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ABSTRACT

Analysis of previous attempts at numerical simulation of turbulent
flows indicates that the models lacked suitable mechanisms for simulating
the development and maintenance of a three dimensional turbulent energy
cascade. The future practicality of such computations seems to require
develnpmént of equations describing the transport of turbulent energy
into and through the inertial range. It would also be desirable to
simulate some of the effects of three dimensionality in a two dimensional
model. Deardorff has attacked the latter problem, while for the former
two models are described here. The first order model, originally sug-
gested by Smagorinsky, is cast in the form of a variable eddy viscosity
coefficient. It is shown to be consistent with the existence of the
Eolmogoroff inertial range eddy spectrum function at the smallest resolv-
able scale. The second order model requires solving initial wvalue
equations for local stress components and variances, but is expected Eo..
be suitable for use with coarser spatial resolution, perhaps even within

the energy containing range.
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1. Introduction and History

Simulation is the name frequently applied to direct numerical time
integration of hydrodynamic equations as initial value-boundary wvalue
problems. When the pertinent system of equations is highly non-linear,
such numerical integrations have become an important link between experi-
ment and observation and analytic theory, sharing certain properties of
each. There is an extensive literature but relatively few survey articles
or books. This is perhaps because most workers in this field felt that
the tools and techniques were subsidiary to the physical problem under
investigation. With some important exceptions (for example the work
of Fromm and Harlow (1963) on vortex streets), numerical simulation has
been most frequently and successfully applied in the areas of large
scale meteorology and high speed aerndynamics.* The problems in these
two fields of hydrodynamics, although vastly different in most respects,
share the properties that they are typically two-dimensiomal, or nearly.
so, and that turbulence is either unimportant or that it can presumably
be treated by fairly crude approximations. These two properties greatly
simplify the numerical simulation problem, but they eliminate from con-
sideration most other fluid dynamics problem areas, except that of low
Reynolds number flow, for which linear analytic solutions are often

obtainable.

The correlation between two-dimensionality and the relative unim-
portance of turbulence is, of course, no accident. In two-dimensional
flow, the squared vorticity is a property which is conserved except for
viscous dissipation and externmal torques. Fjgrtoft (1953) has shown that
the non-linear energy 'cascade" will then flow principally upward instead
of downward in scale. This process will eventually lead to a separation

of the energy spectrum from the dissipation scales--that is, all the

*For large scale meteorclogy, see recent articles by Smagorins-

sky, et al., (1965), Leith (1965), Mintz (1965), and not too recent surveys

on numerical forecasting by Phillips (1960) and Thompson (1961). Much
of the literature on high-speed flow is in unpublished and often classi-
fied reports, but see e. g. recent articles by Burstein (1964), Haviland
(1965), Gentry, et al. (1965), and Harlow (1964) and an excellent survey
of Russian work (in English) by Belotserkovskii and Chushkin (1965).
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energy will be in large scales which are scarcely affected by viscosity.
In three-dimensional flows, on the other hand, the process of vortex
stretching can and does create small scale circulations and the dissi-
pation of squared vorticity inm a stationary flow is therefore much
greater than its creation by large scale torques. It should not be in-
ferred that small scale motions are always unimportant in such quasi
two-dimensional flows as the atmospheric general circulation. There may
be sources of kinetic energy specifically selective to the small scales,
whose motions may interact with those of larger scales in various ways.
In the fully three-dimensional flows, however, the interaction from the
energy producing scales to those of molecular dissipation occurs in a
direct and continuous process and there is no convenient scale which one

may choose to separate motions of qualitatively different kinds.

