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[1] We extended a recently developed model for wave–current interactions by Lin and
Huang [1996a, 1996b] to simulate the impact of topography, currents, and slanting
coastlines on sea state estimates. Our formulation uses the action conservation equation
and the nonlinear dispersion relation, resulting in additional flux terms, @(cwA)/@w, A@cgl/
@l, A@(cgfcos f)/@f, and A@cgq/@q, compared to ‘‘standard’’ wave models such as WAM,
where A is spectral action density, cw is phase velocity, and cgl, cgf, and cgq are group
velocities. For large-scale motions in deep water without varying currents, these effects
may be neglected. However, for shallow estuary waters with varying currents, we show
that these effects can cause as much as 25% variation in wave height estimates during
moderate wind conditions. This phenomenon is consistent with observations and theory,
for example, regarding isolated topography such as seamounts. INDEX TERMS: 4560

Oceanography: Physical: Surface waves and tides (1255); 4556 Oceanography: Physical: Sea level variations;
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1. Introduction

[2] For tidal estuaries, such as the St. Lawrence River and
Gulf, the problem of forecasting sea state conditions
requires consideration of factors such as currents, topogra-
phy, and slanting fetches. Each of these factors must be
carefully modeled in order for the resultant simulation to
have some accuracy. For example, the interactions between
waves and currents can be quite strong, depending on many
factors, such as wave steepness, water depth, the orientation
of the waves relative to the currents, etc. In the latter case,
cross-stream, upstream, and downstream winds and associ-
ated wave fields, interacting with a tidal estuary current,
represent three possible wave–current interaction situations.
Moreover, sea state is also influenced by the impact of time-
dependent currents, topography–swell wave interactions,
and the influence of slanting fetch on wave evolution. Wave
generation characterized by these factors is quite different
from that which may occur in open ocean conditions, where
they are absent.
[3] The basic kinematical mechanisms of wave–current

interactions have been investigated by Lin and Huang
[1996a, 1996b]. They showed that nonlinear wave–current
interactions must be understood in terms of amplitude and

depth dependency in a fully nonlinear dispersion relation,
following the studies of Yuen and Lake [1982] and Infeld
and Rowlands [1990]. As suggested by McLean [1982], the
role of a fully nonlinear dispersion relation is not only in the
modulation and propagation of waves, but also in the
selection of resonant wave–wave interactions. Lin and
Huang [1996b] used a fully nonlinear dispersion relation,
in conjunction with the action conservation equation, for
water of finite depth, to explore the impact of steady and
unsteady currents, changing bottom topography and shallow
water conditions. They found that these considerations had
implications on sea state simulations. While open ocean
conditions, with deep water and nonvarying currents, can be
simulated by linear dispersion and an energy balance
equation, as assumed by the WAM model of Komen et al.
[1994], Lin and Huang [1996b] concluded that fully non-
linear dispersion and the action conservation equation were
important for sea state estimation in coastal regions.
[4] In this paper, we extend the formulations of Lin and

Huang [1996b] to consider factors such as time-varying
currents, topography, and slanting wind fields and fetches,
typical of a tidal estuary system such as the St. Lawrence
River and Gulf. This is done in section 2. In section 3, we
discuss numerical schemes suitable for operational wave–
current simulations, given these factors. Section 4 presents
simulations showing the impact of these factors on sea state
estimates in an idealized tidal estuary and for isolated
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bottom topography. In section 5, we give a discussion of
available observational data, and theory in relation to model
simulations presented in section 4. Finally, section 6 sum-
marizes our conclusions.

2. Basic Governing Equations

[5] Following the studies of Whitham [1974], Lin and
Huang [1996b], and Lin [1998b], the correct nonlinear
dispersion relation for wave–current interactions is,

s ¼ gk tanh kdð Þ1=2

� 1þ 9 tanh4 kd � 10 tanh2 kd þ 9

8 tanh4 kd

� ��
k2a2 þ � � �

�
: ð1Þ

where s is the intrinsic frequency in rad s�1, k is the
magnitude of the vector wave number ~k in m�1, ak is wave
steepness for deep water, g is the gravitational acceleration
in m s�2, d is depth in m, and a is the wave amplitude.
Equation (1) differs from the usual linear dispersion
relation, s2 = gk tanh kd, in other similar wave models,

for example the WAM formulation of Komen et al. [1994],
by the leading-order 6(k2a2) nonlinear term, which may be
large in shallow water. In the former case, k and associated
wave crests are not conserved, whereas in latter case,
coxnservation of wave crests is a key element in WAM.
[6] Because the full nonlinear dispersion relation of (1) is

based on perturbation analysis, its ordering and magnitude
are all energy density related. Therefore, to ensure that the
increasing energy density does not cause the higher energy
terms to overpower the lower-order ones, as water depth
decreases, a check is imposed. To guarantee this ordering,
we require that waves break when ak

