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A theory is initiated, based on the equations of motion of a gas, for the purpose of estimating 
the sound radiated from a fluid flow, with rigid boundaries, which as a result of instability 
contains regular fluctuations or turbulence. The sound field is that which would be produced 
by a static distribution of acoustic quadrupoles whose instantaneous strength per unit volume 
is pViVj+Ptf—o%p8ij, where p is the density, the velocity vector, p tj the compressive stress 
tensor, and a0 the velocity of sound outside the flow. This quadrupole strength density may 
be approximated in many cases as p0v{Vj. The radiation field is deduced by means of retarded 
potential solutions. In it, the intensity depends crucially on the frequency as well as on the 
strength of the quadrupoles, and as a result increases in proportion to a high power, near the 
eighth, of a typical velocity U in the flow. Physically, the mechanism of conversion of energy 
from kinetic to acoustic is based on fluctuations in the flow of momentum across fixed 
surfaces, and it is explained in § 2 how this accounts both for the relative inefficiency of the 
process and for the increase of efficiency with U. I t is shown in § 7 how the efficiency is also 
increased, particularly for the sound emitted forwards, in the case of fluctuations convected 
at a not negligible Mach number.

1. I n t r o d u c t io n

The subject of this paper is sound generated aerodynamically, that is, as a by­
product of an airflow, as distinct from sound produced by the vibration of solids. 
The airflow may contain fluctuations as a result of instability, giving at low Reynolds 
numbers a regular eddy pattern which is responsible for the sound produced by 
musical wind instruments, and at high Reynolds numbers an irregular turbulent 
motion which is responsible for the roar of the wind and of jet aeroplanes; or they 
may be inherent in the mechanism for producing flow, as in the siren, or in machinery 
containing rotating blades. Since the pressure fluctuations within the airflow are 
in the main balanced by fluctuations of fluid acceleration, it is not clear even to 
within a very large factor what proportion of their energy is radiated as sound. It 
is true that the whole pressure fluctuation may play its part in generating sound if  
it is provided with a solid sounding-board;* but all such effects requiring the 
vibration of solid boundaries are here excluded, and not classed as aerodynamic.

Earlier studies of sound generated aerodynamically are almost all concerned with 
frequency. Experiments have been directed towards showing that the frequencies 
in the flow are identical with those of the sound produced, and towards relating 
them with other constants of the flow; theory has been concerned with explaining 
the production of such frequencies in the flow by instability. The theory of the 
instability was further illuminated by the experiments showing how oscillations

* For example, a loose panel in the wall of a wind-tunnel may produce very intense noise 
in sympathy with pressure fluctuations in the boundary layer, greater by a large factor than 
the noise emitted when the wall is rigid.
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introduced acoustically at the orifice of a jet or flame may be rapidly amplified 
under certain conditions; in this case the fluid flow shows a very sensitive response 
to sound waves from an external source.

But the evolution of a general procedure for estimating the intensity of the sound 
produced in terms of the details of the fluid flow, which this paper attempts, is one 
fundamental question, perhaps the only one, which escaped the attention of the 
great physicists who in the last century created the science of sound. It is true that, 
with many instruments which generate sound aerodynamically, the acoustic power 
output is known as a function of the various conditions of operation; but, neverthe­
less, a study of its relation to the actual flow has not been attempted, largely because 
in most cases the latter has not been seriously investigated. The problem is a 
fundamental one because it is concerned with uncovering the mechanism of 
conversion of energy between two of its forms, namely, the kinetic energy of 
fluctuating shearing motions and the acoustic energy of fluctuating longitudinal 
motions.

This paper is concerned with the general problem: given a fluctuating fluid flow, 
to estimate the sound radiated from it. Part II will take up the question of turbulent 
flows proper, with special reference to the sound field of a turbulent jet, for which 
a comparison with experiment is possible.

The problem’s utility may be questioned on the grounds that we never know 
a fluctuating fluid flow very accurately, and that therefore the sound produced in 
a given process could only be estimated very roughly. Indeed, one could hardly 
expect, even with the great advances in knowledge of turbulent flow which have 
lately been made, that such a theory could be used with confidence to predict 
acoustic intensities within a factor of much less than 10. But, on the other hand, 
one could certainly make no confident estimate even to within a factor of 1000 on 
existing knowledge, and further, the range of intensities in which one is interested 
is at least 1014. Also, nothing is known at present concerning how different sorts of 
changes in a flow pattern may be expected to alter the sound produced, and this is 
a serious impediment to those experimenting in novel fields of aerodynamic sound 
production. Clearly such knowledge can arise only from a process in two parts, 
the first considering what sort of fluctuating flow will be generated, and the second 
what sound the flow will produce.

The proposed method of attack, in which first the details of the flow are to be 
estimated, from aerodynamic principles not concerned with the acoustic propagation 
of fluctuations in the flow, and secondly the sound field is to be deduced, precludes 
the discussion of phenomena where there is a significant back-reaction of the sound 
produced on the flow field itself. But such back-reaction is only to be expected when 
(as in wind instruments) there is a resonator close to the flow field. All the evidence 
of experiment, and of the theory to be developed below, is that the sound produced 
is so weak relative to the motions producing it that no significant back-reaction can 
be expected unless there is such a resonator present to amplify the sound.

Actually it seems likely from the theory in its present form that quantitative 
estimates of the sound field will be obtainable (as will be seen in part IT) only for 
the sound radiated into free space; and thus they will neglect not only neighbouring
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resonators but also all effects of reflexion, diffraction, absorption or scattering by 
solid boundaries. But the general result of these effects could often be sketched in 
subsequently, in the light of existing knowledge. Again, the estimates refer only to 
the energy which actually escapes from the flow as sound, and to its directional 
distribution; thus the departures from inverse square-law radiation which are to be 
expected within a very few wave-lengths of the flow, due to a standing wave pattern, 
will not appear in the estimates, although they are implicit in the general theory. 
As a final restriction the theory is effectively confined in its application to com­
pletely subsonic flows, and could hardly be used to analyze the change in character 
of the sound produced which is often observed on transition to supersonic flow, at 
least if, as Cave-Browne-Cave suggests, it is due to high-frequency emission of 
shock waves.