If we are to perform simulation experiments on turbulent flows, the
apparent conclusion of the above consideraticns is that we must integrate
over a three-dimensional region with sufficient resolution to include
both the energy producing and dissipation scales. Corrsin (1961) pointed
out the futility of such a program, showing that it would require some
1ﬂ12 mesh-points to simulate even a fairly low Reynolds number laboratory
experiment. Although this number is less preposterous now than it was
five years ago, it still is well beyond present or early future capabili-
ties. Our interests in geophysical fluid dynamics extend to Reynolds
numbers lﬂh greater than those of Corrsin's example, and since the computing
requirements go up about as the cube of this parameter, we may dismiss
such complete simulation as hopeless. Instead we must examine the actual
mechanics of turbulent exchange more critically to see whether it is pos-
sible: 1) to simulate some of the important effects of the third dimen-
sion without doing all the computing necessary to completely include it;
and 2) to simulate the profound but indirect effects that molecular viscos-
ity and diffusion exert on a real fiuid without computing the motions om
all of the interacting scales. In the past, computers have been capable
of handling two-dimensional problems with up to 50 or 75 mesh points in
each direction or three-dimensional problems with less than 20. Since

a number of investigators, including the author, have performed calculations
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aimed at simulating the behavior of turbulent fluids by use of a two-
dimensional computing mesh, it is interesting to consider how they

encountered these problems.

The problem of buoyant convection is a central ome in the atmospheres
of the earth, sun, and some other planets and the ocean, and it is not
surprising that it has for some time been a prime subjeect for numerical
simulation., Most of the early attempts (Blair, et al. (1959), Malkus
and Witt (1959), Ogura (1962), Lilly (1962)) suffered from difficulties
associated with numerical differencing techniques, but with the benefit
of hindsight we can now look past some of those difficulties to see some
of the more significant features, Lilly and Ogura considered the motions
produced after release of a warm buoyant semi-cylinder of air at the
bottom of a bounded fluid. Figure 1 shows this initial conditien. In
Lilly's calculations a non-linear eddy viscosity proportional to local
shear amplitude was used to simulate transfer of energy to scales smaller
than the resolving power of the mesh, while Ogura used a constant viscos-

ity. There were numerous other differences in the calculations, but in

both cases the results indicated a nearly complete lack of the mutual adjust-

ment between turbulence and mean flow characteristics characteristic of
the real world and of laboratory experiments with initial conditions simi-
lar to those used in the calculations. 1In both cases the dissipative
damping was too great initially and later became too small. It is not
difficult to see how this occurred. In two-dimensional flow the average

energy dissipation, € is given by

_

€ - Vg = WEN G
where VY is the kinematic viscosity and q2 iz the mean squared vorticity.
The second equality may be considered a definition for the length scale
L, where E is the mean kinetic energy, but the principal point is that L
must be of the order of the enmergy containing scale because of the impos-
sibility of generation of vorticity except by the large scale torques.

In turbulent flow, on the other hand, the well-known relationship between

dissipation and gross properties is
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where L is also nearly equal to the energy containing scale. The ratio

between expressions (1.1) and (1.2) is proportional to

|
]

|
L R (1.3)

where R is the Reyndlds number. In the above mentioned calculatiom, E
decreased with time after the early organizational phase but L increased
continually, as did the product E% L. Therefore the dissipation computed
by Ogura, with a constant value Df'l}, decreased continuously relative to
the dissipation of an unconstrained three-dimensional flow. Lilly used

a variable eddy wviscosity coefficient with properties to be described in

Section 3, with a magnitude given roughly by

h
v < ET L (1.4)

where h was the calculation mesh spacing. The ratio (1.3) decreased
with time also for this case, in fact more rapidly than that for a com-

stant wviscosity.

In a later set of calculations, Lilly (1964) temporarily abandoned the
variable viscosity in favor of an empirical mixing length approach, in
which a spatially constant eddy viscosity was assumed in such a way that
the computational Reynolds number (1.3) remained constant in time. In
this way a solution was obtained with gross properties comparable to lab-
oratory experiments, although different in various more-or-less important
details. The results were comparable to the applications of mixing length
theory to the better known examples of turbulent flow- jets, wakes, mixing
zones, etc. This is now perhaps generally considered to be a relatively
sterile appreoach, and unsatisfactory for adequate simulation, much less

explanation, of turbulent mechanics.