3 tanh2 kdþ1
4 tanh2 kd

� 0:3 in the
computations. Wave energy exceeding this limit is set to
zero. By comparison, the Stokes limit puts the ak limit very
close to unity. This breaking criterion is considered justifi-
able, in view of laboratory and field observations as
reported by Huang et al. [1986].
[7] By definition, the intrinsic group velocity is given by

~cg ¼ @s
@k

~k
k
and the apparent frequency is defined as

w ¼ sþ~k �~v, where ~v is the ambient current in m s�1.
We note that with time-varying tidal currents and finite
depth water, not only a, but also d are functions of position

Figure 1. Computational instabilities for the transport equation with (a) first-order Euler scheme, (b) the
second-order upstream scheme, and (c), the third-order upwind scheme, where j�j varies with k�x for
different m: mB = 0.2, mC = 0.4, mD = 0.707, mE = 0.87, mF = 1., mG = 1.1, mH = 1.2, and ml = 1.5.
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and time. Position dependence in a and d in the nonlinear
dispersion relation implies that k is not conserved. Although
variations in both a and d have been largely neglected by
previous modelers, Whitham [1974] and Lin and Huang
[1996b] note that they are important considerations in
nonlinear wave kinematics and should be included in
simulations of coastal regions, involving time-varying cur-
rents and finite depth.
[8] The basic equation for conservation of action density,

during wave growth and evolution and during wave–
current interactions, is

@A

@t
þ
@ cgl þ u

� �
A

� �
@l

þ cos�1 f
@ cgf þ v

� �
A cosf

� �
@f

þ @ cqA½ 

@q

þ @ cwA½ 

@w

¼ Sds þ Snl þ Sin ð2Þ

following the studies ofWhitham [1974] and Bretherton and
Garrett [1968]. Here, A is action energy density in units of
m2 rad�1 s�2, defined as the energy spectrum N divided by
the intrinsic frequency w, t is time in s, f and l are latitude
and longitude coordinates, and q is the wave propagation

direction, oriented clockwise from north. Source terms, as
represented by Sin for wind input, Sds for dissipation, and Snl
for nonlinear wave–wave interactions, follow the usual
WAM formulations. The characteristic propagation velo-
cities are cq, cw, cgl, and cgf. Equation (2) actually assumes
that the dispersion is linear. However, as described by Lin
and Huang [1996b] and Lin and Perrie [1999], the nonlinear
dispersion relation in (1) is third order, whereas the nonlinear
source function Snl in (2) is fourth order, and it is inconsistent
to eliminate the former and retain the latter. Thus, it is
important to include the nonlinear dispersion relation. In
fact, nonlinear dispersion not only affects the wave–current
interactions, but also strongly affects the Snl term. The latter
includes both three-wave interactions and four-wave inter-
actions. Quasi-resonant triad interactions may play an
important role in shallow water, especially when the long
waves are absent. However, triple-product averages of
resonant triadic fields will vanish under the assumption of
Gaussian statistics, which is often made, and so do not
contribute to statistical wave evolution. Moreover, as three-
wave interactions may be formulated in terms of reflection
terms in modern WAM-type models, they are also not able to
transfer energy to lower frequency and growth. Therefore,

Figure 1. (continued)
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triadic interactions cannot play a pivotal role in explaining
well-known observations, for example the fact that coastal-
trapped waves often have dominant frequencies that are
lower than corresponding waves in deep water, with
amplitudes greater than corresponding deep water waves.
[9] In order to develop a finite depth global spectrum

model, which is suitable to study waves for both deep ocean
and shallow water (kd � 0.3 and ka � 0.3), we modify the
traditional action conservation equation and introduce the
weakly nonlinear action conservation equation, as presented
in (1) and (2). Because the third-order terms in (1) are not
based on the assumption of Gaussian statistics, they are able
to transfer the action energy by three-wave interactions in
shallow water. Therefore, this action conservation equation
should be more accurate than the linear dispersion action
conservation equation, particularly for situations such as
unsteady currents and depths in shallow water. Moreover, as
noted by Lin and Huang [1996b], (2) is different from the
basic equation implemented by WAM and similar wave
models. Although refraction may be included in WAM, the
parameterization is different from the wave–current inter-
actions of (2), especially in the coastal region, where water
depth and currents can vary rapidly with time. From the

study of Komen et al. [1994], the balance equation of WAM
is,

@N

@t
þ
@ cglN
� �
@l

þ cos�1 f
@ cgfN cosf
� �

@f
þ s

@ðcsNsÞ
@s

þ @ cqNð Þ
@q

¼ S*ds þ S*nl þ S*in þ refraction; ð3Þ

where Sds
* , Sds

* , and Sin
* are energy source terms correspond-

ing to the action source terms Sds, Sds, and Sin in (2).
Intrinsic frequency s is used to avoid wave blocking,
whereby two solutions can exist for jkj from the relation
w ¼ sþ~k �~v, in situations of strong opposing currents, and
the energy propagation velocity for certain frequencies may
vanish.
[10] Comparing (2) and (3), we note that the WAM

invariance of frequency w implies that cw ¼ Dq
Dt

¼ 0. This
implies that the term @(cwA)/@w, which appears in our New
Coastal Wave Model (NCWM), in (2), responds very differ-
ently from the action density term, s@ cs

