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ABSTRACT

Triad interactions in a linearly stratified ocean are studied numerically using a Garrett—-Munk energy spectrum
as the initial condition. It is found by bispectrum analysis that wave-mean flow interactions dominate and
resonant interactions are limited to very large scales. Resonant triads of parametric subharmonic instability
type play an insignificant role in the energy distribution. Local sum resonant triads provide the most effective
energy transfer at very large scales. The analysis of triadic energy transfer rates suggests that triad configuration
determines the energy flow pattern. When the modes with zero horizontal wavenumber are set to zero, resonant
interactions arise. Thus, over most of the Garrett-Munk spectrum the energy level is low enough for resonance,
but due to strong nonlinearities induced by horizontal currents, resonance is destroyed and wave-mean flow
interactions dominate. If the energy level is reduced by a factor of 100, the number of resonant modes increases
but wave-mean flow interactions remain important at high wavenumber.

1. Introduction

The triad resonant interaction is believed by some
to be the dominant energy transfer mechanism in the
ocean; for instance, see Phillips (1977), McComas and
Bretherton (1977), Garrett and Munk, (1979) and
Munk (1981). Holloway (1980, 1982), however, dis-
agrees and argues that oceanic waves are t0o energetic
for weak resonant interaction theory to apply. Flatté
et al. (1985) found that, in contrast to the induced
diffusion weak resonant mechanism described by
McComas and Bretherton ( 1977), small-scale internal
waves evolve toward higher frequencies and higher
horizontal wavenumber. A complete review of our
knowledge of nonlinear interactions among oceanic
internal waves is given in Miiller et al. (1986). Al-
though resonant triads have been identified experi-
mentally (Martin et al. 1972) and numerically (Lin
1993), they were generated in controlled environments.

Efforts to verify whether or not resonance occurs in
the ocean were made by McComas and Bretherton
(1977), McComas and Miiller (1981), and Holloway
(1980, 1982). The ratio of the interaction timescale
(or the spectral evolution time) to the wave period
needs to be very large for weak interaction theory to
apply. Holloway (1980, 1982) questioned the validity
of the timescale ratio calculated by McComas (1977)
and recalculated it; his results contradict the long in-
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teraction time assumption. Holloway (1980) further
estimated that the oceanic wave energy level is about
one hundred times the limit at which weak interaction
theory should apply. In addition, Holloway (1983)
proposed that large-scale oceanic internal waves (60—
100 m or larger) can be treated by resonant interaction
theory while interactions between very different length
scales, that is, induced diffusion ( McComas and Breth-
erton 1977), are not sensitive to energy level and may
be strong in the ocean. The goal of this work is then
to obtain evidence for resonance, or lack thereof, in
the ocean and to discuss energy transfer mechanisms
other than resonant interactions.

To achieve this goal an approach different from pre-
vious work, such as McComas and Bretherton (1977),
Holloway (1980, 1982), Pomphrey et al. (1980), and
Flatté et al. (1985), is adopted. In the cited work, the
energy spectrum is based on a semi-empirical oceanic
spectrum suggested by Garrett and Munk (1972, 1975,
1979) and Munk (1981). Pomphrey et al. (1980) used
Langevin methods to confirm the conclusions of
McComas and Bretherton (1977) that the Garrett—
Munk (GM) spectrum with a linear density profile is
approximately a steady-state spectrum, while Flatté et
al. (1985) adopted the Eikonal technique to show that
small-scale internal waves evolve toward higher fre-
quencies in contrast to the results predicted by a simple
induced-diffusion weak interaction model (see also
Miiller et al. 1986). In McComas and Bretherton
(1977) and Holloway (1980, 1982), the energy transfer
equation used to calculate the timescale ratio is derived
from the weak interaction equation by Hasselmann



154

(1966). The wave energy level can strongly affect the
applicability of resonant interaction concepts to the
ocean. Hasselmann (1966) invoked concepts from
quantum mechanics and assumed a Gaussian phase
distribution to derive a wave action equation that has
been used by Olbers (1976), McComas and Bretherton
(1977), and McComas and Miiller (1981), among
others, to study oceanic dynamics. However, the sta-
bility criterion dertved from Hasselmann’s (1967) weak
interaction theory gave poor agreement with the results
of single triad analysis (Lin et al. 1993a) and numerical
experiments at high wavenumbers (Lin 1993), imply-
ing that the timescale ratio calculated from his energy
transfer equation is not accurate, especially for finite-
amplitude waves. Holloway (1982) also questioned the
applicability of Hasselmann’s theory to finite-ampli-
tude waves.

In the present study, direct numerical simulations
using the Garrett-Munk energy spectrum as the initial
condition are performed. A similar approach has been
used by Shen and Holloway (1986), Ramsden and
Holloway (1992), and Siegel (1990). In the first study,
a spectrum similar to the Garrett—-Munk spectrum was
used to study nonlinear internal wave behavior in the
ocean,; it showed that the high wavenumber modes have
large frequency fluctuations but the dominant resonant
and nonresonant triads were not discussed. Ramsden
and Holloway (1992) investigated the energy transfer
of small-scale oceanic structures (less than 10 m) in-
cluding propagating nonlinear internal waves and
nonpropagating vortical modes (Riley et al. 1981;
Miiller et al. 1988; Lelong and Riley 1991). Siegel
(1990) also examined the properties of small scales in
the ocean but did not address the issues related to res-
onant interactions.

