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ABSTRACT

Resonant wave–wave interaction processes are studied with the nonlinear dispersion relationship for shallow
water. The formulation was derived based on a Hamiltonian representation first reported by Zakharov. Results
show that four waves are needed for resonant interactions at all depths. Furthermore, when the nonlinear dispersion
relationship for waves in intermediate water is considered, two interaction modes can result depending on the
water depth and the nonlinearity: (i) in deep water the classic Phillips interactions dominate, involving four
waves of comparable wavelengths, whereas (ii) in shallow water the dominant interactions still consist of four
waves, but with one component of vanishingly small wavenumber. As an approximate asymptotic limit, the
latter become triadic shoaling wave interactions.

1. Introduction

The seminal paper by Phillips (1960) on weak non-
linear wave–wave interactions can rightfully be re-
garded as the beginning of modern water wave theory.
In contrast to strong nonlinear waves where harmonic
distortions dominate, weak wave–wave interactions
involve slow, albeit persistent, energy exchanges
among four interacting free wave components. Al-
though the interaction process conserves energy, Phil-
lips suggested correctly that the effects of these slow
weak interactions, integrated through time, could
drastically alter the sea state. Phillips’s idea was con-
firmed and extended by Hasselmann (1962), who for-
mulated the weak wave–wave interactions in terms of
a wave spectrum. At first glance, it might seem par-
adoxical that a conservative wave–wave interaction
process can play a dominating role in the wind wave
generation and evolution process. The explanation,
however, is simple: The key effect of the weak non-
linear wave–wave interactions is to cause the peak
frequency of the spectrum to downshift. As the peak
frequency downshifts, the waves become longer. The
lengthening of the waves is a necessary condition for
wave energy to grow. Otherwise, the waves will be
too steep to be stable. Hasselmann’s classic formu-
lation correctly modeled this frequency downshift
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process. As a result, this formulation was the foun-
dation for understanding wind wave generation and
evolution processes for the last three decades.

With the introduction of weakly nonlinear wave–
wave interactions, wave forecast methodologies have
become much more sophisticated and mature. Some of
the models (WAM, for example) have even been suc-
cessfully implemented as operational tools. The success
of this implementation can be attributed to the practical
application of Hasselmann’s formulation, as reviewed
recently by Young and Van Vledder (1993) and Komen
et al. (1994).

Successful as modern wave models are, there are
some unsettling problems concerning the way in which
weak nonlinear interactions are implemented. The dif-
ficulties are both theoretical and practical. On the the-
oretical side, we can list three difficulties. First, though
the weak nonlinear wave–wave interactions are third-
order events, the resonance condition is based on the
linear dispersion relationship. The effects of third-order
amplitude dispersion have been studied by McLean et
al. (1981) and McLean (1982a, b) These studies show
that there are, indeed, small but definite finite amplitude
effects even in deep water waves. However, using the
linear dispersion relation for a third-order wave–wave
interaction study is an inconsistency. Even if the effects
in deep water are small, whether they are also small in
water of finite depth has never been explored thor-
oughly.

Second, though the weak nonlinear wave–wave in-
teractions are shown to be among four free waves, Fre-
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lich and Guza (1984) found that the resonance condi-
tions can also be satisfied by interactions of three free
waves in shoaling waters where waves are no longer
dispersive. If this were indeed true, what should be the
crossover depth between the four-wave interactions and
the three-wave interactions?

Finally, nonlinear wave–wave interactions as for-
mulated by Hasselmann are based on the resonant in-
teraction mechanism proposed by Phillips (1960). Al-
though the Phillips-type resonant interactions are the
most important ones for small amplitude waves, Mc-
Lean et al. (1981) and McLean (1982a,b) have shown
that as wave amplitude increases, there are two distinct
types of interactions. The Phillips mechanism is pre-
dominately two-dimensional, while the other is predom-
inately three-dimensional. Three-dimensional interac-
tions lead to three-dimensional instabilities, which could
cause energy spreading in directions other than the main
wave propagation direction. Three-dimensional insta-
bility has indeed been observed by Su et al. (1982) and
Su and Green (1984). However, no application has ever
been made of this relatively recent discovery in wave
modeling.

On the practical side, there are also many difficulties.
Though weak nonlinear wave–wave interactions, as for-
mulated by Hasselmann (1962), have been applied to
wave modeling successfully, other alternatives have not
been explored at all. The Hasselmann formulation was
obtained through straightforward perturbation analysis
up to the fifth order. Straightforward as the perturbation
method is, there is no guarantee that the answer obtained
will indeed converge accurately. Furthermore, it is well
known (see, e.g., Kevorkian and Cole 1981) that for the
study of weakly nonlinear oscillations, the two-time ex-
pansion method can offer a more accurate answer. The
two-time expansion scheme and a Hamiltonian repre-
sentation has been tried by Zakharov (1968, 1991) and
Crawford et al. (1980) to obtain the nonlinear energy
transfer. The result is much simpler than the Hasselmann
formulation, for it is in terms of energy already. The-
oretically, Hasselmann’s and Zakharov’s results are
identical, as shown by Dyachenko and Lvov (1997) re-
cently. However, being simpler algebraically, Zakhar-
ov’s formulation should be computationally less time
consuming. Furthermore, the Zakharov equation ex-
tends the results to a larger range of wave steepness, as
shown by Crawford et al. (1981).