N
sð Þ

@s in the WAM
formulation of (3), given unsteady currents and water depths.
Moreover, the action flux terms, A

@cgl
@l , A

@ðcgf cosfÞ
@f , and A

@cgq
@q ,

evident in (2), do not include wave amplitude effects in the

Figure 1. (continued)
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WAM formulation, and in fact vanish in steady situations.
These ‘‘extra’’ action flux terms are retained in the NCWM
formulation in unsteady situations because of nonlinear dis-
persion, which implies that wave crests are not conserved. For
large-scale motions, in deep water, the contributions of these
flux terms may be neglected, as a function of time, whereas
for small-scale tidal estuary motions, these contributions
become important. For example, relatively narrow shallow
regions of an estuary can have long fetches, in directions
along the estuary. In these situations, wave–current interac-
tions are important, especially under high wind conditions.
[11] In deep water, (3) implies that energy is invariant

following a wave, when the source terms are set to zero.
However, in coastal waters, although parameterized refrac-
tion terms allow the occurrence of energy shifts [see
Günther et al., 1993], parameterizations cannot account
for all possible wave–current interactions. For example,
Lin and Huang [1996b] note that under steady current
conditions, variations in depth should cause changes in N.
However, (3) cannot satisfy the simple analytic relation Ncg
= constant derived by Phillips [1977], for waves propagat-
ing toward a beach with no currents. Therefore, in coastal
regions, with currents and changing topography, cg and s
become functions of position, WAM-type models should

give substantially different results compared to models such
as NCWM, based on (2).
[12] To consider the implications of topography, finite

depth, time-dependent currents and nonlinear dispersion, we
must consider the characteristic propagation velocities cq,
cw,cgl, and cgf. A full discussion of these terms is given by
Lin and Huang [1996b] and Lin [1998b]. The group
velocities in the longitudinal and latitudinal directions, cgl
and cgf may be represented as

cgl ¼ cg sin qþ u

R cosf
;

cgf ¼ cg cos qþ v

R

ð4Þ

where R is the Earth’s radius. These expressions are found in
both NCWM and WAM, as well as other standard modern
wave models. Formulations for cq ¼ Dq

Dt
and cw ¼ Dw

Dt
are

cq ¼
Dq
Dt

¼ 1

k

@s
@d

@d

@n
þ 1

k
cg � c
� �@k

@n
þ
~k

k
� @~v
@n

;

cw ¼ Dw
Dt

¼@s
@d

@d

@t
þ~k � @~v

@t
þ~v � @

~k

@t
þ ~vþ~cg
� �

�r sþ~k �~v
	 


;

ð5Þ

Figure 2. As in Figure 1, showing a simple test for numerical dissipation and dispersion.
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following the nonlinear dispersion relation in (1), where n
is in the direction of vector ~k, c is phase velocity, and~v is
the current velocity. These cq, cw are implemented in NCWM.
[13] These cq, cw expressions differ significantly from

those implemented in standard linear dispersion wave mod-
els such as WAM. In the latter case, cq and cw are given by

cq ¼ 1

k

@s
@d

@d

@n
þ
~k

k
� @~v
@n

;

cw ¼ 0:

ð6Þ

The cq and cw formulations of WAM are acceptable only if
the normalized wave steepness, � ¼ ak3þtanh2 kd

4 tanh3 kd
, is very

small, as discussed by Lin and Perrie [1999]. However, in
shallow water coastal regions, although the wave steepness
ak may be very small, the normalized wave steepness
� ¼ ak3þtanh2 kd

4 tanh3 kd
may be very large. Under these conditions,

wave–current interactions will be underestimated by WAM.
Moreover, because WAM implicitly requires cw = 0, it
cannot simulate the wave–current interactions effected by
water depth and frequency variation, nor can it simulate the
flux terms, @(cwA)/@w, A@cgl

@l
, A

@ðcgf cosfÞ
@f , and A

@cgq
@q .