Because the material of parts I and II is likely to be of interest to workers in 
acoustics, turbulence theory, gas dynamics and aeronautical engineering, and 
because it draws ideas from a number of other parts of the physical sciences, the 
author has thought it desirable to develop the theory less briefly than is customary, 
so as not to assume an intimate knowledge on the part of the reader of the less 
salient points of any of these subjects. Since also the method of part I is intended to 
supply a fundamental basis for further work on the subject (of which part II will 
be only a first ad hoc attempt), as well as to answer the question concerning the 
mechanism of energy conversion, it has been thought desirable to devote a further 
introductory section towards justifying the choice of method and giving a pre­
liminary explanation of it.

The author gratefully acknowledges the assistance in writing parts I and II 
which he obtained from discussions with G. K. Batchelor, H. Cohen, J. H. Gerrard, 
W. A. Mair, I. Proudman, M. Schwarzschild, H. B. Squire, Sir Geoffrey Taylor, 
E. Wild and A. D. Young.

2. D e s c r ip t io n  a n d  j u s t if ic a t io n  o f  t h e  a p p r o a c h  u s e d

Considering a fluctuating fluid flow occupying a limited part of a very large volume 
of fluid of which the remainder is at rest. Then the equations governing the fluctua­
tions of density in the real fluid will be compared with those which would be appro­
priate to a uniform acoustic medium at rest, which coincided with the real fluid outside 
the region of flow. The difference between the two sets of equations will be considered 
as if it were the effect of a fluctuating external force field, known if the flow is known, 
acting on the said uniform acoustic medium at rest, and hence radiating sound in 
it according to the ordinary laws of acoustics.

This scheme has two advantages. First, since we are not concerned (see § 1) with 
the back-reaction of the sound on the flow, it is appropriate to consider the sound 
as produced by the fluctuating flow after the manner of a forced oscillation. Secondly, 
it is best to take the free system, on which the forcing is considered to occur, as a 
uniform acoustic medium at rest, because otherwise, after the sound produced has 
been estimated, it would be necessary to consider the modifications due to its 
convection with the turbulent flow and propagation at a variable speed within it,
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which would be difficult to handle. But by the method just described all these 
effects are replaced by equivalent forcing terms and incorporated in the hypo­
thetical external force field.

The comparison is made most easily if we write the equation expressing conser­
vation of momentum in the form first used extensively by Reynolds. This is equi­
valent simply to considering the momentum contained within a fixed region of 
space as changing at a rate equal to the combined effect of (i) the stresses acting 
at the boundary and (ii) the flow across the boundary of momentum-bearing fluid. 
It is easy to see that the latter part is equivalent to an additional stress system. 
This may be represented symbolically by pvt and referred to either as the ‘mo­
mentum flux tensor ’ (i.e. the rate at which momentum in the xi direction crosses 
unit surface area in the xi direction; it is worth noting that similarly the real stresses* 
are simply a mean momentum flux tensor for the peculiar motions of the molecules) 
or as the ‘ fluctuating Reynolds stresses ’ (to distinguish them from their mean value, 
minus the product of means pvfip  which is called ‘ Reynolds stress ’ in the theory of 
turbulence).

Thus the Reynolds momentum equation already expresses that the momentum 
in any fixed region of space changes at a rate exactly the same as if the gas were 
at rest under the combined action of the real stresses,* say p {j, and the fluctuating 
Reynolds stresses pvtVj. On the other hand, a uniform acoustic medium at rest 
would experience stresses only in the form of a simple hydrostatic pressure field, 
whose variations would be proportional to the variatioqs in density, the constant 
of proportionality being the square a\j of the speed of sound. Hence the density 
fluctuations in the real flow must be exactly those which would occur in a uniform 
acoustic medium subject to an external stress system given by the difference

Tn =  pViVj+py-alpSy  (1)

between the effective stresses in the real flow and the stresses in the uniform acoustic 
medium at rest.

It is important to notice (as the equations will show in § 3) that this analogy 
approach to the problem of aerodynamic sound production is an exactly valid one. 
It merely assumes that the mass in a given region changes at a rate equal to the 
total inward normal momentum, and that the momentum changes at a rate equal 
to the total inward normal component of the complete stress system of Reynolds. 
It makes no simplifying assumption concerning the real stresses and their relation 
to rates of strain. The external stress system Ttj incorporates not only the generation 
of sound, but its convection with the flow (in part of the term its propagation
with variable speed and gradual dissipation by conduction (each in part of the 
difference between pressure variations and a% times the density variations), and its 
gradual dissipation by viscosity (in the viscous contribution to the stress sy stem ^ ).

In practice the dissipation of acoustic energy into heat, by viscosity and heat 
conduction, is a slow process; in the atmosphere only half the energy is lost in the 
first mile of propagation even at the frequency (4kc/s) of the top note of the piano-
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forte, while for other frequencies the required distance varies as their inverse square. 
The contribution of the viscous stresses to is therefore probably unimportant, 
at least for phenomena on a terrestrial scale of distance. For flows in which the 
temperature departs little from uniformity the differences between the exact 
pressure field p8if and the approximate one are similarly unimportant, and
then the principal generators of sound are the fluctuating Reynolds stresses, corre­
sponding to variable rates of momentum flux across surfaces fixed in the fluctuating 
fluid flow.

Now at this stage the question concerning the mechanism of conversion of energy 
from the kinetic energy of fluctuating shearing motions into the acoustic energy of 
fluctuating longitudinal motions is already effectively answered. The answer is 
most illuminating if one lists three different ways in which one can cause kinetic 
energy to be converted into acoustic energy, as follows:

(i) By forcing the mass in a fixed region of space to fluctuate, as with a loud­
speaker diaphragm embedded in a very large baffle.

(ii) By forcing the momentum in a fixed region of space to fluctuate, or, which is 
the same thing, forcing the rates of mass flux across fixed surfaces to vary; both 
these occur when a solid object vibrates after being struck.

(iii) By forcing the rates of momentum flux across fixed surfaces to vary, as 
when sound is generated aerodynamically with no motion of solid boundaries.

This is a linear sequence of methods of energy conversion, concerning which two 
facts are important. First, each is less efficient than the preceding one. Secondly, 
this statement becomes increasingly true as the frequency is lowered, or more 
precisely as the wave-length of the sound produced is increased.