The computation time involved in evaluating the
nonlinear wave–wave interactions is the real practical
obstacle in any implementation. Although Hassel-
mann’s formulation has been evaluated exactly by
Hasselmann and Hasselmann (1985), the computer
time required renders it impractical for anything other
than pure research. Moreover, excluding the nonlinear
source term will deprive the model of an important
physical mechanism. Faced with this dilemma, vari-
ous approximations have been introduced in wave
models, as discussed by Young and Van Vledder

(1993). However, on closer examination, we suggest
that the present approximate solutions do not make
physical sense; while the algorithms making physical
sense are not practical. We will present a solution to
alleviate this impasse in this study and the accom-
panying paper by Lin and Perrie (1997).

In this paper, we will concentrate on the theoretical
side of the problem. Section 2 presents the derivation
of the nonlinear dispersion relation for finite depth.
Section 3 presents the nonlinear energy transfer rate
for finite depth with nonlinear dispersion. Section 4
discusses the effect of nonlinear dispersion on the
resonant trajectory and the energy transfer rate. The
problem of evaluating the predominately three-di-
mensional interactions will be discussed in a separate
paper. The practical aspect of implementing the non-
linear wave–wave interaction mechanism as a source
function in wave modeling is presented in Lin and
Perrie (1997).

2. Nonlinear dispersion

To solve the n-order resonant interaction problem
consistently, we have to use the n-order dispersion
relationship, in which the relationship between wave
frequency and wavenumber should also be wave am-
plitude and water depth dependent (see, e.g., Whitham
1974).

a. Basic equations

The basic equation and boundary conditions for a
potential incompressible flow are the following:

1) CONTINUITY EQUATION

2] F
2¹ F 1 5 0, for 2h # Z # h, (1)H 2]Z

where

] ]
= 5 i 1 j .H ]x ]y

2) BOUNDARY CONDITIONS

A. At the free surface: Z 5 h
a. Kinematics:

]h ]F
1 = F · = h 5 , (2)H H]t ]Z

b. Dynamics:

2
]F 1 1 ]F

21 (= F) 1 1 gh 5 0. (3)H 1 2]t 2 2 ]Z

B. At the bottom:
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]F
1 = h · = F 5 0. (4)H H]Z

In the above equations t, H, h, g, h, and F are time,
the horizontal coordinate, the depth of the ocean, the
gravitational acceleration, the free surface elevation, and
the potential function.

We define v as the frequency, and expanding all func-
tions as power series in e, which is a small parameter,
we obtain

2 . . .F 5 eF 1 e F 11 2

2 . . .h 5 eh 1 e h 11 2

2 . . .v 5 ev 1 e v 1 (5)1 2

This leads to a series of systems of equations, at each
order in the expansion.

b. Linear analysis: First order

Substituting the perturbation expansions in Eq. (5),
the linear terms in Eqs. (2) and (3) imply

2] F ]F1 11 g 5 0. (6a)
2]t ]Z

The solution to Eq. (6a) and corresponding lineari-
zations of Eqs. (1)–(4) is

F 5 A exp{i(vt 1 K·r)}cosh 3zK z(Z 1 h)41 1

h 5 a exp{i(vt 1 K·r)}, (6b)1

where K is the wavenumber, and K 5 zKz

iag
A 5 ,1 v coshKh

and a is the wave amplitude.
Substituting (6b) into (6a), we obtain the linear dis-

persion relationship

5 gK tanh(Kh).2v1 (7)

c. Nonlinear analysis

1) SECOND ORDER

The second order in the perturbation expansions of
Eqs. (2) and (3) at z 5 h gives

]h2 1 = F ·= h 5 0, (8)H 1 H 1]t

]F 12 21 (= F ) 1 gh 5 0. (9)H 1 2]t 2

Combining Eqs. (8) and ](9)/]t and substituting Eq. (6),
we obtain

2] F2 2 2 25 i2vK A cosh Kh exp{i2(vt 1 K·r)}; (10)12]t

which implies that h2 and F2 assume the form

h 5 a exp{i2(vt 1 K·r)}2 2

F 5 A cosh2Kh exp{i2(vt 1 K·r)}, (11)2 2

and furthermore, we have

23 1 tanh Kh 3aK
2a 5 a K , A 5 A . (12a)2 2 13 34 tanh Kh 8 sinh Kh

The second-order nonlinear dispersion term v2 is equal
to zero. Given Eq. (12a), the obvious choice for the
expansion coefficient e is the ratio of a2 and a:

2a 3 1 tanh Kh2e 5 5 aK . (12b)
3a 4 tanh Kh

The small parameter « has to be smaller than a certain
critical value in order for small perturbative theory to
be valid with reasonable accuracy. We call this critical
value the upper limit of the nonlinearity, g 5 «. For
deep water, g is simply the critical wave slope. Ac-
cording to Crawford et al. (1981), an approximation to
the nonlinear action transfer can still be considered re-
liable so long as its discrepancy with respect to the true
nonlinear action transfer is less than 10%. As a measure
of the accuracy of the approximation, we can examine
the dimensionless perturbation wavenumber for the
most unstable mode. Crawford et al. (1981) showed that
for deep water, the discrepancy is 10% between the
numerical results obtained from the exact water wave
equations by Longuet-Higgins (1978) and (i) the ap-
proximation of Zakharov (1968) when g reaches 0.3,
whereas (ii) for the approximation of Hasselmann
(1962), g need only reach 0.06. Therefore, we can trust
the results derived here up to g 5 0.3. Crawford et al.
(1981) also showed the trend toward destabilization of
the entire system for sufficiently large g (at about g 5
0.5). This instability feature qualitatively agrees with
the numerical results obtained by Longuet-Higgins
(1978).

2) HIGH ORDER

Rearranging Eqs. (2) and (3) at z 5 h, we have

]hn 1 = F ·= h 1 · · · 1 = F ·= h 5 0, (13)H n21 H 1 H 1 H n21]t

]F 1n 1 (= F ·= F 1 · · · 1 = F ·= F )H n21 H 1 H 1 H n21]t 2

1 gh 5 0. (14)n

where n 5 3,4,5, ··· . In order to obtain the nonlinear
dispersion term, we may assume the free surface ele-
vation has the following form:
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F 5 A coshnKh[exp{in(vt 1 K·r)}n n

2 exp{2in(vt 1 K·r)}]

h 5 a [exp{in(vt 1 K·r)}n n

2 exp{2in(vt 1 K·r)}], (15a)

and substitute Eqs. (6b), (7), (11), (12a), and (15a) into
Eqs. (13) and (14) at z 5 h. After some algebra, we
finally obtain the expression:

2 49 2 10 tanh Kh 1 9 tanh Kh
2 2v 5 v K a ,3 1 41 28 tanh Kh

v 5 0. (15b)4

A similar expression was obtained by Whitham (1974).
When the water depth becomes large, Eq. (15b) reduces
to the deep water Stokes expression exactly.

3. Nonlinear energy transfer rate

As mentioned in the introduction, Hasselmann (1962)
obtained the nonlinear energy transfer rate for finite
depth by using the perturbation method. Zakharov
(1968, 1991) obtained the nonlinear energy transfer rate
for deep water by using the Hamiltonian representation.
Both methods only considered linear dispersion. Be-
cause the second method is simpler in algebra and there-
fore less time consuming (orders of magnitude less) in
computation, we decided to adopt Zakharov’s approach.
We will extend the analysis to finite depth of water. In
the derivation, we also include the nonlinear dispersion
relationship.

Following Zakharov, we define

c 5 F z(r,t) (r,z,t) z5h

]c ]F ]h ]F
5 1 . (16))]t ]t ]t ]z

z5h

We assume Kho to be constant in one wavelength and
«2ho . dh. Then from Eq. (7), we will have v1 as a
function only of wavenumber K and water depth h. If
we also limit the wave amplitude aho, as a constant in

one wavelength, then from the Eq. (15b), we will also
have vn as a function of K and h. Consequently, to third-
order approximation, the frequency should also be trun-
cated at third order. With these general assumptions we
are able to make the Fourier representation:

` 1/21 zK tanhKh z
h 5 [b exp{i(K·r)} 1 b*(r,t) (K,t) (K,t)E 1/2v2pÏ2 (K)2`

3 exp{2i(K·r)}] dK;
(17a)

` 1/2i v(K)c 5 2 [b exp{i(K·r)}2 b*(r,t) (K,t) (K,t)E 1/2zK tanhKhz2pÏ2 2`

3 exp{2i(K·r)}] dK.
(17b)

Following Zakharov (1968) and Yuen and Lake
(1982), we define a complex variable,

1/2 1/2
v zK z

b(K, t) 5 ĥ(K, t) 1 i F(K, t),1 2 1 22zK z 2v

where and are the Fourier coefficients of K for h(r,ˆĥ F
t) and (r, z 5 h, t), We also define b(K, t) 5 [« BK,F̂
t) 1 «2 B9 (K, t)] exp(—iwt). Instead of dividing the
slow motion and fast motion, we use the solvability
condition and adjoint operator, maping the n-dimen-
sional system into an n 2 1 dimensional system in order
to obtain the resonant modes.