- B

Similar partially unsatisfactory results were obtained by Deardorff
and Willis (1965), and Fromm (1965) in two-dimensional numerical simu-
lations of parallel plate convection. The calculations led to steady
state or periodically oscillating solutions at Rayleigh numbers for which
real three-dimensional flows are always turbulent. The computed heat
transfer was considerably larger than observed, due to too high a cor-
relation between vertical motion and temperature. Deardorff later attempted
to overcome this difficulty by an interesting artifice (1965). His compu-
tational mesh was a sandwich of three planes, one on each side of the
central one on which the principal integrations were performed. Variables
on the outsides of the sandwich were chosen in such a way that warious
statistical properties of the flow were azially symmetric. These were then
allowed to act on the central plane variables as if they were all parts of
a true three-dimensional mesh. Details of the method and results are pre-
sented in the original paper but in general the method appeared to produce
a partially realistic simulation of turbulence and definitely improved the
heat transfer statistics. More recently, Elder (1966) has reported simu-
lations of a similar flow in which he simply added random turbulence energy
to two-dimensional computations and obtained similar improvements in the
results. BSince there are many interesting problems, including those dis-
cussed above, in which the three-dimensionality is only a property of the
transient turbulence, but not essential to description of the mean flow,

a suitable justification or gemeralization of such quasi three-dimensional

models would represent a tremendous breakthrough.

Much of modern turbulence theory is based on the notion of an inertial
range of the turbulent energy spectrum. This is a scale range supposedly
occurring only in high Reynolds number flows in which turbulent energy flows
down scale, neither being produced from mean flow or potential energy sources
nor being dissipated by molecular viscosity in significant amounts. If
the turbulence is also isotropic, as is assumed, then a simple dimensional
analysis, first performed by Kolmogoroff (1941), indicates that the scalar
energy spectrum function E(M) of the scalar wave number H should be given
by

Ef.ﬂ] = & E'#i H"sfi‘
(1.5)
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where e is a universal dimensionless constant. The dissipation rate,
6 , 1s also the energy transfer rate across a given wave number. In

recent years, measurements of geophysical (Grant, et al. (1962), Pond,

et al. (1965)) and laboratory-produced (Gibson, 1963) turbulent flows of

high Reynolds number have verified this prediction reasonably well, some-
times even when the turbulence was not fully isotropic. Measured values

of e, are near 1.5, and a similar value has been predicted theoretically
by Kraichnan (1966).

We now suggest that the existence and relatively simple properties of
the inertial range might be used to greatly truncate the otherwise im-
possibly large requirements of computer resclution. Let us assume that
the simulation equations are integrated for variables defined and resolv-
able in a scale range which includes most of the kinetic energy, and that
the scale of the calculation mesh lies within the inertial range. It
should then be possible to fit the explicitly calculated motion fields to
the inertial range in a smooth and consistent manner. The fitting con-
ditions would require a continuous removal of energy from the small scale
explicit motions such that (1.4) is maintained. It might be possible to
devise a procedure in which a Fourier analysis is made of the motion field
and the amplitude coefficients reduced and adjusted so that (1.3) is
forced to prevail in the high frequency components. Such a procedure seems
rather lacking in physical content, however, and also would involve arbi-
trary decisions on the actual range of wave numbers to be adjusted. More
importantly, it would in effect consider the entire computational regiom
to be homogeneous, since all parts of the energy spectrum receive contri-
butions from all physical space. If the motion field actually consisted
of one or more turbulent areas embedded in quiescent flow, as for example
in the case of isolated cumulus clouds, then the arbitrary Fourier mode
ad justment would create Gibbs phenomenon cscillations that would effec-

tively transfer enmergy spatially in a very non-physical mamner.

A more physically acceptable procedure is suggested by consideration
of the local interactions between the explicit scale motions and those of
the sub-mesh length scales. The latter cannot be known in detail, but

certain statistical probablilities can be established with the aid of the
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Kolmogoroff spectrum function. In the remainder, I will describe a first
and second order theory for the interactions. Most of the detailed deri-
vations and analysis are available in an unpublished report (Lilly, 1966).
For simplicity, the results are presented here for the case of an incom-

pressible constant density fluid.
2. Mean Flow and Turbulence Equations

1f F is any hydrodynamic variable, a function of space and time,

then we define the spatial mesh cube average to be

: A
E{I'J "‘";xh"")"' _:;1 5& F&“#'Jh*ﬂlﬂj*h_ﬁ) dy, dy. 4y,
-2-% %

(2.1)
where X5 Xy xj, and t are the spatial Cartesian coordinates and time,

and h is the mesh separation distance. The Navier-Stokes and continuity

equations for an incompressible fluid case may be written in tensor no-

tation
2 s
W, gy, 2 () =P
it X i f -
(2.2)
0w 5
X, (2.3)
Upon forming the mesh box average of these, we obtain
0, - UL j_(_ 2 ) i Ezl
S *u‘ﬁh*w;%*?E =315 © TR (2.4)

o P (2.5)
=
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where T, is a Reynolds stress given by

