observed concentration, R2
obs is the

error variance of the observations, and the exponent �
� 6 (an expression recommended by D. Thomas 1998,
personal communication). This large exponent means
that only if the difference between the observations and
the model is large are the observations heavily
weighted, in effect only assimilating the ice extent. If
the error variance of the observations is small, the gain
approaches 1. We use a fixed value of Robs � 0.05.
However, the error variance of the Gice dataset ice
concentration is not well known and must vary consid-
erably, both with time or location and with the ice con-
centration. In the interior of the pack in the winter it
may be low while in the marginal ice zone or in the
summer it may be higher. A better understanding of the
errors in the observations would help the data assimi-
lation procedures considerably. Using this fixed value
of R we tried different values of �. We found that if �
is too small (observations are heavily weighted for
smaller differences) numerical instabilities develop in
the ocean model. If � is large, the simulation is less
tightly constrained to match the observations. Figure 2
shows the shape of the weighting factor K for three
different values of � and shows that if the difference
between the model and the observed ice concentration
is above 0.5 the observations are weighted heavily.

The observed ice extent in the Arctic Ocean, as rep-
resented in the Gice dataset (Fig. 3a), show that the
fraction of the area that is open water (C � 0.15) is
greatest in September when the mean is 11% of the
total area. The well-known trend in the recent summer
open-water extent is obvious. The minimum ice extent
reported by Serreze et al. (2003) for 2002 is seen here as
a year of very low ice extent, but in this analysis of just
the Arctic Ocean, 2003 has an even lower extent. This
is consistent with the near–record low summer ice ex-
tents seen in 2003 and 2004 (Stroeve et al. 2005). The

744 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 23



difference between the observations and the model-
only and Gice-DA simulations are also shown. The
model-only simulation does moderately well with a
mean error in September of 2% less open water, an rms
difference of 4%, and a skill score of 0.67. The skill
score as used here is defined as

S � 1 �

1
n 	�Cobs � Cmod�2

1
n 	�Cobs � C�2

, �4�

where the numerator of the fraction is the mean-square
difference between the model and the observations and
the denominator is the variance of the observations.
This skill score is similar to a squared correlation coef-
ficient except that no allowance is made for a linear fit,
so it includes the effects of bias or gain errors. As ex-
pected, the differences are smaller with assimilation of
the Gice data—the mean difference drops to �1%, the
rms difference is 2%, and the skill score rises to 0.90.
The difference is not zero because the observations are
not heavily weighted when both the model and the ob-
servations show low or high ice concentrations. So,
while assimilation of the ice concentrations improves
the representation of ice extent in the model, the
model-only simulation performs reasonably well with-
out the benefit of the observations. This is an encour-
aging result, because data assimilation is not appropri-
ate for correcting very large model errors.

Changes in the model thickness distribution were
made to accommodate the change in the ice concentra-
tion in a manner that minimized changes in the ice mass
by removing or adding ice to the thinnest ice classes.
An alternative would be to add ice in thicker catego-
ries. For example, Lindsay (2003) describes adding ice
with a thickness of 0.5 m in the summer so that it does
not melt away too fast. In addition to this nudging step,
it was necessary to spatially smooth the salt flux in the
top ocean layer to prevent numerical instabilities in the
model, instabilities that disappear only with reduced

model time steps. The smoother used is the classic nine-
point kernel with weights (1, 2, 1; 2, 4, 2; 1, 2, 1)/16. This
large salt flux occurred occasionally when there was a
persistent mismatch between the open water in the
Gice dataset and the air temperature field, which, if the
temperature was very low, produced very rapid refreez-
ing of the model open water when data are assimilated.
The differences in the salinity fields between the cases
with and without assimilation of the ice concentration
are small, with mean differences less than 1 psu at the
surface, where the differences are largest. These
changes in the salt flux represent a class of problems
that are symptomatic of data assimilation schemes that
use replacement or nudging for one of the prognostic
variables. The change is in violation of the physical

FIG. 2. The weighting factor K in the assimilation of ice
concentration for three values of �. This study uses � � 6.