The goal of this study is to shed light on the following
three issues. First, if resonant interactions exist, what
are the dominant triads in the ocean? Our investigation
of single triads (Lin et al. 1993a) and multiple triads
(Lin 1993) shows that the local sum resonant triads
dominate and resonant triads of parametric subhar-
monic instability type are ineffective in energy transfer.
We want to check whether or not this is true in an
oceanic model spectrum. Second, what kind of inter-
actions will appear in the absence of resonant inter-
actions? Energy transfer from one small-scale mode to
another small-scale mode by way of one vertically pe-
riodic large-scale mode (induced diffusion; Holloway
1983) is believed to be active although the interactions
may not be resonant. The present numerical experi-
ments are set up to verify this conjecture and to learn
more about this mechanism. Third, what determines
the characteristics of energy transfer? The numerical
simulations of multiple triad interactions excited by
one energetic mode with white noise (Lin 1993) are
consistent with the single triad study (Lin et al. 1993a),
suggesting that triad configuration determines the en-
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ergy transfer pattern. Is this true for the oceanic energy
spectrum?

The use of the Garrett-Munk spectrum is to provide
a reasonable energy level for each scale. As we know,
this spectrum is not designed for small-scale waves, so
the results are applied mainly to large- and interme-
diate-scale waves. The tools we will rely on are bispec-
trum analysis and phase correlations. These quantities
have been used to study nonlinear wave coupling in
weakly ionized plasmas (Kim et al. 1980). The cross
bispectrum used by Neshyba et al. (1975) was based
on the single-station data (temporal information) and
revealed no spatial information. The present bispec-
trum analysis can reveal the distribution of strongly
interacting modes in Fourier space. If these modes lie
on the resonant traces, interactions are likely to be res-
onant. In contrast, if the strongly interacting modes do
not match the resonant traces, the dominant interac-
tions can be found from the spectral distribution. Phase
correlations also provide strong evidence for resonance
as resonant triads have approximately constant phase
correlations.

2. Numerical method

We consider interactions in a linearly stratified
ocean, so the Brunt-Viisilid frequency is constant. The
equations that govern the fluid motions include the
continuity equation, the incompressible Navier—Stokes
equations with the Boussinesq approximation, and the
scalar transport equation:

U; = 0_, (21)
b: &
ui,,+ ujui,j= ——-—1—-—p5,-2 + uu,»,jj, (22)
Po  Po
dp
pat uip;+——1u=yp (2.3)
4 J¥.J de JJ

where tensor notation is used in Cartesian coordinates
and Einstein summation is invoked. Here u;, p, p, and
po are the fluctuating velocity, the fluctuating density,
background density, and reference density, respectively;
X, is the vertical axis, » the kinematic viscosity, v the
molecular diffusivity, and §; the Kronecker delta. The
Brunt-Viisili frequency NV is

g dp \'?
( Po dxz)

For computational efficiency, the pseudospectral
method is adopted for the spatial derivatives. The Fou-
rier representation implies periodic boundary condi-
tions. Time advancement is based on the second-order
Runge-Kutta scheme. The computational domain is
normalized to a 27 X 27 square box resulting in integer
wavenumbers, and the inverse Brunt-Viisild fre-
quency is used to scale time. Prandtl number (Pr = v/
+v) is unity. Noninteger wavenumbers in physical space
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are introduced by the stretching factor 3;. When 3;
< 1, physical length scales are increased by a factor of
1/8; while wavenumbers are reduced by a factor of §;,
allowing the resolution of very large scale modes. For
further details of the numerical method, see Holt et al.
(1992) and Lin (1993).

The Garrett—-Munk energy spectrum (Munk 1981
referred to as GM79) has been used often. This model
spectrum provides a reasonable representation of the
oceanic energy distribution for an exponentially strat-
ified ocean. Although in the present work linear strat-
ification is used, energy level is the most important
determinant of interaction type. A brief description of
this spectrum and its implementation in the code are
given in appendixes A and B, respectively. Because this
spectrum assumes that the waves are horizontally iso-
tropic, 2D simulations are sufficient to demonstrate
the qualitative nature of the dynamic processes (Hol-
loway 1988). The investigation of multiple triad in-
teractions (Lin 1993) also suggests that 2D simulations
provide good qualitative results because about 40% of
total resonant energy transfer occurs in the vertical
plane containing the primary mode and the rest occurs
in modes adjacent to these modes.