[14] Having established the analytic expressions for the
kinematics, we present numerical wave–current interaction
tests in the following sections. These tests show the differ-
ence between our NCWM formulation, based on the full
nonlinear dispersion relation and the linear approximations
used in the WAM formulation. Of course, we cannot totally
exclude the influences of the different numerical schemes
and different types of model equations in these compari-
sons. WAM uses the energy transport equation, whereas
NCWM uses the action conservation equation.

3. Numerical Method

[15] To develop an accurate wave model, one needs
accurate physical source terms, as well as a numerical
method, with minimum dissipation and dispersion. This
section is concerned with possible numerical methods that
may be implemented to evaluate the physical source terms.

3.1. Euler Scheme

[16] WAM uses the classical Euler scheme, which has
considerable numerical dissipation and dispersion. A com-
parison between the first-order Euler scheme, as imple-

Figure 2. (continued)
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mented in WAM, with higher-order Euler schemes, in terms
of numerical dispersion and dissipation and computational
instability, is discussed in this section.
[17] The classic Euler scheme converts a differential

equation to difference format, for example, the spatial and
temporal differences of the energy balance equation (3) in
Cartesian coordinates, is

Nnþ1
j � Nn

j

�t
¼ cg þ uj

� �Nn
j�1 � Nn

j

�x

where n is the number of the time step and j is the number of
the grid point. To investigate dispersion, dissipation and
instability, we assume Nj = N0exp[ik( j�x � vjt)], where N0

is the boundary value at x = 0, k is the wave number in
space and vj = (cg + u)j. This implies,

j � jj¼
N

jþ1
j

Nn
j

¼ 1þ mj cos k�x� 1ð Þ � imj sin k�x

which is an analytic relation for the computational stability
parameter j� j expressed in terms of k�x and mj. Figure 1

shows the computational instability for the transport
relation of (2) as implemented in WAM, using the (1)
first-order Euler scheme, (2) the second-order upstream
scheme (second-order Euler), and (3) the third-order
upstream. The results show that the first-order Euler
scheme, as well as corresponding higher-order schemes,
are all conditionally computationally stable schemes, for the
transport relation of (2).
[18] To study numerical dissipation and dispersion, we

will use a simple test as shown in Figure 2. The initial
spectral energy density function is given by N (0) = exp{�k[x
� (cg + u)to]

2}, where k = 0.2, to = 10, (cg + u) = c1 + c2[1 =
cos( j�x)], c1 = 0.6, c2 = 0.2 and �x = 0.5. Figure 2 gives
(1) line A, which is the true solution, (2) line B, the
numerical solution for �t = 0.25, and n = 400 time steps,
and (3) line C, the numerical solution for �t = 0.5 and n =
200. Our analysis leads us to following general conclusions:
1. Simply increasing the order of a numerical scheme

will not yield better solutions.
2. Although higher-order schemes decrease numerical

errors, numerical dissipation and dispersion continue to be
excited, for any finite order.

Figure 2. (continued)
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3. Dissipation dominates when m is odd and dispersion
dominates when m is even, where m is the order of the
higher-order scheme, m = 1, 2, 3. . .
4. When m increases beyond 2, the boundary conditions

become increasingly more complicated.
5. The key to limiting numerical errors, in any order of

Euler upwind scheme, is to use very small �t. Unfortu-
nately this requires enormous amounts of computer time.
[19] For studies devoted to wave–current interactions,

there is another more serious shortcoming to the Euler
upwind schemes. We are required to deal with problems
that have finite spectral bandwidth. Finite bandwidth
implies that dissipation and dispersion will be nonuniform
for different wave components. Such effects cannot be
separated from other real physical processes, for example
wind input, Sin, dissipation, Sds and wave–wave interac-
tions, Snl, which are wave number and frequency dependent.

3.2. Action Conservation Equation Scheme

[20] As presented in section 2, a proper description of
wave–current interactions involves the action conservation

equation. Computational instability for the transport equa-
tion is entirely different from that of the conservation
equation, because numerical schemes can be conditionally
stable in the former case, while being unconditionally
unstable in the latter case. To demonstrate this computa-
tional instability difference, we consider the numerical
schemes: (1) second-order upstream, (2) third-order
upstream, and (3) ICN scheme, which is the iterative
approximation of the Crank–Nicholson scheme considered
by Lin and Huang [1996a]. Results are presented in
Figures 3 and 4. We reduce the time step by 1/10,
compared to the time step in Figure 2, and reobtain the
results shown there for the transport equation, in Figure 3.
Corresponding results for the conservation equation are
shown in Figure 4.
[21] Comparing Figure 4 with Figure 3, we see that the

same numerical schemes are stable for the transport
equation, but unstable for the conservation equation.
The time step of the numerical solutions in Figure 4 is
also 1/10 that of Figure 2. In fact, no matter how small
we make the time step in Figure 4, the solutions are