These two facts, as far as the relation between methods (i) and (ii) is concerned, 
are now a commonplace of acoustics, having been first fully realized and understood 
by Stokes, whose explanation of the reduced acoustic power of a bell when hydrogen 
is added to the air in which it is sounded (so that the wave-length is augmented) is 
quoted at length in Rayleigh’s Theory of sound. In brief the physical explanation 
is that any forcing motion on a scale comparable with the wave-length is balanced 
partly by a local reciprocating motion, or standing wave, and partly by com­
pressions and rarefactions of the air whose effect is propagated outwards. The larger 
the wave-length in comparison with the scale of the forcing motion, the more 
completely can the motion be fully reciprocated by the local standing wave. Mathe­
matically, the difference is between the fields of an acoustic source and an acoustic 
dipole, which represent fluctuating rates of production at a point of mass and 
momentum respectively, so that motions of types (i) and (ii) can be represented as 
due to distributions of sources and dipoles respectively.

For method (iii), the Stokes effect is even more marked. Indeed, Stokes himself 
showed that if the surface of a sphere vibrates in such a way that its volume and the 
position of its centroid remain fixed, and the associated wave-length is twice the 
circumference, the acoustic power is about oo what it would be if motion near 
the sphere were forced to be purely radial (so that the lateral reciprocating motion 
could not be set up and the forcing were like that due to a number of independent 
point sources). The corresponding factor for a rigid vibration is yj. A similar effect
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occurs in the more complicated conditions of aerodynamic sound production; it is 
the radiation due to the minute fraction of the fluctuation in momentum flux which 
is not balanced by a local reciprocating motion that we must seek to determine. 
Mathematically, we have to find the radiation field of a distribution of acoustic 
quadrupoles.

Now the approach described above, in which the sound is shown to be that which 
would be produced by the externally applied stresses (1), gives at once the local 
quadrupole strength per unit volume. For since a dipole is equivalent to a con­
centrated fluctuating force, it follows that a stress field, which produces equal and 
opposite forces on both sides of a small element of fluid, is equivalent to a dis­
tribution of quadrupoles whose instantaneous strength per unit volume is pro­
portional to the local stress. The radiation field of this quadrupole distribution can 
at once be written down. These deductions will be given at greater length in § 4.

Thus in this' approach the influence of the minute fraction of the fluctuations 
which is not balanced is at once isolated. The author believes that any approach 
which differed from his up to this stage, by approximating too early, might well 
throw away the one small part of the sound field which it is desirable to keep, or 
swamp it with much larger terms, as, for example, if eddies were supposed to emit 
sound like vibrating rigid spheres.

One important conclusion from the above qualitative discussion concerns those 
flows, referred to in § 1, the fluctuations in which are inherent in the mechanisms 
for producing them, these mechanisms being fluctuating sources of matter for the 
siren, or of momentum for machinery containing rotating blades. The conclusion in 
question is that the strictly aerodynamic contribution to the sound produced, namely, 
the quadrupole field arising from the oscillations in momentum flux across fixed 
surfaces in the flow, will be less important than the direct sound due to the source 
or dipole distributions corresponding to the puffs of air or the motion of the blades 
respectively. This conclusion, is borne out by the success of theories of propeller 
noise (at least as regards the more intense, low frequency, part) which simply replace 
the propeller by a rotating line of dipoles. The conclusion could perhaps bear further 
investigation, but nevertheless, on the basis of it, the remainder of part I and, later, 
part II will treat only of flows with fixed boundary conditions, i.e. flows in which the 
fluctuations are solely the result of instability.

In part I the formula for sound radiation is not applied to a particular case, but 
only used to make a general dimensional analysis of the intensity field in terms of 
typical velocities and lengths in the flow. The result of this analysis is strongly 
affected, by the considerations just given concerning quadrupole fields and the 
Stokes effect. The amplitude of the quadrupole strength per unit volume is 
evidently proportional to the square of a typical velocity U in the flow; but the 
amplitude of the radiation field due to a quadrupole is proportional to its strength 
multiplied by the square of its frequency (the Stokes effect). Since in many cases 
a typical frequency will be roughly proportional to the velocity U, it follows that 
the amplitude of the sound generated by a given fluctuating flow will increase 
roughly like the fourth power of a typical velocity U in the flow. Hence the intensity 
will increase roughly like U6. This is the cardinal result of § 6, which also considers

On sound generated . I
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the effect of Reynolds number and Mach number upon it, and discusses the acoustic 
efficiency.

Lastly, in § 7, the formulae for the radiation field are rewritten for the case in 
which it is convenient to describe the fluctuating flow in terms of a frame of reference 
which is not stationary with respect to the undisturbed atmosphere; this work is 
somewhat analogous to the Lienard-Wiechert theory of the field of a moving elec­
tron. It is found that for fluctuations in momentum flux across a surface moving 
through the undisturbed atmosphere the Stokes effect may be greatly mitigated 
in respect of radiation emitted forwards. This theory will be made use of in part II 
to estimate the influence of Mach number in promoting departures from the power 
laws indicated by dimensional analysis.
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3. T h e  e q u iv a l e n t  e x t e r n a l  s t r e s s  m e l d

The propagation of sound in a uniform medium, without sources of matter or 
external forces, is governed by the equations

l  + ̂ (̂ () = 0’ “  °> (2)
of which the first is the exact equation of continuity, the second is an approximate 
equation of momentum, and the third follows by eliminating the momentum 
density pvi from the other two. Here p  is the density, vi the velocity in the xi 
direction, a0 the speed of sound in the uniform medium, and any suffix repeated 
in a single term is to be summed from 1 to 3.

On the other hand, the exact equation of momentum in an arbitrary continuous 
medium under no external forces is

0 0
§(#»<) f . g (3)

in Reynolds’s form. Here pti is the compressive stress tensor, representing the force 
in the xi direction acting on a portion of fluid, per unit surface area with inward 
normal in the xt direction. Equation (3) is most simply derived from the physical 
argument given in §2. Alternatively, it can be obtained from the momentum 
equation in the more familiar Eulerian form by adding a multiple of the equation 
of continuity.