Before describing our results we need to consider
wave-vortex interactions and the role of rotation. Two-
dimensional simulations also prohibit wave-vortex in-
teractions that are believed to be significant in energy
transfer (Lelong and Riley 1991; Miiller et al. 1986).
In the study of multiple triad resonant interactions (Lin
1993), this sort of interaction is found. The analysis
of the energy distribution shows that if the background
white noise consists of internal waves, the wave—vortex
interaction is extremely weak. On the other hand, if
the white noise is characterized by turbulence, the
wave-vortex interaction becomes strong but is still
weak compared with the wave—wave resonant inter-
action. For instance, in the case studied (Lin 1993),
only 12% of energy transfer is due to this mechanism
and wave-wave interaction is dominant. In addition,
this mechanism is active only in the initial phase of
interaction, which is contrary to the slow wave-wave
interaction. In the present study, all modes are treated
as waves, so the wave-vortex interaction should be ex-
tremely weak.

Since rotation is excluded in 2D simulations, the
results are most applicable to hydrostatic nonrotating
waves (Gill 1982). The mesoscale diffusion mechanism
(Watson 1985), which is responsible for internal wave
energy transport in the /-2 f band (f is the inertial
frequency), is not investigated. The time unit used in
this work is the Brunt-Viisild period (BVP). The
maximum simulation time of 80 BVP corresponds to
about 26 hours in an ocean with N = 5.3 X 1073 s,
If /= 0.01N, the inertial wave period is about 33 h,
so ignoring rotation is reasonable. The energy in the
high wavenumber modes is small and easily dissipated.
To avoid aliasing errors and energy accumulation at

NOTES AND CORRESPONDENCE

155

high wavenumber, a large viscosity equivalent to a
small length scale is used. The dissipation could affect
the saturated spectral distribution but the dynamics
remain qualitatively correct.

A stretching factor 8; < 1 is used to increase the
large-scale (small wavenumber) resolution, especially
in the horizontal direction because most of the energy
is at small horizontal wavenumber. Two kinds of con-
figurations are used. With 8; = 1 (cases od, or, and oe
of Table 1), about 90% of the total energy is in modes
with k; = 0, implying strong horizontal currents. Al-
though this configuration does not resolve the large-
scale modes, it can be used to explore nonlocal inter-
actions between large- and small-scale modes. The sec-
ond class (cases yd, yr, and ye, Table 1) has 8, = /4
and 8, = 12, and 70% of wave energy is in modes with
k; = 0. Simulations of this class were used to do fine-
grid verification of the results of the first cases. Finally,
cases with smaller energy level (100 times smaller) were
performed (Cases oe and ye) to check Holloway’s
(1980) argument.

3. Results
a. Energy spectrum evolution

Figure la gives the 2D initial kinetic energy spectrum
of case od. Due to the hydrostatic approximation, the
energy of high-frequency modes is very small (appendix
B). The energy level decreases rapidly with increasing
horizontal wavenumber (k, ) but more slowly with ver-
tical wavenumber (k). The very low energy level at
high horizontal wavenumber allows a shorter maxi-
mum horizontal wavenumber than the vertical one be-
cause modes at high k, are dissipated rapidly. The
highest energy levels are found near k;, = 0 and small
k, and belong to a strong mean flow. Figure 1b gives
the kinetic energy spectrum of case od at t = 10. It is
impossible to identify the dominant energy transfer
mechanism from this spectrum. The higher-frequency
modes gain energy but remain weak compared with
other modes.

TABLE 1. Initial conditions for the 2D simulations: f; is the
stretching factor; ¢, is used to control the total energy level, ¢, Eo,
where E, is the original energy level in GM79; #;(k, = 0) = 0 with
a “Y” denoting that the Fourier components with zero k, are set to
zero and “N” disables this option. The dimensionless viscosity » for
all cases is 3.95 X 107%,

Cases Mesh size 8, B, ¢ ik, =0)=0
od 64 X 128 1 1 1 N
or 64 X 128 1 1 1 Y
oe 64 X 128 1 1 0.01 N
yd 256 X 256 /4 /2 1 N
yr 256 X 256 1/4 /2 1 Y
ye 256 X 256 1/4 /2 0.01 N
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0 (a) ko 32 (b)

F1G. 1. Kinetic energy spectra of case od: (a) t = 0; (b) ¢ = 10.
The label on the figure is obtained from log;o KE.

b. Bispectrum analysis

The bispectrum reveals the modes that interact
strongly with a chosen mode. Figures 2a-d give the
bispectra of case od for wavevectors (5, 8), (3, 9), (10,
17), and (3, 14), respectively. Here, (5, 8) and (10,
17) have approximately the same inclination angle
(60°), but different wavelengths (9.43 and 19.72) are
used to examine the effect of wavelengths. While the
inclination angles of (3, 9) and (3, 14) are 72° and
78°, their wavelengths are 9.49 and 14.32, respectively.
Accompanied by the former wavevectors, they are used
to investigate the effect of the inclination angles of the
chosen modes. Since bispectra change slowly with time,
those shown are averaged from ¢ = 0.1 to 10 BVP. The
bispectrum at ¢ = 80 is similar to the earlier one and
is not shown. For purposes of comparison, the resonant
traces are superimposed; these are the loci of modes
%2 satisfying resonant conditions (Phillips 1977 and
Lin et al. 1993a):
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AR =F+k*-k'=0 (3.1)
Aw=wlxtw’+xw' =0, (3.2)

where k' is the chosen mode, w' is the frequency of
wave i (w’ > 0), and the three wavevectors are not in
cyclic form. The solid lines denote sum resonant traces
(w' = w? + w?); the dashed lines are difference resonant
traces (w! = Fw? * w3). There are two small circles
in these figures: the lower left one corresponds to the
origin and the upper right one locates the chosen wave-
vector. If resonant interactions dominate, the strongly
interacting modes should lie near the resonant traces.
In all four cases, the strongly interacting modes do not
match the resonant traces but lie on two vertical lines:

+63

ks

—63
=31

(c) (d)

FIG. 2. Time average bispectra from ¢ = 0.1 to 10 for case od with
% equal to (a) (5, 8); (b) (3, 9); (¢) (10, 17); (d) (3, 14), whose locations
are marked by the upper right small empty circle. The lower left
small empty circle is the origin. Solid: sum resonant traces; dashed:
difference resonant traces.



JANUARY 1995

+63 {

k2

—63
-31

NOTES AND CORRESPONDENCE

(e} (d)

FiG. 3. Time average bispectra from ¢ = 0.1 to 10 for case or
with & equal to (a) (5, 8); (b) (3, 9); () (10, 17); (d) (3, 14).

one at k; = 0 and the other at the horizontal wave-
number of the chosen mode. The former corresponds
to mean flow and changes in the energy of these modes
indicate modification of the mean profile. The latter
are waves resulting from wave-mean flow interaction,
which is thus the dominant type of interaction. Recall
the critical layer process (Lighthill 1978; Lin et al.
1993b), which is one type of the wave-mean flow in-
teractions: when a wave packet propagates in the di-
rection of increasing mean velocity, the horizontal
wavenumber of the wave packet remains unchanged
and the vertical wavenumber increases, approaching
the critical level asymptotically. It is further found that
modes close to the chosen mode are much stronger
than those away from it. Therefore, the energy transfer
is mainly of the induced diffusion type (McComas and
Bretherton 1977) regardless of wavevector orientation
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F1G. 4. Time histories of phase correlations for cases od and or.
Solid: case od; dotted: case or. (a) k! = (3, 9), k2 = (2, 14); (b) k!
=(5, 8), k2 = (3, 14).

and wavelength. Holloway (1983) noted that this
mechanism might be effective in energy transfer among
finite-amplitude waves. However, the interaction is not
resonant as will be demonstrated later.

The dominance of wave~mean flow interactions can
be verified by eliminating the mean flow (case or).
Bispectra for case or are shown in Fig. 3 for the same
chosen modes as in case od. The distribution of the
strongly interacting modes approximately matches the
resonant traces, implying that the resonant interactions
dominate in the absence of mean flow. The interactions
are primarily of local sum resonance type (the solid
lines); the horizontal wavenumbers of resonant modes

2 lie between triads of elastic scattering and induced

TABLE 2. Triads chosen for analysis: |Aw| is the minimum of
|w' £ w? + w®|, where wave frequency ' is estimated from the linear
dispersion relation.

Triad I3 k2 % | Aw]
A 3, 9) 2, 14) (1, -5) 0.02
B 5, 8) (3, 14) 2, —6) 0.004
C 5, 8) 5, 9) (0, —1) 0.044
D (s, 8) (3,21 2, -13) 0.237
E @, 8) (8, 23) (=3, —15) 0.005
F (5, 8) (12, 37) (=7, —29) 0.013
G (5, 8) (14, 33) (-9, —25) 0.199
H , 4 ©0.5,7 0.5, -3) 0.006
I (1, 4) 0.5, 9) (0.5, —5) 0.088
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F1G. 5. Time histories of phase correlations of off-resonant triads

for cases od and or. Solid: case od, dotted: case or. (a) k! = (5, 8),

%2 =(5,9; ) %k = (5, 8), k2 = (3, 21).

diffusion types (Lin et al. 1993a; Lin 1993). The dif-
ference resonant modes (dashed lines) are less active.
The parametric subharmonic instability (PSI) triad can
be constructed by choosing one point along any of the
four long legs of the resonant traces and drawing a
triangle with respect to the chosen mode. This triad
requires that x2, k> > ', where k' = |k'|. The con-
ventional PSI triad is obtained as the chosen point on
the long leg is very far away from the primary chosen
mode. Bispectra show that the interactions with small
scales are extremely weak, suggesting that PSI triad is
not as important as described by McEwan and Rob-
inson (1975), McComas and Bretherton (1977), and
Fredericksen (1984). It is characteristic of the GM79
model spectrum that wavevectors of strong modes have
large inclination angles and the energy of small-scale
modes decreases with increasing wavenumber. As dis-
cussed in Lin et al. (1993a) and Lin (1993), a larger
inclination angle of the primary wavevector (here the
chosen wavevector), smaller white noise amplitude
with increasing wavenumber, and triad configuration
produce weak PSI interactions. So PSI triads are un-
likely to be important in GM79.