T = -(Wve ~Wd )+ 30 € (2.6)

E is the small scale kinetic energy,
—_— - L
E= (U —Y )/2 (2.7)

and §,is the Kronecker delta.

The separation of a gradient part from the stress tensor derivatiwve
is done so that the sum Ty = 0; thus the normal stresses vanish in iso-
tropic turbulence. Equations (2.4) and (2.5) form the system that must
be integrated in a simulation problem with limited spatial resolution, and
the central problem is to evaluate the Reynolds stresses in terms of the
averaged quantitites. This problem may be attacked directly by forming

the conservation equations for the stress components, which are
» Ty ~ 3T 2'T:; 4] E!ll du, _ i J"-'- )‘ 2, [LQEY [T ¥
— + A, — - ‘ﬂ 3_3(,:' 35’;_ )4. ax ax 7 % FE }:L)

MER MRS R S

¥, :

—_—

LY Nl A, D, 2 2
= [ Tﬂ. ﬁk. +T"‘ il’ 35;1 I?'L B\._X-‘* r LY + ﬁh—[uiuju; ‘uj_bl]

- = pemdnec | S0 Ta -2 P ot
- 0 ukul-ulu,-uﬁluuuh- ‘J[ Uy =ZugMeu, —Wuy +lugu,

o3
* :L{u _;jf— ..uh'fui - W l)"'su “51 -u"%
Since Tfj = ‘Th , (2.8) repréaentsrbnly six separaté equatluns, and stince
Tw = 0, only five of these are independent. A sixth independent quad-

ratic equation is that for the small scale energy E,

[R3

e (2.9)
+ (}Ex +h:i\ - ua g O Ui U U +Elﬁh
¥ 131 "E '_tl: -_i:— - T = Li; U Uy i
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As is well known in turbulence theory, the quadratic equations do

not succeed in closing the system. since they introduce the triple

products uiuju ete. In addition the pressure velocity products are

kl
difficult to evaluate. Pressure is not considered an independent vari-
able, since it may be obtained from (2.2) and (2.3) by solution of the

Poisson equation

-ﬂ'l{[‘PjE} = y (u;u;)
N - 2r; DN, (2.10)

This shows that the pressure field derivatives are of the order of, and
determined by, the non=-linear terms, but are not local, since the solution
of a Poisson equation at a given point depends on the forcing function
throughout all physical space. The usefulness of (2.8)-(2.9) depends on
our obtaining useful approximations to the triple product and pressure

velocity product terms.

3. First Order Theory

About the simplest reasomnable closure assumption is the eddy wviscos-
ity hypothesis. The Reynolds stresses are assumed proportional to the

rates of strain, or deformation, of the large scale flow, i.e.,

U, :
Ca, = K Lag;. > ) - xDy (3:1j
where K is the eddy wviscosity, assumed to be always positive and a functiom
of the averaged flow variables, and Dij iz a component of the mean flow
deformation tensor. There seems to be no definite experimental data avail-
able in the literature which would establish the accuracy of this hypo-
thesis in its present form. Simple energy arguments suffice teo show that
the stress and mean deformation tensors must be positively correlated if
an inertial sub-range is maintained, and (2.8) shows that the mean flow
deformations tend to generate parallel stresses from the second part of

the fifth term, but the correlation may be weak.
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Smagorinsky (1963) suggested a form for the eddy viscosity coeffi-
cient:

K = W AT

(3:2)

where h is the mesh separation distance, D the deformation tensor ampli=-
tude (D = IDij\), and k is a universal constant, somewhat analogous to
the Karman constant of boundary layer theory. It can be shown that this
formula is consistent with the existence of the Kolmogoroff spectrum
function (1.4) for scales near h, provided that