Figure 3. A simple test for computational instability, numerical dissipation, and dispersion for the
transport equation, when the time step is 1/10 that of Figure 2 using (a) the second-order upwind scheme,
(b) the third-order upwind scheme, and (c) the ICN scheme (with a = 0.).
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always unstable because these numerical schemes are
unconditionally unstable for the conservation equation.
Therefore, we must use other methods to treat this
equation.
[22] Lin and Huang [1996a] and Lin [1998a] proposed a

second-order semi-implicit (SOSI) scheme with a direc-
tional filter for the action conservation equation. Although
dispersion does not generate instability or an oscillatory tail
for large timescales in the SOSI scheme, without the
directional filter, action is spread around the propagation
direction and the total action increases. However, non-
conservation of action is a classical difficulty encountered
in numerical solutions of hyperbolic conservation equa-
tions. To compensate for this property, Lin and Huang
[1996a] apply a directional filter, which achieves conserva-
tion of action and uses a weighting function to suppress
numerical dispersion.
[23] An alternate somewhat simpler scheme consists of

the third-order Runge–Kutta scheme. The accuracy of the
latter scheme may be only slightly lower than that of the
filtered SOSI scheme. The CPU time for a third-order
Runge–Kutta scheme maybe only slightly greater. Finally,

the third-order Runge–Kutta scheme is both computation-
ally stable and easy to use. If (2) can be simplified as,

@A

@t
¼ F A;~k; x; y; t; d

	 

;

where F(A, ~k, x, y, t, d) represents flux terms, then

y1 ¼ dt=2ð ÞF A nð Þ;~k; x; y; t; d
	 


;

y2 ¼ 3dt=4ð ÞF y1;~k; x; y; t; d
	 


;

A nþ1ð Þ ¼ dt=9ð Þ 2F A nð Þ;~k; x; y; t; d
	 


þ 3F y1;~k; x; y; t; d
	 
h

þ 4F y2;~k; x; y; t; d
	 
i

ð7Þ

represents the third-order Runge–Kutta method. This
method is adopted for the results shown in this study.

4. Tests With an Idealized Tidal Estuary

[24] This section presents model results, for NCWM and
WAM, for a tidal estuary which is qualitatively similar to

Figure 3. (continued)
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the St. Lawrence River and Gulf. Assumed estuary effects
include wave–current interactions, the effect of currents and
also finite time-varying water depth. A constant wind speed
of 17 m s�1 at 10 m reference height is assumed, represent-
ing rather high wind conditions. Calculations for the non-
linear wave–wave interactions, Snl, in present formulations
for both WAM and NCWM, are inaccurate because they are
based on DIA (the discrete interaction approximation).
These inaccuracies are discussed by Lin and Perrie
[1999]. Inaccuracies in Snl imply inaccuracies in the resul-
tant two-dimensional energy spectrum, E( f, q). However,
because both models incorporate tuning to one-dimensional
energy–fetch curves, as measured by field experiments
such as JONSWAP [Hasselmann et al., 1973], some of this
inaccuracy is removed and it is reasonable to present
contours of the significant wave height Hs. Detailed dis-
cussion of the effects of current shears and bottom slopes on
the wave spectrum, for example energy refraction through
focusing and defocusing, is given by Lin and Huang
[1996b]. For all tests given here, the spectra are discretized
by 25 frequencies from 0.04177 to 0.41145 Hz and 24
angles at 15� width.

[25] We assume the estuary is oriented along the x-
coordinate axis from upstream (x = 0) to downstream (x =
1000 km). In these tests, the space discretization is 5 km and
the time step is 5 s. The width of the estuary is 20 km at the
upstream ‘‘end’’ of the grid and 100 km at the downstream
‘‘end’’ at the estuary mouth. The estuary width is assumed
to linearly increase from upstream to downstream. The
water depth is assumed to increase exponentially from
upstream to downstream, following the relation,

d ið Þ ¼ �3e i�103kmð Þ2=2:94 103; ð8Þ

where i represents the grid index along the x axis. For
simplicity, the tidal current is assumed to satisfy the form
0.4sin(2pt/T), where t is time, and T is the tidal period,
which is set to 24 hours for this study. The current
component due to the gravity, from upstream to down-
stream, is assumed to have a maximum of 1 m s�1, which
decreases the further one moves downstream, because not
only does the cross section of the estuary increase but the
depth also increases. Figure 5 shows the total current as a

Figure 3. (continued)
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function of time. In actuality, both the tidal current and the
gravity-forced current components are proportional to the
bottom steepness.