a. Second order

Recalling Eqs. (1), (4), (8), and (9),
2] F22¹ F 1 5 0, for 2h # Z # hH 2 2]Z

]F2 1 = h·= F 5 0, for Z 5 2hH H 2]Z

]h2 1 = F ·= h 5 0, at Z 5 hH 1 H 1]t

]F 12 21 (= F ) 1 gh , at Z 5 h. (18)H 1 2]t 2

We apply Fourier transform and introduce the two-time scales into Eq. (18):

`]B9(K,t) (2)i 5 [V B B d(K 2 K 2 K )exp{i(v 2 v 2 v )t}EE (K,K ,K ) (K ) (K ) 1 2 (k) (k ) (k )1 2 1 2 1 2]t
2`

(2)1 2V B B* d(K 2 K 1 K )exp{i(v 1 v 2 v )t}(K ,K,K ) (K ) (K ) 1 2 (K) (K ) (K )1 2 1 2 1 2

(1)1 V B* B* d(K 1 K 1 K )exp{i(v 1 v 1 v )t}] dK dK . (19)(K,K ,K ) (K ) (K ) 1 2 (K) (K ) (K ) 1 21 2 1 2 1 2



SEPTEMBER 1997 1817L I N A N D P E R R I E

Since and are not functions of t9, we can obtain B9(K,t) by integrating Eq. (19) with respect to t:B B(K ) (K )1 2

` exp{i(v 2 v 2 v )t}(K) (K ) (K )1 2(2)B9 5 V B B d(K 2 K 2 K )(K,t) EE (K,K ,K ) (K ) (K ) 1 21 2 1 2[ v 2 v 2 v(K) (K ) (K )2` 1 2

exp{i(v 1 v 2 v )t}(K) (K ) (K )1 2(2)1 2V B B* d(K 2 K 1 K )(K ,K,K ) (K ) (K ) 1 21 2 1 2 v 1 v 2 v(K) (K ) (K )1 2

exp{i(v 1 v 1 v )t}(K) (K ) (K )1 2(1)1 V B* B* d(K 1 K 1 K ) dK dK , (20)(K,K ,K ) (K ) (K ) 1 2 1 21 2 1 2 ]v 1 v 1 v(K) (K ) (K )1 2

where V(2) and V(1) are functions of wave amplitude,
wavenumber, and water depth. The detailed form of the
coefficients V(2), V(1) is given in the appendix. These
results are slightly different from those given by Zak-
harov (1968) and Crawford et al. (1980) because of the
finite depth assumption and the nonlinear dispersion re-
lationship.

b. Third order

We must apply the following solvability condition:

F* F F F*
xL 2 xL* 5 0, (21)1 2 1 2 1 2 1 27 8h* h h h*

to eliminate the divergent term, where
2¹ 0

2]/]Z ]/]t
L 5 (22a)

]/]t gh1 2
]/]Z 0

and

2¹ 0
2]/]Z 2]/]t

L* 5 . (22b)
2]/]t gh1 2
]/]Z 0

The solvability condition in this case is therefore

(1) (1)]F ]h
F*, 1 h*,7 8 7 8]t ]t

(2) (1)]F ]F
(2) (1)5 F*, 2(= F )·(= F ) 2H H 1 21 2[ ]7 8]Z ]Z

(2) (1) (1) (2)1 ^h*, [2= F ·= h 2 = F )·= h ]&.H H H H

(23)

Once more, we apply the Fourier transform of Eqs. (17a)
and (17b), introduce the two-time scales into Eq. (23)
and obtain

`]B (K,t) (2)i 5 2 [V (B B9 1 B B9* )d(K 2 K 2 K )exp{i(v 2 v 2 v )t}EE (K,K ,K ) (K ) (K ) (K ) (K ) 1 2 (K) (K ) (K )1 2 1 2 2 1 1 2]t
2`

(2)1 2V (B B9* 1 B B9* )d(K 2 K 1 K )exp{i(v 1 v 2 v )t}(K ,K,K ) (K ) (K ) (K ) (K ) 1 2 (K) (K ) (K )1 2 1 2 2 1 1 2

(1)1 V (B* B9* 1 B* B9* )d(K 1 K 1 K )exp{i(v 1 v 1 v )t}] dK dK(K,K ,K ) (K ) (K ) (K ) (K ) 1 2 (K) (K ) (K ) 1 21 2 1 2 2 1 1 2

`

1 W B* B B d(K 1 K 2 K 2 K )EEE (K,K ,K ,K ) (K ) (K ) (K ) 1 2 31 2 3 1 2 3

2`

3 exp{i(v 1 v 2 v 2 v )t} dK dK dK ,(K) (K ) (K ) (K ) 1 2 31 2 3
(24)

where W is a function of amplitude, wavenumber, and water depth. The detailed form of the coefficients W is
given in the appendix. Their forms are also slightly different from those given by Zakharov (1968) and Crawford
et al. (1980) because of the finite-depth assumption and the nonlinear dispersion relationship, v 5 «v1 1 «3v3