The elastic scattering interaction (ES) does not ap-
pear in the present cases because of vertical symmetry.
If the ES interaction occurs, the mode, whose horizon-
tal wavenumber is of the same as the chosen mode and
whose vertical wavenumber is of opposite sign but the
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same size, should be active. As expected, bispectra in-
dicate that this mode is extremely weak and, therefore,
so is the ES interaction.

¢. Phase correlation

Phase correlation is defined as ! + 2 + 53, where
n' is the phase of wave i. For resonant triads, the sign
depends on the resonance type (sum or difference) and
the phase correlation should vary very slowly in time.
This analysis is applied to modes on and off the reso-
nant traces. Figures 4a,b give the phase correlations of
two triads in cases od and or. They are triads 4 and B
in Table 2; both have small | Aw]. The linear resonance
condition requires |Aw| = 0. The phase correlations
of both triads in case or (no mean flow) vary slowly
in time, indicating resonance. The triads in case od are
not resonant because their phase correlations vary rap-
idly. Clearly, the mean flow in case od increases the
nonlinearity of the small scales and allows nonresonant
interactions to dominate.

We also look at the phase correlations of the off-
resonant triads C and D in Table 2. The former is an
induced diffusion (ID) triad with | Aw| =~ 0.044, while
the latter has | Aw| = 0.237 and its phase correlation
should vary rapidly. Figure 5a gives the phase corre-
lations of the ID triad for cases od and or. It fluctuates
with approximate period 1/|Aw| in case or, but in

360 -
b

300 [ ¢

2407 j :

180

120

360

|
i

180
|

[ 10 20 30 40
® t

FIG. 6. Time histories of phase correlations for case or. (a) Resonant
triads with k! = (5, 8) and %2 = solid: (8, 23), dotted: (12, 37). (b)
Off-resonant triad with k' = (5, 8) and £2 = (14, 33).
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F1G. 7. Contours of T;/T,, for case od at t = 10; T;: interaction timescale
and T,: wave period. Contour levels are (a) 1, (b) 10, and (c) 100.

case od the phase correlation is irregular, implying that
nonresonant behavior is significant in case od but not
in case or. Figure 5b gives the phase correlations of the
second triad with a larger | Aw|. As expected, the phase
correlation varies at a higher frequency and is more
regular in case or than in case od.

In section 3b, we used the bispectrum analysis to
demonstrate that PSI triads are weak. The question
arises as to whether or not they are resonant. To clarify
this point, three triads consisting of two long legs and
one short leg (the chosen mode) in case or are analyzed.
They are triads E, F, and G in Table 2. Figure 6a gives
the phase correlatlons of triads £ and Fin case or. For
triad £, k2~ 2.6«'; for triad F, k? ~ 4.1k, where «*

= |k'|. The vanatlon of the phase correlation suggests
that the two triads are resonant. For comparison, the
phase correlation of an off-resonant triad with long legs
k% = 3.8« ! (triad @) is plotted as Fig. 6b, which shows
that it oscillates much faster than those of triads £ and
F, confirming the resonance in triads £ and F. So in

the absence of mean flow the chosen mode resonates
with the small-scale modes, but energy transfer is very
weak.

In summary, the phase correlations of triads involv-
ing strong mean flow but satisfying linear resonant
conditions oscillate rapidly, indicating that the presence
of strong mean currents tend to weaken resonant in-
teractions; this is consistent with bispectrum analysis.
Energy transfer to small-scale modes by parametric
subharmonic instability is very weak regardless of res-
onance.

d. Interaction timescale versus wave period

The ratio of interaction timescale to wave period
has been used by McComas and Bretherton (1977)
and McComas and Miiller (1981) to indicate the ap-
plicability of weak interaction theory to the ocean.
However, Holloway ( 1980) questioned this and found
that their results contradict the weak interaction as-
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FIG. 10. Total energy transfer rates (7%) of slightly off-resonant triads of ID type; ij = 12 (solid),
13 (dashed), and 23 (dotted). Triad wavevectors are k! = (5, 8), k2 = (5, 9) and k3 = (0, —1) for

(a) case od and (b) case or.

sumption. Since, from the previous studies, case od is
dominated by nonresonant interactions while case or
is dominated by resonant interactions, investigating the
timescale ratios of the two cases can shed light on the
significance of this ratio. The contours of the timescale
ratios for cases od and or are shown in Figs. 7 and 8,
respectively. The interaction timescale ( 7;) and wave
period (T,) are defined as

T,= |E/(dE/dD)|,
T,=1/w,

(3.3)
(3.4)

where E and d E/dt are energy and energy transfer rate,
respectively, and w is the wave frequency. Resonant
interactions require that the ratio 7;/ T, be large. Three
contour levels are shown: 1, 10, and 100. Since the
contours look similar all the time, data at t = 10 are
used. For case od, a small ratio occurs at low frequency
and a high ratio is found in the high-frequency region,
implying that wave frequency affects the timescale ra-
tio. The ratio is small over a large portion of the GM79
energy spectrum, especially at high wavenumber and

AT
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(a) ¢

low frequency, suggesting that these modes are unlikely
to interact resonantly.