FIG. 3. Monthly mean ice extent in the Arctic Ocean deter-
mined as the area with ice concentration greater than 0.15 and
expressed as a fraction of the area of the Arctic Ocean. (top) The
Gice (observed) dataset, (middle) the difference between the
model-only simulation and the observed extent, and (bottom) the
difference between the Gice-DA simulation and the observed ex-
tent. The lines at 1966 and 1987 mark the times of local maxima
in the basinwide mean ice thickness.
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processes represented in the model, and an increase in
the quality of one of the variables may come at the cost
of decreased quality of another, in this case the salt flux.

The ice velocity measurements are assimilated with
an optimal interpolation scheme outlined in Zhang et
al. (2003). We use velocity measurements from both
buoy- and Special Sensor Microwave Imager (SSM/I)-
derived ice displacement measurements. The buoy ve-
locities were obtained from the IABP, and SSM/I 85-
GHz ice displacement measurements were provided by
the Jet Propulsion Laboratory Polar Remote Sensing
Group. The buoy velocities are 24-h averages and the
SSM/I velocities are based on 2-day displacements. The
passive microwave displacement estimates are based on
a maximum correlation method applied to sequential
images of the ice cover (Kwok et al. 1998). While the
SSM/I estimates have a substantially larger error stan-
dard deviation than the buoys (0.057 versus 0.007
m s�1; Lindsay 2002), their large number and excellent
spatial coverage make them a valuable addition to the
present analysis.

The ice velocity and ice concentration are assimilated
in the GiceV-DA simulation, which begins in 1979. In
the time series of the mean ice speed averaged over the
area of the Arctic Ocean (Fig. 4), the model-only and
Gice-DA simulations do a very good job of reproducing
the basinwide mean ice speed compared to that of the
GiceV-DA simulation. The deformation rates from the
three simulations (not shown) are also quite similar.

The time series of the basinwide mean ice thickness
for all three simulations is shown in Fig. 5. The vertical
lines mark the occurrence of the two prominent
maxima in the ice thickness. The Gice-DA simulation
averages at 0.25 m thinner than the model-only simu-
lation. The assimilation of ice concentration reduces
the basinwide mean thickness primarily by reducing the
thickness in the marginal seas. The thinning in the mar-
ginal seas is seen in Fig. 6, which shows the difference
between the Gice-DA simulation and the model-only
simulation for the period of 1979–2003. This thinning of

the ice in the marginal seas after assimilation of ice
concentration is likely because of the method in which
the thickness distribution is modified to accommodate
the change in the concentration mandated by Eq. (1). If
the model ice concentration is too large, ice is removed
from the distribution even if the thinnest ice is quite
thick, while if ice is added to the distribution, it is added
only to the 0.1-m ice thickness bin. This asymmetric
addition and removal of ice leads to a thinning of the
mean ice thickness. The assimilation of ice velocity in
the GiceV-DA simulation thickens the ice again, pri-
marily in the Beaufort Gyre on the Pacific side of the
central basin, so that it is very similar, in the mean, to
that of the model-only simulation. This thickening is
accomplished primarily through modification in the
mean advection of the ice pack when ice velocity mea-
surements are assimilated, not to changes in the defor-
mation rates.

4. Observed and modeled ice draft comparisons

Validation of the simulated ice thickness is per-
formed with measurements of the ice draft from sub-

FIG. 4. Annual mean ice speed averaged over the Arctic Ocean
from the three simulations. The black line indicates the mean
value for the Gice-DA simulation.

FIG. 5. Time series of the annual mean ice thickness in the
Arctic Ocean from all three simulations. The vertical lines mark
the years of the two prominent maxima in the ice thickness and
are used as reference points in other figures.

FIG. 6. Differences of the mean ice thickness from the model-
only simulation and the Gice-DA simulation, and the Gice-DA
simulation and the GiceV-DA simulation.
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marines and moored upward-looking sonar (ULS). The
submarine measurements were obtained from the Na-
tional Snow and Ice Data Center (NSIDC) Submarine
Upward Looking Sonar Ice Draft Profile Data and Sta-
tistics dataset. It includes eight cruises conducted under
sea ice by the U.S. Navy as part of the Scientific Ice
Expeditions (SCICEX) program between 1987 and
1997. These data were recorded digitally by the Digital
Ice Profiling System (DIPS) II with a narrow beam
sonar (approximately 3°). These submarine data were
also compared in detail to the current model by Roth-
rock et al. (2003, hereafter RZY03) and Zhang et al.
(2003). Here we repeat some of the analysis in order to
document the performance of the current configuration
of the model. The important differences in the configu-
ration are that here it is forced with NCEP–NCAR
reanalysis winds and temperatures instead of IABP
winds and temperatures, and here it also incorporates
data assimilation procedures.