-3y
~ .23
R (3.3)

The essence of the proof is simple. In the case of steady state and
homogeneous turbulence the energy equation, (2.9) takes the simple form
] ;
€ - 3 Ty Dby

} (3.4)

where € , the dissipation rate, is equal to the sum of the last two
terms in the square brackets on the left side of (2.9). Upon substitution

of (3.1) and (3.2) this may be written

T o, s
é = (k‘,‘h‘] {D/'l\] (3.5)

: Z. : . ; 7
An exact expression for D involves some rather intricate integrals. To

a fairly good approximation, however, it is equal to twice the vorticity

spectrum function integrated over wave numbers less than :E , that is
T/h /3
3 LS
¥ L;j HEE(A)dH = 3y Ef] (T)
D = : (3.6)

where the equality is obtained by substitution of the Kolmogoroff spectrum
function, (1.4), for E(#) and subsequent integratiomn. T/h is the largest
wave number unambiguously representable on a finite difference mesh. Sub-

stitution of (3.6) into 3.5) yields the result, (3.3).
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4. Second Order Theory

In the second order theory a direct stress-strain proportionality is
not assumed. Instead, equations (2.8) and (2.9) are used in non-trivial
but substantially simplified forms . such that, in a steady state homogeneous
turbulent flow, they reduce to the first order system, (3.1)-(3.3). The

simplified equations are

+ U

0Ty g, T . «
at ¥y S

— Ef ] J EY Y
B0l S k,h T +a'}t(K"‘ ™

)

1h

0E _ QJE L. D E 2 aE
it —~ = ~—T. Dy -ec= + & 13
e T i L & ‘an( ST .2)

where K, is an eddy diffusive coefficient for the covariances, given by

T

the formula
Yo
Ke = bhE (4.3)

and c, kl, and kz are dimensionless constants. The terms of (4.1) are
identified with those of (2.8) as follows: the first two on the left

are identical; the molecular viscosity terms in (2.8) are neglected; the
first and part of the second term on the right of (2.8) are identified

with the first in (4.1), and the remainder of the second and the third of
(2.8) with the second in (4.1); the last term in (4.1) is considered an
approximation to the last in (2.8). 1In (2.9) the molecular dissipation
term is not neglected, but is approximated by the second term on the right
of (4.2); the last terms on the right are to be identified with each other,

and all others are exactly identical. 1In the remainder of this section

we attempt to justify the above approximations.

The dissipation term in (4.2) arises directly from the assumption that
the mesh interval h lies within the inertial sub-range. To a similar

approximation as that used for evaluation of D2 in (3.6), we may express
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the turbulent energy, E, as the integral of the Kolmogoroff spectrum from

H =T/h to infinity, i.e.,

o3 " ”_gﬁ Sy 1 Elh (h)‘fi
E = |%E g, i (4.4)
/i
The expression for the dissipation rate follows directly, where
: (E T& 43
C = T (3« ol (4.5)

In steady state homogeneous turbulence the terms on the left of (4.1) and
(4.2) and the diffusion terms vanish. The remaining terms may be solved

to yield

£~ 32 BD 4.6)

k.
, ko f e W DDy
& (4.7)

Equation (4.7) is clearly identical to (3.1)-(3.2), provided that

LT AL T (4.8)

The first term on the right of (4.1) is obtained from consideration
of the effects of application of a sudden strain on an initially isotropic
and homogeneous field of turbulence. The analysis leading to this term
follows that of Batchelor (1956) and Townsend (1956), which stem from
earlier work by Taylor (1935). The result shows that the effect of the
pressure velocity product (second term on the right of 2.8) is to reduce
by 60% (2/3 to 4/15) the stress generation by the velocity terms alone
(third term on the right). This result is exact, however, only at the
initial instant when the turbulence is isotropic. The seond term on the

right of (4.1) was chosen in form and magnitude so that in the steady state
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homogeneous case the system would reduce to the first order theory. By
itself, however, it is a term which tends to reduce the stress components
in a formally similar way to the dissipation term in (4.2), although the

processes it represents probably have little or nothing to do with mole-

cular dissipatioen.