Hence the equations of an arbitrary fluid motion can be rewritten, as suggested 
in § 2, as the equations of the propagation of sound in a uniform medium at rest 
due to externally applied fluctuating stresses, namely, as

dp 0 A 3 / v o dp dTid d2p 
° ’ dt^pVi) + a°d^i ~ ~ d x J i W •ajj V2/o 8 %

dxt dxj *

where the instantaneous applied stress at any point is

Tij =  pVi Vj +Pij — a^pSy. (5)

Equations (4), of which the middle one is simply (3) rewritten, are chosen as the 
basic equations of the theory of aerodynamic sound production for reasons fully 
discussed in § 2.
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For a Stokesian gas the stress tensor p ti is given in terms of the velocity field
by the equations

Pij=P$U +P
dVi
dxj dxi 3 \0% a >

where ji is the coefficient of viscosity, and the pressure p  is related to the other 
thermodynamic variables as for the gas at rest. Atmospheric air may be taken as a 
Stokesian gas for practical purposes.

It is emphasized again that all effects such as the convection of sound by the 
turbulent flow, or the variations in the speed of sound within it, are taken into 
account, by incorporation as equivalent applied stresses, in equations '(4); this 
fact is evident, since the equations are exactly true for any arbitrary fluid motion. 
However, for an airflow embedded in a uniform atmosphere at rest (a case important 
in practice) the stress system (5) can be neglected outside the flow itself. For there 
the velocity vi consists only of the small motions characteristic of sound, and it 
appears quadratically in (5). Also the viscous stresses in p ti> and the conduction of 
heat (which causes departures of P~Pofr°m al(P~Po)> where the suffix zero signi­
fies atmospheric values) are both very small effects. (Actually the solution of the 
equations of sound, taking into account these effects of viscosity and heat con­
duction, was effected by Kirchhoff. His analysis, given in Rayleigh’s Theory of 
sound, shows that the stresses equivalent to the effects of viscosity and heat con­
duction simply cause a damping of the sound due to the conversion of acoustic 
energy into heat by these processes, which as indicated in § 2 is negligible except 
for very large-scale phenomena.) Thus outside the airflow the density satisfies the 
ordinary equations of sound (2), and the fluctuations in density, caused by the 
effective applied stresses within the airflow, are propagated acoustically.

I f  it is assumed that the viscous stresses in Ty (see (6)) can also be ignored in the 
flow (this point will be returned to), then it should be noted that at low Mach 
number, provided that any difference in temperature between the flow and the 
outside air is due simply to kinetic heating or cooling (that is, heating by fluid 
friction or cooling by rapid acceleration), T{j is approximately with a pro­
portional error of the order of the square of the Mach number M. This results from 
the fact that relative changes in density under these conditions are known to be of 
order M 2, while the ratio of fluctuations in pressure to fluctuations in density departs 
from ajj by a proportional error of order M 2. The resulting approximate form

^ H - P ^ i (V
of the equivalent applied stress field might have been found from an approach 
which made approximations in the equations of motion right from the start, but 
there would then have been no guarantee that, in obtaining this main contribution 
to the quadrupole field, source and dipole fields of small strength might not have 
been neglected, whose contribution to the sound radiated might (§ 2) be relatively 
large.

4. Source, dipole  an d  qtjadrtjpole radiation  field s

The theory of the quadrupole radiation field due to the equivalent applied stresses 
will be given at some length. This is because quadrupole radiation has hitherto
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played a relatively small part in physics, and therefore the subject is not covered 
adequately in books, and is probably unfamiliar to most readers. The confusion 
concerning the subject is demonstrated particularly by the fact that the term 
*quadrupole radiation’ is used in at least two senses besides its proper one: namely, 
as the part of the intensity field which falls off as the inverse fourth (or, sometimes, 
sixth) power of the distance from the source, and as the part of the amplitude field 
expressible in terms of spherical harmonics of the second order, The proper meaning 
is of course a certain limiting case of the field of four sources; at large distances this 
obeys the inverse square law of radiation; and its amplitude field includes spherical 
harmonics of zero order as well as of the second order.

But to analyze the subject clearly and relate it to the generation of sound by 
externally applied stresses it is convenient to recall parts of the theory of the 
generation of sound by simpler mechanisms. First, if fluctuating sources of addi­
tional matter are continuously distributed throughout part of the medium, so that a 
mass Q(x, t) per unit volume per unit time is introduced at x  at time t, then equations 
(2) are modified by an additional term Q on the right of the first equation, and 
hence an additional term dQ/dt on the right of the third equation. I f  the sources 
of matter are concentrated into a point, where the total rate of introduction of mass 
is q(t), and if the medium is unbounded, then the density field is given by the equation

P~Po
1 q \ t - r ja Q)

(8)4 n a \ r
where r is the distance from the source. When the sources of matter are not so con­
centrated, the density field is given by a volume integral of terms such as (8), namely,

where the integral is taken over all space, and is of the kind referred to in electro­
magnetic theory as a retarded potential. But if solid boundaries are present, 
reflected and diffracted waves must be added to (8) and (9).

Since in (8) it is only the rate of change with time of the rate of introduction of 
mass q(t) which affects the sound produced, it is this derivative q'(t) which will 
here be called the instantaneous strength of the concentrated source. Similarly, 
dQ/dt is called the source strength per unit volume; note that this source strength 
density is precisely the term appearing on the right of the third of equations (2) when 
continuously distributed fluctuating sources of matter are present. The nomen­
clature just introduced is not by any means standard, but (at least in this paper) 
is very convenient, especially since it means that the instantaneous strength of 
a dipole is equal to the equivalent applied force, as will shortly be seen.

If, in fact, sources of matter are absent, and the sound is generated instead by 
a fluctuating external force field Fi per unit volume in part of the medium, then 
equations (2) are modified by an additional term Fi on the right of the second 
equation, and so by an additional term — dFijdxi on the right of the third equation. 
Thus such a fluctuating force field is equivalent (in the density fluctuations it 
produces) to a source distribution whose strength per unit volume is equal to the 
flux of force inwards, — dFijdxi.
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But it would be most misleading to base any estimate of the acoustic power output 
of the fluctuating force field on the order of magnitude of this equivalent source 
strength per unit volume. This is because, at any one instant, the total source 
strength is zero, as being the integrated flux of a quantity which vanishes outside 
a limited region. Hence the sound given by (9) at large distances (where | x  —y |_1 
can effectively be replaced by x~x) is simply due to the fact that the values of Q 
therein do not quite cancel out because they are not simultaneous values throughout 
the fluctuating force field. Evidently if Fi varies with time only slowly, that is, 
if the frequencies are low, this may mean relatively little energy radiation (com­
pare § 2).