1 «5 v5 1 ··· .
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By substituting Eq. (20) into Eq. (24), we will obtain the Zakharov equation to third order for B,

`]B
i T B*B B d(K 1 K 2 K 2 K )exp{i[v 1 v 2 v 2 v ]t} dK dK dK . (25)EEE o,1,2,3 1 2 3 1 2 3 (K) (K ) (K ) (K ) 1 2 31 2 3]t

2`

The detailed form of the function T is given in the appendix. Following Crawford et al. (1980), the spectral action
transfer rate for a homogeneous wave field is given by

`]AC (K )i 25 4p T d(K 1 K 2 K 2 K )d[v 1 v 2 v 2 v ]EEE i,1,2,3 i 1 2 3 (K) (K ) (K ) (K )1 2 3]t
2`

3 {AC AC [AC 1 AC ] 2 AC AC [AC 1 AC ]} dK dK dK , (26)(K ) (K ) (K ) (K ) (K ) (K ) (K ) (K ) 1 2 33 2 1 i 1 i 3 2

where AC is the action density, AC 5 ^|BK|2& 1
(Zakharov 1991). This is comparable to Crawford2^|B9 | &K

et al. (1980).

4. The effects of finite water depth and nonlinear
dispersion

We now apply the theoretical results of the previous
section to study the effects of finite water depth and
nonlinear dispersion in determining the resonant trajec-
tory and nonlinear energy transfer rate. We take the
standard Joint North Sea Wave Project (JONSWAP) di-
rectional spectrum as our initial energy spectrum. This
is shown in Fig. 1, in terms of frequency and direction,
where lines A, B, . . . , G represent angles 08, 308, . . . ,
1808 08 is pointing to the east, which is the main wave
propagation direction.

Before proceeding further, we demonstrate that the ex-
pressions for the wave energy transfer rate derived for
finite water depth really agree with those derived by Zak-
harov (1968, 1991) for deep water. Using the spectrum of
Fig. 1, the nonlinear wave–wave interaction transfer rate
was computed by using the expression of Zakharov (1968,
1991) and by Eq. (26) with depth set at 1000 m. To be
consistent, only the linear dispersion relationship was used
for both Zakharov’s and our formulations. The results are
identical, as presented in Fig. 2. The lines A, B, . . . , G
represent angle 08, 308, . . . , 1808 as in Fig. 1.

a. The effects on resonance conditions

Phillips (1960) pointed out that narrowband instability
dominates in deep water. Our results basically support this
conclusion even with the nonlinear dispersion relationship
and the effects of finite water depth. There are, however,
certain unexpected effects due to the nonlinearity in com-
bination with the finite depth of the water.

Assuming the linear dispersion relation, the diagram by
Phillips (1960) for the trajectory of the wavenumbers sat-
isfying the resonance condition for third-order binary in-
teractions in deep water, is shown in Fig. 3. Here, wave-
number one, K1, and wavenumber two, K2, are both set
to 1, and both are propagating in the x direction. The
horizontal and vertical coordinates represent the x and y
components of wavenumber three (Kx3, Ky3), respectively.
Figures 3b and 3c are the same as Fig. 3a except that they
are for intermediate water (Kho 5 0.5) and shallow water
(Kho 5 0.1), which are also described by Phillips (1960).
Figures 3a–c show that the y component of the third in-
teracting wavenumber decreases as the water depth de-
creases. Consequently, K3 tends to become more parallel
to K1 and K2 when the water becomes shallower.

Figures 4 and 5 are the same as Fig. 3 except that
the dispersion relation is nonlinear. As the effects of
nonlinear dispersion are most pronounced in combi-
nation with a shallow depth, we concentrate our ex-
amination on very small nonlinearity. For the same
depth range as in Fig. 3, Fig. 4 represents weak non-
linearity with aK 5 0.01, whereas Fig. 5 represents
strong nonlinearity with aK 5 0.03.

The resonant trajectory in Fig. 4a is similar to that in
Fig. 3a and assuming Kh 5 1.0, g 5 0.013, and v3 5
0.86 3 1024 v1, where g is the expansion coefficient de-
fined in Eq. (12b) and v1 and v3 are related through Eq.
(15b). Moreover, with Kh 5 0.5, g 5 0.022, and v3 5
0.25 3 1023 v1, the resultant resonant trajectory is slightly
narrower in the y direction than the linear dispersion case,
as shown in Fig. 4b, as compared to Fig. 3b. In contrast
to this, when we assume Kh 5 0.1, g 5 0.3, and v3 5
0.5 3 1022 v1, the resonant trajectory is almost nonexistant
except for a few solutions. This is shown in Fig. 4c and
differs significantly from Fig. 3c.