Since resonant interactions occur in case or, more
modes should have large timescale ratios. Figure 8 gives
the contours of the timescale ratio. Contour level 1
(Fig. 8a) is less likely and contour levels 10 and 100
are more likely compared with case od (Fig. 7), so
resonant interactions are more common. Although the
contour density is qualitatively consistent with the bi-
spectrum analysis, it is hard to say how big the timescale
ratio must be before interactions can be called weakly
resonant. Furthermore, active triads cannot be iden-
tified by the ratios.

e. Energy transfer analysis

In this section, the energy flow pattern is analyzed
in order to compare with single triad analysis (Lin et
al. 1993a) and numerical investigations of multiple
triad interactions excited by a single energetic wave
(Lin 1993). The total energy transfer rate (7), which

5.0E-10

2.5E-10

0.0E+00 Y’ I

L.
.

-2.5E-10

-5.0E-10

-7.5E-10

-1.0E-09

0 10 20 30 40 50 60 70 80

®

FiG. 11. Total energy transfer rates (7) of off-resonant triads; §j = 12 (solid), 13 (dashed), and
23 (dotted). Triad wavevectors are k= (5, 8), 2= (3,21)and k3= (2, —13) for (a) case or and

(b) case od.
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F1G. 12. Time average bispectra from ¢ = 0.1 to 10 for case oe with different contour levels. The
chosen wavenumber is (10, 17): (a) high contour level and (b)
than that of (a)].
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FIG. 13. Time average bispectra from ¢ = 0.1 to 10 for Case yd
with & equal to (a) (5, 8); (b) (10, 17); (c) (3, 14).
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F1G. 14. Time average bispectra from 7 = 0.1 to 10 for case yr
with & equal to (a) (5, 8), (b) (10, 17), and (c) (3, 14).

is defined as rate of total energy transfer from wave i
to wave J, is analyzed. The analyzed triad has ki= (5,
8), k2 = (3, 14), and k> = (2, —6) (triad B in Table
2, approximately satisfying linear resonance condi-
tions). Figures 9a,b are time histories of the total energy
transfer rates for cases od and or, respectively. The
energy transfer in the two cases seems to be different,
but a particular pattern can be found in the two cases.
Energy is taken from mode k! by mode %2, then  trans-
ferred to mode k>, and finally back to mode k!, or
vice versa; it is cyclic. The energy transfer pattern is as
predicted by the analysis of a resonant interaction coef-
ficient, which depends solely on the triad structure (Lin
et al. 1993a) and is similar to the energy transfer in

" the multiple triad interactions (Lin 1993). The dy-
namic similarities between cases with strong and weak
nonlinearity and with different initial spectra [GM79
and a single energetic mode with white noise in Lin
(1993)] suggest that triad configuration is the principal
determinant of energy transfer pattern.

The total energy transfer rates of two other triads in
cases od and or are analyzed. One is triad C in table
2, which is of induced diffusion (ID) type and slightly
off-resonant. The other is triad D in Table 2, which
does not satisfy linear resonance conditions and has a
large |Aw|. The total energy transfer rates of the ID
triad in cases od and or are shown in Figs._10a,b,
respectively. The interactions between modes k! and

2 which have about the same length scales, are much
stronger than the interactions with the mean flow
(mode k?), consistent with the single and multiple
triad interaction results (Lin et al. 1993a; Lin 1993).
Furthermore, the interactions in case od are about 100
times stronger than in case or, indicating that induced
diffusion is enhanced by the presence of a mean flow.

In this energy transfer mechanism, the mean flow does
not gain or lose much energy from the other modes,
but its strength determines the rates of energy transfer
between the two small-scale modes. For the off-reso-
nant triad D in case or, the energy transfer behaves as
expected; energy is transferred back and forth among
modes but there is no long time average energy transfer
(Fig. 11a). In case od, the pattern is not clear due to
strong nonlinearity (Fig. 11b). This suggests that, in
the absence of mean flow, resonant interactions dom-
inate; however, in general, mean flow increases the
nonlinearity of the small scales, invalidating weak in-
teraction theory.

f. Effect of reduced energy level

Holloway (1980) argued that oceanic waves are
about 100 times too strong to be treated as weak waves.
In case oe (Table 1), the energy level is reduced by a
factor of 100 to see whether resonance occurs. Figures
12a,b show bispectra for chosen mode k = (10, 17),
which is a typical mode representative of the other
modes. The contour level in Fig. 12a is 30 times the
level in Fig. 12b to show strongly interacting modes.
Figure 12a shows that the strongly interacting modes
have the same horizontal wavenumber as the chosen
mode, indicating dominance of wave-mean flow in-
teractions. These interacting modes become stronger
as they are close to the primary mode. Thus, triads of
induced diffusion type have the strongest interaction.
However, they are not resonant. When the contour
levels are reduced by a factor of ~30, modes on the
linear resonant traces appear, indicating that resonant
interactions exist but are weak. Triads of the parametric
subharmonic instability type are not found; their role
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FiG. 15. Time average bispectra from ¢ = 0.1 to 10 with k= (1,
4) for case (a) yd, (b) yr, and (c) ye. The horizontal axis is increased
by a factor of 2 to enhance visualization.