Actually of course the sound field generated is a dipole field, and the arguments 
of the last paragraph merely show that it is essential to take this into account 
before any approximate estimation of acoustic power output be made. For example, 
the term — dF1/dx1 in the source distribution is equivalent (in the limit as e-> 0) to 
a distribution e~xFx(xx, x2, x3) and a distribution —e~1F1(x1 + e,x2,x3); so that any 
one value, say e~xFx(xx, x2, x3), occurs with positive sign at (x1} %s) and negative
sign at (xx — e, x2, x3). These two together constitute in the limit a dipole of strength 
Fx with axis in the positive xx direction.

It follows that the force field is equivalent to a field of dipoles with axis in the xx 
direction and strength Fx per unit volume, together with two similar fields with 
axes in the x2 and x3 directions. But the whole may of course be regarded, from a 
more fundamental point of view, as a single dipole field whose strength per unit 
volume is a vector Fi (whose direction as well as magnitude may fluctuate). One 
may see at once the significance of this vector strength density by choosing, at any 
instant, the a^-axis in the direction of Fif in which case the argument of the last 
paragraph shows that the dipole is of strength equal to the magnitude of Ft and has 
axis in the direction of Ft. A force field Fi per unit volume emits sound like a volume 
distribution of dipoles, whose strength vector per unit volume is Ft.

If the force is concentrated at a point, with value /*(£), and if the medium is 
unbounded, the density field is given by

as follows immediately from (8) when values of q' equal to ± e~xf x are placed at 
(0,0,0) and. (— e,0,0) (as in the argument just given), and similarly for f 2 and / 3, 
and e is allowed to tend to zero. It follows from (10) that for the general volume 
distribution of dipoles

(As a mathematical point it may be noticed that the identity of (11) with (9), if  
in the latter dQ/dt at y be replaced by the flux — dFi/dyi, can also be deduced from 
the divergence theorem as applied to the vector integrand of (11).)

Now in carrying out the differentation with respect to in (11), one sees that the 
part due to differentiating the | x  — y j in the denominator falls off like the inverse 
square of the distance from the field of fluctuating forces. But the part due to

( 10)

( 11)
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differentiating Fi itself falls off only like the inverse first power of this distance. 
Hence at large distances from the field of flow the density fluctuations are dom­
inated by this latter part, namely,

Since fluctuations of dFJdt differ from fluctuations of by a factor of the order of 
magnitude 2jt times a typical frequency, it is easily seen that the term neglected in 
(12) is truly negligible if a; is at a distance from the field of flow large compared with 
(27r)—1 times a typical wave-length. It is then in the radiation field of each dipole 
separately. One may note that if, in addition, this distance were large compared 
with the dimenions of the field of flow itself, then by choosing an origin within the 
field of flow one could approximate to the fraction (#* — 2/*)/| x  — y |2 in (12) by 
x j\  x  |2 and take it outside, the integral. This approximation would be perfectly 
sufficient for obtaining the radiation field of the flow as a whole, and hence the 
acoustic power output, since only terms of order 2 in the amplitude are neglected.

Equation (12) also shows explicitly how the sound radiated to large distances 
depends on the fact that rays of sound reaching a distant point simultaneously 
were not emitted simultaneously. For it depends only on the rate of change of dipole 
strength with time.

After these preliminaries the properties of the generation of sound by applied 
fluctuating stresses Ttiare understood more easily. As equations (4) show, the stresses 
produce a force per unit volume equal to their flux inwards — dT^jdxj. Hence they 
generate sound like a dipole field of strength — dT ĵdx  ̂per unit volume.

But again it is essential that the sound radiated be not estimated from the order 
of magnitude of the dipole strength per unit volume, since at any instant the total 
dipole strength is zero. Actually the sound produced is quadrupole field. For 
example, the term — dTa]dxlis equivalent (in the limit as e-»0) to a dipole field 
e~xTix{Xi, x2, x3) and a second dipole field e~1Til(x1 -1- e, x3), so that any one value, 
say e_1Til(x1, x2, x3), occurs with positive sign at (xx, x2, x3) and negative sign at 
(xx — e, x2, x3). The two together, in the limit, may be said to constitute a quadrupole 

whose strength is the magnitude of the vector and whose axes are in the direction
of Tix and in the xx direction. (Generally, if a quadrupole is formed by equal and
opposite dipoles with axes in one direction, whose relative position is in another 
direction, these two directions are called the axes of the quadrupole. When the axes 
coincide the quadrupole may be called longitudinal, and when they are perpendicular 
it may be called lateral.)

It has been shown that the stress field emits sound like three quadrupole fields, 
namely, the one just described and two others similarly associated with Ti2 and Tis. 
But the whole may be regarded, from a more fundamental point of view, as a single 
quadrupole field whose strength per unit volume is the stress tensor The division into
three quadrupoles with specified axes which has just been mentioned is merely one 
of many possible analyses of the quadrupole into simpler elements. First, each of 
the nine elements of the tensor T{i is a quadrupole whose strength is the scalar 
quantity Tix and whose axes are in the xi and x* directions. This gives an analysis

( 12)
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into three longitudinal quadrupoles, e.g. Tn  with both axes in the direction, and 
three lateral quadrupoles, e.g. 27^3 with axes in the andx3 directions. Secondly, 
if  the principal axes of stress are used locally and instantaneously, then the three 
lateral quadrupoles disappear and only three mutually orthogonal longitudinal 
quadrupoles remain (whose orientations as well as strengths will in general be 
fluctuating).

Thirdly (and perhaps most significantly for the present problem), an analysis 
of the stress TiSinto a pressure and a single pure shearing stress may be made, which 
leads to an analysis of the quadrupole into three equal mutually orthogonal longi­
tudinal quadrupoles, each of strength T = \TU, and one lateral quadrupole. The 
three longitudinal quadrupoles add up to form a simple source of strength 
at least as far as the effect they produce outside the stress field is concerned. For if 
a source distribution of strength T  per unit volume produces a field then
a longitudinal quadrupole distribution of strength T  per unit volume and axes in 
the xx direction produces a field p = d2Rjdx\. Hence the three longitudinal dis­
tributions together produce a field p =  V2R. But outside the stress field

V2R  =  ao2d2R/dt2,

which is the density field due to a source distribution a^2d2T/dt2 per unit volume.
Thus the sound field, due to the applied fluctuating stresses 7L, may be split up 

into a source field of strength  ̂  ̂ ~2.