In the strong nonlinearity case, assuming Kho 5 1.0,
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FIG. 1. The reference JONSWAP gravity wave spectrum with Hasselmann–Mistsuyasu directional speading, where
lines A, B, C, . . . , G represent the angle 08, 308, 608, . . . , 1808, with 08 toward the east.

g 5 0.039, and v3 5 0.78 3 1023 v1, the resultant
trajectory, as shown in Fig. 5a, is similar to the linear
dispersion case of Fig. 3a. Moreover, assuming Kho 5
0.5, g 5 0.065, and v3 5 0.21 3 1022v1, the trajectory
in Fig. 5b appears only slightly different from that in
Fig. 3b. However, in contrast to this, when Kho 5 0.1,
g 5 0.3, and v3 5 0.045v1 as in Fig. 5c, there are no
solutions satisfying the resonance conditions of Fig. 3c.

Figure 6 shows the different domains of the nonlinear
wave–wave interactions, as functions of the water depth
and the nonlinearity, as measured by the wave slope. A
solid line separates the figure into two parts. The Phillips
mechanics (the nonlinear wave–wave resonant inter-
action involving four gravity waves) dominates in the
upper area, where the water is deep and the wave slope
is small. However, over the lower area, as the depth of
water decreases and the wave slope increases, the classic
tetrad interactions cease to operate. This indicates that

the effects of nonlinear dispersion appear significant,
especially for water of finite depth.

The lack of classic tetrad interactions is relevant to
the results of Frelich and Guza (1984), who suggested
that in shoaling water, the dominating instability mech-
anism is triadic. Their result was based on the nearly
nondispersive properties of shoaling waves, that is,

5 ghoK2,2v1 (27)

which is the asymptotic form for vanishing depth for the
linear expression given in Eq. (7). If we employ the full
nonlinear dispersion relationship derived here, we find that
the triadic interactions are not possible. It is an open ques-
tion as to whether the near resonant triadic interactions at
a lower order can overpower the exact tetradic interactions
at a higher order. However, if the instability condition over
shallow water is neither three-wave nor four-gravity-wave
interactions, according to the precise dispersion relation-
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FIG. 2. The nonlinear action transfer rate in gravity wave spectrum in deep water, where lines A, B, . . . , G represent the
angle 08, 308 608, . . . , 1808 and 08 is toward east. The results are identical using either Zakharov’s formulation or our new
model given in Eq. (26) and the appendix.

ship and resonance condition, then what are the actual
interaction processes? One can always make the interact-
ing components satisfy one of the resonance conditions
(either in wavenumber or frequency space), and force the
components also to satisfy the remaining conditions under
special additional provisions. If this approach is adopted,
we have three possibilities.

The first possibility is that one of the interacting com-
ponents has a fixed wavenumber but zero frequency. A
fixed topographic feature will satisfy this requirement
as suggested by Phillips (1995). This would be a to-
pographically trapped wave.

The second possibility, which is more plausible, is to
introduce a different kind of wave with a different dis-
persion relationship as part of the interacting tetrad. In-
ternal waves are among the possibilities, as shown by Ball

(1964). However, internal waves might not be a prevailing
phenomena in shallow water near the coast. Therefore, we
have to look at other surface waves. Gallagher (1971) first
proposed a long edge wave interacting with two surface
waves. Guza and Davis (1974) suggested that a resonant
triad could be formed among two edge waves and one
surface gravity wave. Miles (1990, 1991) investigated the
resonant excitation of two weakly nonlinear, oppositely
traveling, edge waves on a gently sloping beach by a
perfectly reflected obliquely incident gravity wave. How-
ever, based on kinematics, we find that the resonance con-
dition still needs four-wave interactions over shallow wa-
ter, consisting of three gravity waves and one edge wave.
The three-wave interaction is only an asymptotic limit.
Details will be presented in a separate paper.

The third possibility is for nonlinear waves to have the
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FIG. 3. The trajectory of the resonant wavenumber for third-order
binary interaction of four gravity waves with a linear dispersion: (a)
deep water (Kh o 5 1.0), (b) intermediate water (Kho 5 0.5), and (c)
shallow water (Kho 5 0.1) for K1 5 K2 5 1.

FIG. 4. As in Fig. 3 except the dispersion is nonlinear as represented
in Eqs. (7) and (15b) for weak nonlinearity with (aK 5 0.01): (a)
deep water (Kho 5 1.0), (b) intermediate water (Kho 5 0.5), and (c)
shallow water (Kho 5 0.1).