In addition to the submarine cruises, we use moored
ULS measurements from the Fram Strait obtained by
the Norsk Polar Institute. Summaries of the compari-
sons for each of our three model runs and from each of
the datasets are shown in Table 1. The mean ice drafts
measured by submarines are for track lengths of 50 km,
and the model mean ice thickness is taken from the
simulations at the corresponding times and locations
with no smoothing.

The comparisons with the submarine data improve
when ice concentration is assimilated, then improve
again when both ice concentration and velocity are as-
similated. Assimilation of ice concentration increases
the thickness bias but improves the rms difference and
the correlation. As mentioned above, the method of
modifying the thickness distribution may contribute to
this thinning. The map of the difference between the
model-only and GiceV-DA simulations (Fig. 6) indi-

cates that the difference is least in the interior of the
basin—the region most heavily sampled in the subma-
rine measurements. Hence, the mean difference be-
tween the two simulations shown in the table (�0.19 m)
is much less than that shown for the whole basin (Fig.
5). The GiceV-DA simulation has the smallest bias, the
smallest rms difference, and the largest correlation co-
efficient. The assimilation of ice concentration and ve-
locity also increased the skill over that of the model-
only simulation. The ice draft skill scores of the three
simulations are 0.20 for the model only, 0.31 for Gice-
DA, and 0.49 for GiceV-DA. The standard deviation of
the ice draft indicates that the model variability in the
ice thickness is too small in all three simulations. This is
likely because the resolution of the model and forcing
fields is inadequate to retrieve the full spatial variability
of the ice thickness field that is measured by the sub-
marines.

Figure 7 shows the difference between the observed
and model ice draft for the GiceV-DA simulation. The
plots for the other two simulations are very similar,
including the spatial distribution of the differences, al-
though the correlations are smaller. The first panel
shows the locations of the comparisons and the differ-
ence between the model and the simulated ice draft.
The pattern is very similar to that shown by RZY03,
with the model showing ice that is too thick on the
Pacific side of the basin and too thin on the Atlantic
side. This pattern is further illustrated with Fig. 7c,
where the difference between the model and the obser-
vations is plotted versus the x component of the loca-

TABLE 1. Model ice draft compared to observed ice draft.

N
Mean
(m)

Bias
(m)

Std
dev
(m)

Rms
diff
(m)

Correlation
(R)

Submarines,
1987–97

Observed 835 2.35 1.06
Model only 835 2.24 �0.11 0.78 0.95 0.51
Gice-DA 835 2.05 �0.30 0.72 0.88 0.63
GiceV-DA 835 2.33 �0.02 0.75 0.76 0.70
Fram Strait,

1990–99
Observed 188 2.47 0.87
Model only 188 2.21 �0.27 0.60 0.94 0.29
Gice-DA 188 1.83 �0.64 0.65 1.06 0.41
GiceV-DA 188 2.01 �0.47 0.62 0.91 0.49

FIG. 7. Comparisons of the GiceV-DA simulation ice drafts and
the submarine ice draft measurements: (a) locations of the com-
parisons (the color gives model � observed), (b) the model draft
vs the measured draft, (c) the difference vs the x component
(horizontal map component) of the locations, and (d) the ob-
served and modeled values vs the dates of the observations.
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tion (horizontal axis in the map). The trend across the
basin is very consistent. In the model-only and Gice-
DA simulations the trend of the difference across the
basin is even larger. Figure 7b shows that the model ice
is too thick when the observations show thin ice and too
thin when the observations show thick ice. The corre-
lation is 0.70. If all of the observations are combined in
yearly averages, the correlation increases to 0.97, indi-
cating that the interannual variability is well captured
even if the spatial patterns are less well so. Both the
observations and the model show declining trends in
the ice draft over time, as seen in RZY03. The trend
over time of the observed and modeled ice draft for this
selection of points is shown in Fig. 7d. The model un-
derestimates the trend in the thickness for these times
and locations.