The last terms on the right of (4.1) and (4.2) are rather arbitrarily
chosen approximations to the diffusion terms. No justification is offered
for the form of these terms except the intuitive notion that turbulence
must on the average diffuse itself down-gradient. It is assumed that
these terms will not generally be of any great importance. The wvalue
of the coefficient kz is even less justifiable but k, = k., seems a reason-

2 1
able initial choice. This choice would make K¢ = K.

5. Comparison with Experiment

Although there are probably no existing measurements designed or
completely suitable for verification of the above model, Townsend's (1954)
experiments with rapidly distorted turbulence provide a partial test. 1In
these experiments a grid generated field of turbulence in a wind tunmel
enters a section of the tunmel in which it is squeezed in one lateral
direction and stretched in the other, the total cross-section remaining
unchanged. Stresses and anisotropies are rapidly generated and the field
appears to approach a new equilibrium until the strain rate is eventually
relaxed. Townsend presents his results in terms of two structure para-

meters 5 KI and KZ’ which in the present notation are equivalent to

’T]; - ’Tll
K| - - (5:1)
- ;i
T E o+ T
3 T,
SN E B (5.2)

The equivalence is not exact because of the difference in definition of
the turbulence between the experiment and the model. The scale of the
experimental turbulence is much smaller than the tunnel dimensions and if

we visualize a computational mesh interval equal to this scale, then the
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identification seems reasonably close. The experimental measurements are
made, however, on the energy containing scale and not on the inertial range.,
It is doubtful whether an inertial range even exists at the Reynolds number
used. The dimensional relations indicated in equations (4.1) and (4.2) may
still be valid, but the coefficients are likely to be different. Neverthe-
less it is interesting to compare the results of the experiments with cal-

culation from the theory.

Equations (4.1) and (4.2), in their steady-state form, have been inte-
grated numerically using upstream conditions corresponding to those of
Townsend's experiment. The diffusion terms were meglected, a valid approxi-
mation when the scale of the turbulence is much less than that of the
strain. The coefficients used were those evaluated in (4.5), (4.8).

Fig. 2 shows the result superimposed upon the data from Townsend's experi-
ments. The agreement of the present theory with observations is startling
but partly spurious, since a more correct evaluation of ¢ and k, leads

1

to about a 30% reduction in the asymptotic value of K One is then

1
tempted to arbitrarily make a small change in the coefficients to force
the results to agree with experiment, but perhaps a better agreement should

not be expected from the nature of the comparison.

6. Discussion

The first order system, (2.4)-(2.7), (3.1)-(3.3) consists of four
equations in four unknowns. HNumerically these involve forward time
integration of the three velocity component equations and solution of a
Poisson equation to determine the third term of (2.4). The second order
system adds six additional time-dependent equations, (4.1), (4.2), to be
forward-integrated and six new unknowns, The storage requirements are there-
fore more than doubled over what already seemed a formidably large problem.
If we look at a geophysical problem, atmospheric cloud convection, we see
that three new mean variables are added (temperature, humidity, and liquid
water) and nine turbulent flux componments. In the second order system there
would then be 21 time dependent equations in place of six in the first
order system. Formally, neither system can be fully justified except for
nearly homogeneous, nearly isotropic turbulence, but the practical limits

of this requirement are unknown. From considerations of their form, the
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second order equations would seem to be capable of application at lower
spatial resolution than the first order system, perhaps at the low wave
number end of the inertial range. The results of the experimental compari-
son suggest that they may even be used within the energy containing range,

with small changes in the coefficients.
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Figure 1. Initial conditions for numerical simulation of a two-dimensional

thermal convection problem (Lilly, 1962). The isolines are of potential
temperature in degrees K. Both lateral boundaries are reflective, so that
the left boundary actually represents the middle of a thermal "bubble."
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Figure 2. Distortion of an initially homogeneous isotropic turbulence

field by a plene strain. The abscissa is proportional to the total strain
and the ordinates K, and K, are proportional to the stresses generated

in strained and unstrained”directions, respectively. The plotted points are
taken from Townsend (1954) and the solid lines are solutions of equations
(4.1),