classic tetrad interaction that occurs in wideband spectra.
Figures 7 and 8 are the same as Fig. 3 except for the wave
numbers: K1 5 1, and K2 5 0.2. Figure 7 compares linear
and weakly nonlinear dispersion relationships, whereas
Fig. 8 compares linear and strongly nonlinear dispersion
relationships. In Fig. 7, we assume Kho 5 1.0 and g 5
0.3, which implies v3 5 0.045v1 from Eqs. (12b) and
(15b). In Fig. 8, we assume Kho 5 1.0 and g 5 0.5, which
implies v3 5 0.125v1. The trajectories for the linear and
weakly nonlinear dispersion cases are both represented by
two small circles in Fig. 7. The number of resonant so-
lutions is therefore significantly decreased, in comparison
with Fig. 3a. In contrast to this, the trajectory for strongly
nonlinear dispersion in Fig. 8b is one large circle and the

number of resonant solutions increases greatly in com-
parison with Fig. 7b. Thus, the possibility of wideband
instability increases significantly, even in finite water
depth, when nonlinear dispersion is considered. Full dis-
cussion of the wideband cases will be given separately in
Lin and Perrie (1997). We now turn our attention to the
influence of nonlinear dispersion and finite depth on the
nonlinear energy transfer rate.

There is considerable uncertainty concerning the in-
stability of Stokes waves in water of finite depth. Ac-
cording to Whitham’s theory, Stokes waves should be
stable when Kho , 1.363. Later, Hayes (1973) and Dav-
ey and Stewartson (1974) showed through more detailed
analyses that Stokes waves should be unstable for all
values of Kho, although for Kho , 0.5 the instability
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FIG. 5. As in Fig. 3 except the dispersion is nonlinear as represented
in Eqs. (7) and (15b) for strong nonlinearity with (aK 5 0.03): (a)
Kho 5 1.0 and (b) Kho 5 0.5.

FIG. 7. The trajectories of the resonant wavenumbers for third-
order binary interaction with K1 5 1 and K2 5 0.2: (a) linear dis-
persion relationship and (b) weak nonlinear dispersion with aK(3 1
tanh2 Kh)/4 tanh 3 Kh 5 0.3 and Kho 5 1.0.

FIG. 8. As in Fig. 7 comparing (a) linear dispersion relationship
and (b) strong nonlinear dispersion with aK(3 1 tanh3 Kh)/4 tanh3

Kh 5 0.5 and Kho 5 1.0.

FIG. 6. The nonlinear instability domain of the Phillips mechanics
as a function of wave slope, aK, representing the nonlinearity and
the depth of the ocean, Kho.

would be hard to realize practically. As all analyses are
subject to the restrictions of the model equations, the
phenomena should be examined carefully with precise
observations to sort out the true mechanism.

b. The effects in the action transfer rate

As shown in the last section, the effects of nonlinear
dispersion are most pronounced when combined with
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FIG. 9. The effects of the nonlinear dispersion relationship on the total nonlinear action transfer rate (summing over all
the directions) in a gravity wave spectrum in deep water (ho 5 1000 m). Lines A, B, and C represent Zakharov’s (1968,
1991) result using the linear dispersion relationship, the new formulation with aK 5 0.1 (weak nonlinear dispersion), and
the new formulation with aK 5 0.3 (strong nonlinear dispersion), respectively.

finite water depth. To illustrate this further, we examine
the effects of nonlinear dispersion on the energy transfer
rate, starting with the deep water case and proceeding
to shallow water.

Figure 9 shows the total nonlinear action transfer rate
]A/]t (summing all directions) in deep water (ho 5 1000
m). Line A represents the linear dispersion relation. Line
B represents weak nonlinearity, with g 5 0.1. Line C
represents strong nonlinearity, with g 5 0.3. This shows
that the nonlinear effects are only discernible when the
nonlinearity is strong. Even then, the difference is quan-
titative rather than qualitative. Figure 10 is the same as
Fig. 9 except that it is for shallow water with ho 5 10
m. However, the action transfer rates of lines A and B
in Fig. 10 are significantly smaller than the action trans-

fer rates of lines A and B in Fig. 9. Moreover, in Fig.
10, the action transfer rate with strong nonlinear dis-
persion, line C, is 20% less than the cases with linear
or weakly nonlinear dispersion in lines A and B. If one
considers the peak frequency at 0.1 Hz instead of 0.3
Hz, the action transfer rates will be much smaller than
the action transfer rates shown in Fig. 10. This is con-
sistent with Figs. 3, 4, 5 and 6, in which the Phillips
mechanism is shown to be less dominant when one con-
siders strong nonlinear dispersion over shallow water.
This trend is also consistent with the analyses by Hayes
(1973) and Davey and Stewartson (1974). In fact, the
interaction mechanism changes from classic tetradic
four waves to three gravity waves plus a long wave, as
discussed in the previous section.
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FIG. 10. As in Fig. 9 except in shallow water where ho is 10 m: lines A, B, and C represent linear dispersion, weak
nonlinear dispersion (aK 5 0.1), and strong nonlinear dispersion (aK 5 0.3), respectively. All the results were calculated
by the new formulation.