The spatial pattern of the model bias is puzzling be-
cause it persists even when ice velocity measurements
are assimilated and the mean advective patterns are
well estimated. One possibility is that there may be
some large-scale error in the thermodynamic processes,
either in the forcing or in the model physics. Possibly
the assumption of spatially uniform cloud cover is in
error, and by accounting for spatial variability in the
clouds the bias can be reduced. Other possibilities are
that the deformation rates are incorrect, even after as-
similation of ice velocity, leading to incorrect ridging, or
that the ice redistribution estimated in consequence of
the deformation is wrong.

The Fram Strait ULS data come from a series of
moorings deployed by the Norsk Polar Institute and the
Alfred Wegener Institute between 1990 and 1999 (the
work is ongoing). The moorings were deployed in the
vicinity of 78.2°–78.8°N and 3.4°–7.0°W. The Fram
Strait comparisons indicate that in all three model runs
the simulated ice thickness is too thin, and the variabil-
ity is again too small compared to the observations.
This is consistent with the spatial pattern seen in the
difference between the submarine ice draft measure-
ments and the model in Fig. 7c. The correlation im-
proves with assimilation of ice concentration and even
more with ice velocity, but it remains quite low com-
pared to that found with the submarines. Unlike with
the submarine measurements, the mooring data are
from near the same location so that only temporal vari-
ability is included in the signal and little spatial vari-
ability is measured. The skill scores for all three simu-
lations are negative because the rms differences are less
than the observed standard deviation.

These validation studies show that while the model
has some significant problems in reproducing the thick-
ness field at the largest scales accurately, the skill of the
model is still very significant. The downward trend in

the observed ice drafts (�0.23 m yr�1) is also well rep-
resented in the model, though it is not as large (�0.16
m yr�1 for the GiceV-DA simulation).

5. Comments and conclusions

A new method to assimilate ice concentration that
emphasizes the ice extent has been introduced. The
method uses a nudging technique in which the weight-
ing is a strong function of the difference between the
model and the observed ice concentration. The assimi-
lated ice concentration improves the match with the
observed extent, but the match is not identical. The
assimilation of ice concentration most greatly affects
the thickness of the ice in the marginal ice zones, thin-
ning the mean ice thickness by more than 0.5 m in some
locations. Our method of adjusting the thickness distri-
bution to accommodate for the changes in the open-
water area (minimizing changes in the ice mass) leads
to a bias in the adjustments in that more ice mass is
removed when the open-water area is increased than is
added when the open-water area is reduced.

Changes in both the ice mass and the salt flux in the
model illustrate that some fields in the model will no
longer be in strict adherence to the physical principles
of the model when data assimilation is accomplished
through nudging. Another aspect of the assimilation
schemes described here is that the velocity and concen-
tration are assimilated independently from indepen-
dent datasets and so they may not be physically consis-
tent with each other or with the thermodynamic forcing
fields. Ideally, the assimilation scheme would maintain
the physical principles embodied in the model.

The assimilation of ice concentration significantly im-
proves the match of the model ice draft with the mea-
sured draft. The Gice assimilation improves the corre-
lation of ice draft over the model-only simulation both
for the submarine measurements and for the Fram
Strait moored measurements. The best correspondence
between the simulated and the measured ice draft is
with the assimilation of both the ice concentration and
ice velocity. The assimilation of the ice concentration
thins the ice, most strongly in the marginal ice zones.
The trend in ice draft in the period of 1986–99 is less in
the model simulations than is observed in the subma-
rine measurements where model estimates and mea-
surements are matched in time and space. A significant
bias still exists in the large-scale ice thickness pattern,
even with the assimilation of ice velocity measure-
ments. The assimilation of ice concentration may also
negatively impact the salt flux in some limited areas
because of the artificial removal of ice and the subse-
quent refreezing of the model ocean.
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The assimilation of ice concentration in a coupled
ice–ocean model improves the representation of ice ex-
tent in the model simulations and thereby improves the
representation of the surface energy balance in the
marginal ice zones. It is a simple way to ensure that
reanalysis of the historical evolution of the polar ma-
rine system is more faithful to the actual conditions
observed.
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