4.1. Cross-Stream Winds

[26] In this test we assume cross-stream winds. The wind
blows constantly along the y axis, perpendicular to the x
axis along which the estuary is oriented. Figure 6 shows the
significant wave height Hs distribution at 6 hourly intervals.
A 24 hour period was used to warm up the model, prior to
achieving these results. In this case, the water depth is
assumed finite, following equation (30) with no irregular-
ities, seamounts or ‘‘bumps.’’ The Hs contours in Figure 6a
are at intervals of 1 m. As fetch increases, Hs increases
along the wind direction, as in all operational wave models.
The maximum Hs is experienced near the north end of the
estuary mouth, because that is where the estuary is widest
and the waves have the longest fetch, for cross-stream
winds. Figure 6a also shows that for NCWM, Hs oscillates
periodically in time, along the x axis, which is the direction
of the current. Corresponding results from the WAM model,
as shown in Figure 6b, achieve a maximum Hs of 6.1 m,
with no oscillation.

[27] The most interesting phenomenon presented in Fig-
ures 6a and 6b is the oscillatory Hs exhibited by NCWM.
Clearly, a simulation of the Hs cycle and related wave
spectrum E( f, q) is essential for estimating and predicting
Hs on the estuary. The Hs cycle is related to the tidal current
and water depth variability. It is composed of a daily
movement in the direction along which the current flows,
as well as a periodic oscillation in time. These overall
characteristics would still occur for somewhat different
bottom slopes, or current shears. However, besides not
having an Hs cycle, WAM differs from NCWM in having
strong numerical dissipation, assuming linear dispersion and
indirectly calculates wave–current interactions using
parameterizations for refraction and reflection.

4.2. Downstream Winds

[28] Figures 7a and 7b are the same as Figures 6a and 6b,
except the wind is blowing along the river length from
upstream to downstream direction. In this case, the max-
imum Hs appears in the downstream region. However, due
to the wave–current interactions, and also the effects of
bottom slopes and current shears, the maximum Hs does not
always occur in the most extreme downstream region of the

Figure 4. As in Figure 3 for the conservation equation.

LIN AND PERRIE: WAVE–CURRENT INTERACTIONS IN TIDAL ESTUARY 5 - 11



grid. As simulated by NCWM, the maximum Hs oscillates
in space and time, with a variation of about 2 m. The 4 m
isoline is indicated in Figures 7a and 7b. Corresponding
WAM results are presented in Figure 8b, showing no Hs

cycle.

4.3. Upstream Winds

[29] Figures 8a and 8b are the same as Figures 7a and 7b,
except the wind is blowing along the river from downstream
to upstream. In this case, the maximum Hs is located near
the upstream region of the grid (in the downwind direction).
However, as in Figure 7a, NCWM simulation simply that
the maximum Hs does not always occur in the extreme
upstream portion of the grid, exhibiting an Hs cycle in space
and time, because of wave–current interactions. Corre-
sponding WAM results are presented in Figure 8b, showing
no Hs cycle.

4.4. Finite Water Depth Effects

[30] Finally, we consider the effect of topography on swell
wave propagation, following the studies of Haidvogel and
Beckmann [1999], Lin and Huang [1996b], and Pedlosky
[1979]. In this test, we assume there is no wind. For

topography, we assume the river is uniformly 100 km wide
and 300 m deep, with a seamount or ‘‘bump’’ which is 12 km
wide, 200 m high, and 100 m below the sea surface, near the
estuary mouth, as shown in Figure 9a. The assumed tidal
current is periodic, as discussed in section 3. The right side
of Figure 9a is assumed downstream and the left side is
upstream. There are many theories about tidal current
interactions over isolated topographic features and their
ability to generate seamount-trapped waves [Brink, 1995;
Chapman, 1988; Chapman and Haivogel, 1993]. In general,
the strength of the seamount-trapped waves depends on the
Burger number, B = Nh/fCW, where N is the buoyancy force,
W is the width of the seamount, h is the seamount height, and
fC, the Coriolis force. Seamount-trapped waves, like all
internal waves, decrease in amplitude as their distance to
the sea surface decreases. The rate of decrease depends on
buoyancy forcing. Usually a second maximum in the sea-
mount-trapped wave amplitudes appears at the thermocline.
[31] NCWM simulations, shown in Figure 9b, imply that

maximum significant wave height Hs oscillations occur on
top of the seamount. These are called ‘‘seamount-trapped
waves.’’ The ‘‘bottom-forced’’ Hs cycle in Figure 9b has a
variation of about 2 m, over the time period of the tidal

Figure 4. (continued)
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cycle. The magnitude of the Hs cycle depends on the free
wave frequency, which depends on the Burger number, B.
The tongue of high wave height water along the ‘‘top’’
occurs because the waves propagate from the western edge
of Figure 9b and the seamount-trapped wave effect does not
reach the northeast and northern regions of the plot. If the
free wave frequency is close to the forcing frequency, then
resonance can occur. The Hs contours of Figure 9b result
from the action conservation and nonlinear dispersion
effects, as typified by action flux terms that appear in the
NCWM formulation. These terms do not appear in the
WAM formulation. Although these terms are not important
for large-scale motions and deep water, they become
important for small-scale motions, in shallow tidal estuary
water. Corresponding results for WAM are given in Figure
9c. This shows no swell contours, indicating that the swell
waves in WAM do not feel the bottom and simply propagate
over the seamount.