3 ’ (13)

due to the equivalent applied fluctuating pressures, which for the stress field (5) are

P i i =  \pv\+V-alp,(14)

and a field of lateral quadrupoles due to the applied fluctuating shearing stresses. 
The latter are due to lateral momentum flux (fluctuating Reynolds shearing stresses) 
and to viscous stresses.

Note that the fact that quadrupoles can combine to form a source does not con­
tradict the important principle that quadrupole radiation is less effective, especially 
for large wave-lengths, than source radiation. For as (13) shows the equivalent 
source strength is inversely proportional to the square of the wave-length.

From the point of view of spherical harmonic analysis the result is due to the fact 
that the field of a single longitudinal quadrupole like T1X can be analyzed into a term 
proportional to a spherical harmonic of the second order, and a term proportional 
to one of zero order, corresponding to the field of a source of strength \a^2d2Txljdt2. 
On the other hand, a lateral quadrupole field is simply proportional to a spherical 
harmonic of the second order.

Now when the medium is unbounded, an expression analogous to (10) can at once 
be written down for the field of a concentrated quadrupole. The expression analogous 
to (11) for the field of a continuous distribution with tensor strength density 7L 
can then be deduced in the form

P~ P% = inaldxi c x j Tii(y ’l ~  ' a„y ' ) | x - y  |- (15)
37-2
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Note that mathematically (15) could have been deduced from the retarded potential 
solution (namely (9) with d2Tij(y,t)/dyi dyj for dQ(y, t)/dt) to the third of equations 
(4), by the relatively short process of applying the divergence theorem twice. The 
author prefers the arguments of the present section as being more illuminating as 
well as more general (showing the field to be a quadrupole field even in the presence 
of solid boundaries).

At points far enough from the flow to be in the radiation field of each quadrupole, 
that is, at a distance large compared with (27r)-1 times a typical wave-length, the 
differentiation in (15) may be applied (compare (12)) to T{j only, giving

p -p o ~ 1 f f a - f t H a y - y y )  1  d 2 m L  t 
47ra§J | x —y |3 o| (16)

This formula fpr the sound radiation field must give an exact result for the total 
energy radiated' and its directional distribution, since only terms falling away more 
rapidly than the inverse first power of the distance are excluded. The formula, 
depending principally on the second time derivative of the equivalent applied 
stress Tij} is the basic result of this paper.

It is worth emphasizing again that because in this problem the total effective 
dipole strength (i.e. the integral of — dT^jdxj over all space) is zero, the radiation 
field in the form (12) is only non-zero because the values of in the integrand 
are not simultaneous values. In fact, rays of sound from different dipoles reaching 
a distant point simultaneously were not in general emitted simultaneously. For 
this reason, as (16) shows, the true form of the radiation field involves a further 
differentiation with respect to time.

Provided that the quadrupole distribution 2L is not itself approximately a space 
derivative and therefore approximately replaceable by an octupole field, it will be 
possible to estimate the radiation field (16) if  the order of magnitude of the fluctua­
tions of d2Ti:fldt2 in the flow are known. (Certainly there is no general theoretical 
reason why at any instant the total quadrupole strength should be practically zero, 
and in all the problems so far considered by the author and co-workers (as will be 
seen in part II) there is substantial evidence that it is not so. But the possibility 
should always be borne in mind.)

Actually the total quadrupole strength arising from the contribution of the viscous 
stresses to Ty (see (5) and (6)) is certainly very small, for clearly their integral over 
the whole flow is of the order fi times a typical velocity outside the flow. This gives 
support to the suggestion made in § 3 that the viscous stresses are just as unimportant 
inside the flow as they are known to be outside it—independently of the fact that 
in most flows the macroscopic momentum flux will greatly exceed the viscous 
stress.

At distances large compared with the dimensions of the flow one may approxi­
mate xi — yi by Xt in (16), provided that the origin is taken within the flow, without 
neglecting any terms of order x~x (where x is the magnitude of x). This gives the 
simpler form

I w l
<*o

(17)
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for the radiation field of the complete flow. But for extensive flows the replacement 
of xi —yi by xt may be inadequate at distances from the flow at which one can 
conveniently make measurements.

5. I ntensity  and  frequency  analysis of the sound  field

The quantities which can be estimated by the human ear, or measured by other 
phase-insensitive instruments, are the intensity at any point, and its frequency 
spectrum. The intensity of sound at a point where the density is p is ajj//>0 times the 
mean-square fluctuation of p (i.e. with bars signifying average values at a point, 
times (p — p)z, which is also called the variance of p and written cr2{p}, where cr{p} 
is the standard deviation). In symbols, then, the intensity is

7(x) =^<r2{p(x,0}. (18)
P o

In the radiation field the intensity signifies the rate at which energy is crossing unit 
surface area at the point. To obtain the total acoustic power output of the field of 
flow one must integrate the intensity over a sphere of radius large compared with 
the dimensions of the flow, that is, one so large that the formula (17) may be used 
for the variations in density on it.

The natural units for intensity are watts/sq.cm, but a rather more convenient 
scale for most purposes is the decibel scale. The intensity level on the decibel scale 
is now usually defined as 10log10[//(10-16 watts/sq.cm)].

Now in fields with a discrete frequency spectrum the variance cr2{p} would be 
simply half the sum of the squares of the amplitudes in the various frequencies. 
For such problems the theoretical worker would be well advised to concentrate on 
determining these amplitudes, and to leave the determination of intensity and its 
distribution over the various frequencies until the final question arises of displaying 
his results and comparing them with experiment.

But at higher Reynolds numbers, when the flow field is fully turbulent, so that 
presumably the sound field partakes of the same chaotic quality, there is no meaning 
to be attached to the concept o f £ amplitude * for any frequency, or even for any band 
of frequencies however small. This is because the phase is completely random and 
discontinuous, so that the fluctuating physical quantities themselves (as distinct 
from the intensity) possess no spectral density, because the limiting process which 
is used to define this concept does not converge. Hence intensity and its spectrum 
are all that can be given a meaning in such cases, not simply all that we need to 
know.