in the oceanic energy distribution may have been over-
emphasized by McEwan and Robinson (1975) and
McComas and Bretherton (1977). Overall, as the total
energy level of GM79 is reduced, more resonant in-
teractions occur but nonresonant interactions remain
active at high wavenumber. The vertical wavelength
of the chosen mode % = (10, 17) corresponds to about
70 m and resonant interactions are weak at this scale.

g. Fine grid test

In the cases above, the number of large-scale modes
is limited. In this section, stretching factors are em-
ployed to increase the number of small wavenumber
modes; the horizontal (8,) and vertical ( 8,) stretching
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factors are 1/4 and 1/;. Cases yd, yr, and ye (Table 1)
correspond to the unstretched cases od, or, and oe,
respectively. Wave amplitudes with k; = 0 are set to
zero in case yr, leaving only about 30% of the original
total energy. In case ye, the energy level is reduced by
a factor of 100.

Bispectra for cases yd and yr are shown in Figs. 13
and 14, respectively, for chosen modes & = (5, 8), (10,
17), and (3, 14). In case yd the strongly interacting
modes do not match the resonant traces, and wave—
mean flow interactions dominate. In case yr, interac-
tions with chosen modes k = (5, 8) and (3, 14) are
resonant but interactions with small scales, like

= (10, 17), are dominated by wave-mean flow in-
teractions; this differs from case or (Fig. 3¢) and occurs
because the increased number of large-scale modes in-
creases the nonlinearity of the small-scale modes. The
bispectra of the three chosen modes for case ye are
similar to those of case yr, indicating that resonance
is unlikely to occur at small-scale modes. It is expected
that if more large-scale modes are included, resonant
interactions between large and small scales are even
more unlikely.

We also examined the bispectrum of a large-scale
mode % = (1, 4), whose vertical wavelength is about
300 m. Its bispectra for cases yd, yr, and ye are given
in Figs. 15a—c. The horizontal axis has been stretched
by a factor of 2 to enhance visualization. The inter-
actions are local and there is no sign of parametric
subharmonic instability. The active modes are mainly
of local sum resonance type (solid lines) but there are
a few local difference resonant modes (dashed lines).
Thus large scale modes (in the present cases, vertical
wavelength about 300 m) can be resonant, even for
case yd in which GM79 is used without modification,
qualitatively consistent with Holloway’s proposal
(1983). Recall the bispectrum for k= (5, 8) (case yd,
Fig. 13a), in which nonresonant wave-mean flow in-
teractions dominate. Its vertical wavelength is 150 m,
half that of mode k = (1, 4). So modes with vertical
wavelength between 150 and 300 m can transfer energy
via both resonant and nonresonant interactions.

360

300

240

180 \\

120

60

0 5 10 15 20

FIG. 16. Time histories of phase correlations for case yd
with &' = (1, 4) and %2 equal to solid: (0.5, 7), and dashed: (0.5, 9).
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Since the nature of the resonance in case yd (Fig.
15a) is not as clear as in the other cases, two triads are
chosen for phase correlation analysis: one is resonant
triad H (Table 2) and the other is slightly off-resonant
triad /. Figure 16 gives the phase correlations. The first
triad has slowly varying phase correlation, implying
resonance. In the second triad, the phase correlation
varies at approximate frequency 1/|Aw|. This is con-
sistent with the bispectrum analysis and indicates that
local sum resonant interactions are active for large
scales in GM79.

4. Discussion

Three issues are addressed in this work. The first is
to determine the dominant resonant triads in a model
ocean. The second is to discover the energy transfer
mechanism when resonant interactions are not strong.
The third is to explore the role of triad configuration
in energy transfer pattern. These issues were studied
by using direct numerical simulations and a Garrett-
Munk initial spectrum. The tools used to identify res-
onant interactions include bispectrum analysis and
phase correlation. When the distribution of strongly
interacting modes matches the linear resonant traces,
resonant interactions are active. As further confirma-
tion of the existence of resonance, the phase correlation
of a resonant triad should be a weak function of time.

It was found that resonant interactions occur at small
wavenumbers (corresponding to vertical wavelength
greater than 150 m in GM79); the dominant resonant
interactions are of local sum type. Parametric subhar-
monic instability triads do not play a significant role
due to small interaction coefficients, decreasing energy
level with increasing wavenumber and the large incli-
nation angles of the strong modes. Resonance is limited
to very large scales [qualitatively consistent with Hol-
loway’s (1983) proposal]. Most of the GM79 model
spectrum is governed by wave-mean flow interactions,
among which the triad of the induced diffusion type is
most effective. The high wavenumber modes are weak
enough for resonance, but the strong mean current in-
creases nonlinearity and resonance is destroyed. The
similarity of energy transfer patterns in weak and strong
interactions and in different energy spectra suggests that
triad configuration almost alone governs the energy
flow pattern within a triad. Reducing the energy level
by a factor of 100 is not enough to make the very small
scales resonant. Finally, we conclude that resonant in-
teractions exist, but do not dominate in the GM79
model spectrum.