5. Discussion

[32] The current–depth–wave interactions above the sea-
mount, in the NCWM formulation, result in the dipole wave
height structures shown in Figure 9b. This is related to

observed experimental phenomenon, specifically the tidal
and low frequency currents and associated dipole character-
istics over the top of the Fieberling Guyot, located in the
North Pacific ocean (32.5�N, 127.75�W). Fieberling Guyot
has a 4500 m height and 40 km base width in 5000 m depth
water. Its top is 500 m below the sea surface, as shown by
Beckmann and Haidvogel [1997, Figures 1 and 2]. Figure
9d is adapted from the study of Beckmann and Haidvogel
[1997, Figure 7] and gives a snapshot of the density
perturbation at 500 m depth, with mooring sites of Brink
[1995] indicated by solid circles. As presented by Beck-
mann and Haidvogel [1997], the dipole current structures
indicate a first azimuthal mode seamount-trapped wave
[Brink, 1989]. This is the response to barotropic tidal
forcing and is well known from previous idealized studies
of flow around idealized seamounts [Brink, 1990; Haidvo-
gel et al., 1993]. The estimated wave amplitude, corre-
sponding to the maximum velocity, exceeds 17 cm s�1,
which is in close agreement with the O(20 cm s�1) observed
value [Brink, 1995]. Because seamount-trapped waves are
bottom-trapped waves, their amplitudes decrease as distance
to the surface decreases, as noted above. However, this
decrease is nonlinear and usually a second amplitude
maximum appears in the thermocline near the sea surface

Figure 4. (continued)
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because of dependence on rapid changes in the temperature
and density with depth. If a surface wave can reach the
thermocline, then the internal waves can transfer their
energy to surface gravity waves through wave–current
interactions. This was recently shown theoretically by R.
Q. Lin and S. Chubb (A study of seamount trapped wave in
northwest Pacific Ocean by comparison the radar images
and model results, submitted to Journal of Geophysical
Research, 2001, hereinafter referred to as Lin and Chubb,
submitted manuscript, 2001). Thus, in this case, the dipole
current structures of Beckmann and Haidvogel [1997] can
then be intensified at sea surface to the extent that they can
be observed.
[33] Another seamount example consists of two sea-

mounts in the northwest Pacific ocean, near 51�N and
164�E. These are small seamounts, with heights of only
about 0.7 km on base diameters of about 20 km width, in an
ocean depth of 5 km. However, the trapped waves on top of
these seamounts are significant enough, through wave–
current interactions that transfer their energy to the waves
on the sea surface, that features of their structure are
captured by SAR radar images of Etkin et al. [1991], as
shown in Figure 9e. Because the image was synthesized
from data collected by Satellite ‘‘Cosmos-1870’’ using
optical rather than digital techniques, it is impossible to
quantitatively extract the associated surface wave spectrum
[Hasselmann et al., 1985; Krogstad et al., 1994; Dowd et
al., 2001]. However, within limits, relative variations within
the image are notable. Specifically, two prominent features
are clearly visible, directly above the locations of the two
seamounts, as noted by Chelomei et al. [1990]. The inten-
sity variations in the center of the image, associated with
darkened oval-like structures, and brightened, undulating,

horizontal streaks, occur in the regions where one expects
‘‘leeward waves’’ between the two underwater seamounts.
Therefore, even very small seamounts can result in signifi-
cant sea surface features, if the thermocline is sufficiently
distinct with waves that are long enough to reach the
thermocline and if wave–current interactions are strong.
Without wave–current interactions, even with a very strong

Figure 5. Current in the estuary as a function of time.

Figure 6. Significant wave height Hs distribution for
idealized St. Lawrence River, with smooth bottom topo-
graphy and wind speed 17 m s�1 oriented perpendicular to
the central axis of the river and with an assumed tidal
current of 0.4 m s�1 with a 24 hour period: (a) from NCWM
and (b) from WAM model. Units are in m.
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significant thermocline and tide, it is impossible for sea-
mount-trapped waves to be observed on the sea surface.
Further discussion is presented by Lin and Chubb (sub-
mitted manuscript, 2001).
[34] The differences in sea state forecasting in a tidal

estuary between these two models, NCWM and WAM, are
significant. Seamount-trapped waves cannot be described
by the WAM formulation, because it lacks the essential
wave–current interaction terms. Model differences result
from rapidly changing depths and unsteady currents, asso-

ciated with the tidal estuary, which are important in the
@(cwA)/@w term in the formulation of NCWM (2). This was
mentioned in the discussion comparing NCWM and (3), the
formulation for WAM. The other major reason that causes
NCWM to differ from WAM is nonlinear dispersion. In
high wave conditions, when water depth is shallow and
currents are strong, nonlinear dispersion becomes very
important. In our model, our breaking condition is that the
waves break when kd � 0.3. Wave energy exceeding this
limit is set to zero. In reality the nonlinearity should be
stronger, and the difference between the two models’ results

Figure 7. As in Figure 6, except the wind is oriented along
the river from downstream to upstream: (a) from NCWM
and (b) from WAM model. Units are in m.