Now since the value of p —p0in the radiation field, by (16), is a time-derivative, 
its mean with respect to time at any point is 0 and the mean density p is simply pQ. 
Hence the variance cr2{p} is simply the mean value at a point of the square of (16). 
To write down the square of (16) one may simply write it dov l twice, but it is neces­
sary to use different symbols in the two cases for the variables of summation and 
integration i, j  and y if confusion is to be avoided. The two integrals can then be

On sound generated a I
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(18) is

IY v 1 f f fo  -  Vj) (Xj -  Vi) (x k -z k) fo -  z?)
(  ̂~ I67r2/>0«SJ J | x —y |3 | x —z |3
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02 ^  
x — T' 

dt2 13(y ,< - ■ y \ \

1 M 2-̂ kt dydz. (19)

The mean product, or ‘covariance’,* in (19) is the type of quantity which can be 
measured by hot-wire techniques in a turbulent flow, though it is a lot more com­
plicated than any such quantity which has yet been studied. The physical inter­
pretation of (19), and the methods for approximating to it by simpler expressions, 
especially by making use of the fact that the covariance is negligibly small except 
when the points y and z in the turbulent flow are rather close together, are all 
postponed to part II.

However, a general expression for the total acoustic power output of the field 
will here be obtained. For this one need only use the simplified form (17) for the 
ultimate radiation field, and integrate its mean square (which is (19), with the 
fraction inside the integral replaced by over the surface of a large
sphere E. Now the fraction x ^ x ^ / x 6 may easily be integrated over E; the answer 
is evidently zero unless i ,j ,  k, l are equal in pairs; it is 477/15 if the pairs are unequal, 
and 47775 if the pairs are equal. In fact

+  +  (20)

Hence the total acoustic power output P  is given as

+ 2 p Ttt(y, t -  dydz

It should be noticed that in the second term in (21) each of the nine quadrupole 
fields Ttj ( i =  1 to 3, j  = 1 to 3) makes its contribution to the power output in­
dependently. The first term is connected with the equivalent source strength (13) 
when the field is split up into a source field and a field of lateral quadrupoles; it 
involves cross-terms between the different longitudinal quadrupole fields Tu , T22, 
T33. It may also be noticed that the time derivatives may be taken outside the

* Of which a ‘correlation coefficient’ is a non-dimensional form.
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estimation, by making use of the general result that
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*{/'(*)} =  47t22V V 2{/(£)}, (22)

where Nis a frequency somewhere within the band of frequencies appearing in 
the oscillations of f(t).

Now, most of the work of part I and of part II will be concerned with the intensity 
field and total power output, but it is also desirable to be able to predict their 
frequency spectra. To modify the theory for this purpose the following principle 
may be used: If, from the quadrupole strength density Tijt all fluctuations with 
frequency outside a certain band were removed,* then the intensity field of the 
modified quadrupole distribution would be nothing else but the integral of the 
intensity spectrum over the said band in the original field. This tells us a definite 
procedure to be adopted if the latter quantity is to be estimated.

Many will find the above principle intuitively obvious, but for the benefit of 
others it may be noted that a proof in terms of the retarded potentials solutions is 
possible, using the statistical theorems that the part of a fluctuating function in

1*00 (Js
the frequency band from 0 to aj2n is f(t + s) sin (as) — , and that the portion of

J —oo 7TS
fco ________  ^

its mean square relating to frequencies in the same band is / (t)f(t + s) sin (os)— .
J —00

One use of the principle might be that in experimental comparison of the pro­
perties of T{j (or its approximation (7)) in turbulent flow with those of the sound 
field generated, it would be permissible to use instruments which excluded fluctua­
tions of Ti} outside a certain band of frequencies, provided that they were compared 
with the sound intensities in this band.

Notice that the frequency spectrum of Tti in turbulent motion, which the above 
analysis shows to be dominant in determining that of the sound field, is different 
from that of the velocity field since it depends on it quadratically. Thus it will 
include summation and difference tones of the velocity frequencies, and generally 
may be expected to be a considerably flatter spectrum.

If one is interested in a relatively small band of frequencies, the use of the prin­
ciple (22) for estimating expressions like (21) becomes much more accurate.

6. D im ensional analysis of aerodynamic  Sound  production

Certainly the simplest, and perhaps at first the most practically useful deduction 
which can be made from the theory of §§ 3 to 5 is an analysis of the dependence of 
the sound field, for geometrically similar mechanisms of flow production, on a 
typical velocity U in the flow and a typical linear dimension l, and also on constants 
of the gas such as p0, a0 and the kinematic viscosity v0. Only in the light of some 
such analysis can experiments be co-ordinated.

* And it is known that this kind of spectral analysis is (theoretically) possible for a turbulent 
flow, even though the fluctuating flow quantities do not, perhaps, have a spectral density in 
the strict sense.
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Now by (5) the amplitude of the fluctuations in Ty will, at corresponding points 
in similar flows, be in the main proportional to pQ although there will be some 
additional dependence on Reynolds number =  Ul/v0, Mach number 0, and 
on the ratio of a typical temperature in the flow to its atmospheric value; actually 
changes with Reynolds number are usually very gradual, and changes with 
Mach number are small unless it approaches 1. But to infer from these facts 
anything concerning the dependence of the density variations (16) on U, , p0, a0 
and v0 it is necessary to know how typical frequencies of the flow depend on 
these quantities, so as to be able to relate the fluctuations in to those

Since in § 2 it was decided that the discussion could be confined to flows whose 
fluctuations are generated by instability rather than by any direct external cause, 
the dominant frequency or band of frequencies must of course vary in an ascertain­
able manner with the other constants of the flow. Now in all cases, if  is a typical 
frequency, the non-dimensional product nllU  (sometimes known as the Strouhal 
number) has been found to vary far less with changing conditions than n itself. 
For example, at low Reynolds numbers, when a regular eddy pattern appears, the 
product nljU  rises only slowly with Reynolds number; in particular for the eddies 
shed by a wire of diameter lin a stream of speed U, is about 0*2 — 4JB-1 for 
40< R <  40000. At the upper end of this range of R  the frequency spectrum spreads 
out more and more, while the most prominent frequencies have a slightly higher 
value of nljU. The appearance of frequencies very much less than 0-2C7/Z is impeded 
by the scale of the system, but the appearance of higher frequencies is limited only 
by viscous damping, and so the range of values of nl/U  continues to grow at its upper 
end as R  increases. However, the turbulent energy continues to be borne principally 
by frequencies with nljU  less than 1, although the fluctuations of velocity gradient 
are greatest for rather higher frequencies. For example, the mean square vorticity 
is carried principally by motions with nljU proportional to Ri, but these motions 
have relatively little energy and a significant rate of energy loss by viscous dis­
sipation.