5. Summary

We have derived the action transfer rate, based on a
Hamiltonian representation, for waves of finite ampli-
tude in water of finite depth. This is a generalization of
the results obtained by Zakharov (1968) for deep water.
In the limit of deep water and linear dispersion, our
results become identical to those of Zakharov’s. Using
our new formulation, we have studied the effects of
nonlinear dispersion and finite water depth.

The effects of nonlinear dispersion are not important
in deep water, because

g 5 aK(3 1 tanh2 Kh)/4 tanh3 Kh

is very small compared with the linear term gk. However,
the nonlinear effect is very important when the water be-

comes shallow. In shallow water, even the resonance con-
dition has to be modified. In place of the classic tetradic
interaction, the resonance condition involves three gravity
waves and one low-frequency wave, such as an edge wave
or a bottom topographic wave. We also showed that triadic
interactions of gravity waves are only asymptotic approx-
imations. Whether or not these asymptotic cases are really
important approximations in the coastal ocean remains to
be demonstrated.

Based on our analysis, we believe that for an accurate
evaluation of the energy transfer rate in water of finite
depth, the effects of nonlinear dispersion should not be
neglected. For shallow water wave modeling, the new
results derived here should be used as suggested by Lin
and Perrie (1997).
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APPENDIX

The Interaction Coefficient

The third-order interaction coefficient V(6) and W are given as follows:

1/2
1 v v K tanhK h(K ) (K ) 2 2i 1(6)V 5 [K ·K 6 K K tanh(K h)tanh(K h)](K ,K ,K ) i 1 i 1 i 1i 1 2 5 [ ]v K K tanhK htanhK h8pÏ2 (K ) i 1 i 12

1/2
v v K tanhK h(K ) (K ) 1 1i 21 [K ·K 6 K K tanh(K h)tanh(K h)]i 2 i 2 i 2 [ ]v K K tanhK htanhK h(K ) i 2 i 21

1/2
v v K tanhK h(K ) (K ) i i1 21 [K ·K 1 K K tanh(K h)tanh(K h)] , (A1)1 2 1 2 1 2 6[ ]v K K tanhK htanhK h(K ) 1 2 1 2i

and

¯ ¯ ¯ ¯ ¯W 5 W 1 W 2 W 2 W 2 W(K,K ,K ,K ) (2K,2K ,K ,K ) (K ,K ,2K,2K ) (K ,2K ,2K,K ) (2K,K ,2K ,K ) (2K,K ,K ,2K )1 2 3 1 2 3 2 3 1 2 1 3 2 1 3 3 2 1

¯2 W , (A2)(K ,2K ,K ,2K)3 1 2

1/2
1 v v(K ) (K )i 1W 5 K K K K tanhK htanhK htanhK htanhK h(K ,K ,K ,K ) i 1 2 3 i 1 2 3i 1 2 3 2 [ ]64p v v(K ) (K )2 3

K Ki 13 2 1 2 zK 1 K ztanh zK 1 K zh 2 zK 1 K ztanh zK 1 K zh1 2 1 21 3 1 3 1 3 1 21 2[ tanhK h tanhK hi 1

2 zK 1 K ztanh zK 1 K zh 2 zK 1 K ztanh zK 1 K zh . (A3)1 2 1 2i 3 i 3 i 2 i 2 ]
1 1

(2) (2)T 5 2V V 10,1,2,3 (K ,K 2K ,K ) (K,K ,K2K )3 3 1 1 2 2 5 6v 2 v 1 v v 1 v 2 v(K 2K ) (K ) (K ) (K ) (K2K ) (K)1 3 3 1 2 2

1 1
(2) (2)2 V V 1(K ,K,K 2K) (K ,K 2K ,K )2 2 1 1 3 3 5 6v 2 v 1 v v 1 v 2 v(K 2K ) (K ) (K ) (K) (K 2K) (K )1 3 1 3 2 2

1 1
(2) (2)2 V V 1(K ,K 2K ,K ) (K,K ,K2K )2 2 1 1 3 3 5 6v 2 v 1 v v 1 v 2 v(K 2K ) (K ) (K ) (K ) (K 2K) (K)1 2 2 1 3 3

1 1
(2) (2)2 V V 1(K ,K,K 2K) (K ,K 2K ,K )3 3 1 1 2 2 5 6v 2 v 1 v v 1 v 2 v(K 2K ) (K ) (K ) (K) (K 2K) (K )1 2 1 2 3 3

1 1
(2) (2)2 V V 1(K1K ,K,K ) (K 1K ,K ,K )1 1 2 3 2 3 5 6v 2 v 2 v v 2 v 2 v(K1K ) (K) (K ) (K 1K ) (K ) (K )1 1 2 3 2 3

1 1
(1) (1)2 V V 1 1 W . (A4)(2K 2K ,K ,K ) (K,K ,2K2K ) (K,K ,K ,K )2 3 2 3 1 1 1 2 35 6v 1 v 1 v v 1 v 1 v(K 1K ) (K ) (K ) (K1K ) (K) (K )2 3 2 3 1 1
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