Figure 8. As in Figure 6, except the wind is oriented along
the river from upstream to downstream: (a) from NCWM
and (b) from WAM model. Units are in m.
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should be even greater. The nonlinear dispersion causes
significant differences in the NCWM and WAM models’
estimates for the group velocity, phase velocity and non-
linear wave–wave interactions, ultimately affecting esti-
mates in sea state and wave height.
[35] It should be noted that the main differences between

NCWM and WAM result from the physical terms, specif-
ically wave–current interactions, unsteady current effect,
and nonlinear dissipation. These terms are included in
NCWM, but excluded from WAM. Furthermore, NCWM
uses a high-quality stable numerical computational scheme,
the well-known third-order Runge–Kutta method [Gerald,
1977]. By comparison, WAM uses the Euler scheme,
which is a computationally unstable, and has numerical

dispersion and dissipation, as discussed in section 3.1.
Thus, we were able to show that NCWM’s results agree
well with the well-known observed seamount-trapped
waves over Fieberling Guyot and a set of two seamounts
in NE Pacific ocean, whereas WAM does not show these
phenomena. This corroborates a recent study of Singapore
Harbor showing that the agreement of NCWM to observa-
tional data was much better than that of WAM [Lin and
Silver, 2000].

6. Conclusions

[36] For a tidal estuary, as considered in this study,
currents and depth changes are the norm rather than the

Figure 9. As in Figure 6, except no wind, with (a) ideal bottom seamount near the river month, (b)
isolines for significant wave height as a function of time in minutes by NCWM, (c) isolines from WAM
model, (d) density perturbation at 500 m depth (adapted from the study of Beckmann and Haidvogel
[1997] (the solid circles are the mooring sites from the study of Brink [1995]), and (e) Synthetic Aperture
Radar (SAR) image showing surface manifestation of seamount in northwest Pacific Ocean [Etkin et al.,
1991].
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exception. Therefore, any model used to simulate sea state
should be able to simulate ambient currents and depth
changes. Our new wave– current interaction model,
NCWM, has action conservation as its basis and can readily
simulate the dispersion effects due to unsteady currents and
bottom topography. For example, the Hs cycles in Figures 6,
7, 8, and 9 result from action conservation and nonlinear
dispersion in the NCWM formulation, as typified by
@(cwA)/@w as well as the nonlinear effects of the action
flux terms, A

@cgl
@l , A

@ðcgf cosfÞ
@f , and A

@cgq
@q . These terms do not

appear in the WAM formulation and they actually can be
neglected for large-scale motions in deep water without
varying currents. However, in varying currents and shallow
water, these effects can be important. Therefore, the WAM
formulation shows no effect for topography or varying
currents, no Hs cycles, no swell contours.
[37] Differences between the WAM wave model and

NCWM, for example, the Hs cycles following the tidal
variation in space and time, result from NCWM’s ability to
simulate wave–current interactions. This is especially evi-
dent when there are steady or unsteady currents, with rough
bottom topography and finite depth water, typical of a tidal
estuary. Associated effects are sea surface wave features
reflecting the seamount-trapped waves, for example as
presented in the discussion of Fieberling Guyot and as
shown in SAR image over small seamounts near 51�N
and 164�E in the northwest Pacific Ocean.
[38] This ability is not present in WAM. For example, for

a flat bottom finite depth ocean, WAM computationally
annihilates energy due to numerical dispersion and the
dissipation, whereas NCWM is largely conservative
because of its SOSI or third-order Runge–Kutta propaga-
tion schemes. Comparison with analytic results of simpler
cases (as given decades ago by Phillips [1977]) further
suggests that NCWM represents the kinematics more real-
istically than WAM. For strong unsteady tidal currents and
depths, nonlinear dispersion and the action flux terms such
as @(cwA)/@w cannot be neglected. Moreover, it is difficult
to quantitatively estimate the relative importance of these
effects. For example, the effect of first turning off nonlinear
dispersion and then turning off the action flux terms is not
equal to the sum of having both terms turned on. This is
because of the nonlinear relations between nonlinear dis-
persion and the action flux terms.
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