In summary, we verified and found numerically the
following.

e At very large scale modes, resonant interactions
occur. Triads of local sum resonance type are active
while interactions with very small scale modes (PSI
triads) are weak. So PSI triads seem to be unimportant
in GM79.
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e At intermediate and small-scale waves, wave—
mean flow interactions dominate. Among them, in-
duced diffusion interaction is the strongest.

e The similarity of energy flow pattern between
nonresonant and resonant triads suggests that triad
configuration determines the characteristics of energy
transfer.
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APPENDIX A
Features of Garrett—-Munk Spectrum

The Garrett-Munk oceanic energy spectrum de-
scribed in Munk (1981, referred to as GM79) is used
as the initial conditions. The GM spectrum is presented
in frequency and vertical wavenumber space and is
based upon an exponentially stratified ocean. The nor-
malization factors are the reference buoyancy fre-
quency (Np = 5.2 X 1073 s 1) and the e-folding length
scale [» = 1.3 km is the depth at which N = Nye™!;
Garrett and Munk (1972)]. In GM79, the energy con-
tribution of the vertical fluctuating velocity is set to
zero so the hydrostatic approximation is applicable.
Moreover, if the Coriolis frequency (f) equals zero,
the kinetic and potential energy are equipartitioned.
GM?79 gives the following expression:

E(w,j) = B(w)H(j)Eo (A1)
2 f

Bl = q =" A2

2 241

H(j) = L 1T0) (A3)
DETEE SN
j=1

where f=73X10"°s™!, E; = 6.3 X 107° and
N
ff B(w)dw =1 (A4)
X H)=1, ju«=3; (A5)

j=1

j is the index of the vertical wavenumber as will be
explained later: B(w) and H(j) are to fit observed
properties of oceanic energy spectrum, and B(w) is
chosen to fit the moored spectra in the ocean and allows
for the peak at the inertial frequency [Eq. (A2) is sin-
gular at w = f]. Most of the energy resides in the large
vertical scale modes due to the function H(j) [Eq.
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(A3)]. For example, if j, in Eq. (A3) is set to 3, more
than half of the energy is contained in modes with j
< 3. The relation between j and the vertical wavenum-
ber (k;) is (Munk 1981)
NZ _ w2 1/2 N
N% — wz) = jm ]—\}—0 s

ifN>w>f, (A6)

where k»b is the normalized vertical wavenumber.
Since the hydrostatic approximation is invoked, the
wavenumber restriction 0 < k; < k;(1 — f?/N?)/%is
imposed.

kzb :jW(

APPENDIX B
Implementation

For the presént purpose, the spectrum has to be
transformed to the wavenumber space and the disper-
sion relation under the hydrodynamic approximation

2 2 ki : 2
w*=N|—] +f
ks
is invoked. Since a constant buoyancy frequency is
used, the relation between j and the vertical wavenum-
ber [Eq. (A6)] is reduced to k, = jx (note that k; de-
notes the normalized vertical wavenumber, hereafter).
Thus, the transformation relation (Garrett and Munk
1975) 1s
d N\ k
E(ki, k) = E(w, ky) 5= = E(w, kp)[ ) = . (B2)
dkz kz w

In the above relation, the normalized &, is used instead
of j; therefore, H(j) [Eq. (A3)] is rearranged to be

(k3 + k3,)!

H(kz) = = . (B3)
Z (k3+ k)™
ky=m
After transformation, GM79 becomes
2 Nfk
ki, k) = By > =2 Hi(ky).  (B4)

x N2 + 203
We should be aware that the above formula is contin-
uous in k; and discrete in k,, so

2 E(ki, ky)dk;.

k1=0 ky=m

As we see, GM79 is continuous in k; and singular
at frequency f [Eq. (A2)] so that E approaches a very
large value as k; goes to zero, indicating that the total
energy level would be much greater than E, if GM79
expression [Eq. (B4)] is applied to a discrete k; system,
like the present simulation. The resolution for this
problem is to integrate Eq. (B4) in k, from k; = k,to
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ki = k. and use the energy spectrum obtained, which
is

Sl

- arctan(Nk“)] . (B6)
Jka ]}

Since the wavenumber is integer, for an unstretched
case, (k; — 0.5) and (k; + 0.5) are chosen for k; and
ki, respectively, and E(ki;: ki, k) is used to represent
energy at the wavenumber (k,, k,) in a discrete wave-
number system. At k; = 0, ks = 0 and k. = 0.5 are
used instead. By this way, the total energy level remains
unchanged; that is,

Nk,
E(kis: ke, ko) = Ey -;2; H(kz)[arctan( ! )

Ey= 2 2 E(kis: ki, k).

k=0 ka=1

(B7)

After normalization, the parameters become as fol-
lows:

N=1, f=1404X 1072 E,=2487 X 1073,

Since Munk (1981) stated that E, is universal and is
within a factor of 2, an E,, which is one-half of the
original (1.2435 X 1073), is used to keep the energy
level as low as possible. Those modes that do not satisfy
the wavenumber restriction 0 < k; < k(1 — f2/N?)!/?
are assigned a very small energy level (107!2).
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