These considerations indicate that to obtain a preliminary rough idea of how the 
sound produced varies with the constants of the flow, one may take frequencies 
as proportional to U/l on the whole, and so take the fluctuations in d2T{ijdt2 as 
roughly proportional to (U/l)2p0U2.One may then conclude that at a distance x 
from the centre of the flow, in a given direction, the density variations (16) are 
roughly proportional to the product

The most striking fact about this formula is the dependence of the density changes 
in the sound radiation field on the fourth power of the Mach number M  =  U/a0. 
By contrast, density changes in the flow itself (where Ijx is of order 1) are known 
to be of order p0M 2. The additional factor M 2 at distances large compared with 
(2n)~1 wave-lengths, showing that sound radiation is a ‘Mach number effect’, 
is due entirely to the quadrupole nature of the field (see § 2).

in Tiy

(23)
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From (18) it follows that the intensity is roughly proportional to times the 

square of (23), i.e. to

Po tf8«o5(^) » (24)

and hence that the total acoustic power output is roughly proportional to

p0 U8(Iq512. (25)

The prediction that sound intensities increase like some high power, near the eighth, 
of a typical velocity V  in the flow, is borne out by experiment (as will be seen in 
part II).

On the other hand, in a careful experimental study, one would expect to be able 
to detect departures from laws such as (25), because of the approximate character 
of the arguments used to support them. Hence, to get the maximum benefit from 
such experiments, by laying bare the precise nature of such departures, the data 
should be expressed in terms of an ‘acoustic power coefficient’

v  _  acoustic power 
A ^ o 5*2 *

(26)

The dependence of this quantity K  on Reynolds number and Mach number could 
be studied by varying U and l independently, while retaining geometrically similar 
flow-producing mechanisms. The dependence of K  on the ratio of a typical tem­
perature in the flow to the atmospheric value should also be investigated by pre­
heating or pre-cooling the flow. Finally, analyses of K  may be made both with 
respect to direction of propagation and with respect to frequency. (Some of these 
procedures will be used in part II in analyzing certain data obtained by Gerrard.) 
Here again a frequency analysis of K  would have most value if made in terms of 
the non-dimensional frequency parameter nljU, especially if  such analyses were 
performed at different Reynolds numbers, when changes of the shape of the spec­
trum might give important information as to which aspects of the turbulent flow 
contribute most to the sound produced.

At this stage it is impossible to make predictions concerning the variations 
discussed above. It might be thought that K  will increase with Reynolds number 
because as explained above the frequencies bearing the major fluctuations of 
derivatives like d^T^dt2 tend to grow gradually (relative to Ujl) with Reynolds 
number. But this is (at least partly) counteracted by the fact that the eddy-sizes 
corresponding to these frequencies, and hence the range of values of | y  — z | for 
which the covariance in (19) is not negligible, are correspondingly smaller.

To conclude this section it may be noted that in a steadily maintained flow the 
energy per unit volume will be roughly proportional to p0 and the total rate of 
supply of energy to (p0 U2) ( Ul2). Hence the ratio of the acoustic power output to 
the supply of power, which ratio can be described as the efficiency of aerodynamic 
sound production, will satisfy (to the same sort of accuracy as (25), that is only 
very roughly)

tjccM5. (27)
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Of course acoustic efficiencies are always very low indeed, and doubtless that of 
aerodynamic sound production, even at Mach numbers near the top of the range 
in which (27) is expected to have some validity (i.e. with M  approaching 1) is no 
exception. (The experiments of Gerrard indicate an order of magnitude 10-4 for 
the coefficient tj/M5.) But (27) makes it clear that turbulence at low Mach numbers 
is a quite exceptionally inefficient producer of sound.

7. M o d if ic a t io n s  r e q u ir e d  w h e n  f l o w  is  a n a l y z e d  w it h  r e s p e c t

TO A MOVING FRAME

One can imagine various applications of the theory of §§ 3 to 5 in which the 
necessary time-derivatives, and space-integrals, could be estimated more easily, 
and accurately, if they referred to co-ordinate axes in uniform motion relative to  
the undisturbed atmosphere. As an example one may quote flow fields carried along 
with a moving aircraft; and a more complicated application, involving the use of 
different frames of reference for different parts of a turbulent flow, will be given in 
part II. In any case the necessary modifications to the theory are easily made, and 
are therefore worth giving here.

The symbol Tywill continue to have its old significance (5), with the velocities 
vi measured relative to the undisturbed atmosphere. However, it will here be 
considered as given in terms of a co-ordinate system (of constant orientation) whose 
origin moves with uniform velocity a0 M, where < 1. Thus refers to momentum 
flux across surfaces moving uniformly through the fluid. It will be particularly 
interesting to compare the acoustic effect of fluctuations in this with that of identical 
fluctuations of momentum flux across surfaces fixed in the fluid.

Now, if the moving axes are chosen to coincide with the fixed axes at time t, 
then the retarded value of Ty appearing in the fundamental expression (15) must be 
rewritten as , i _  i

4 * - ^
j  , where *) = y + M | x - y  |. (28)

This is because the axes have moved on a distance M | x  —y | during the time 
taken for a ray of sound to go from y  to x.

When the integral (15) is transformed into the iq space the element of volume is 
altered by a factor equal to the Jacobian of the transformation (28). One easily 
calculates that

and so by (15) 

P~Po 4 TTa\dxi dxj j Tv (* b t-

M. ( x  —y)\ 
| x - y |  ) ’ (29)

I x  —y |\ drj
«o /  | x - y | - M . ( x - y ) ’

(30)

Now at points far enough from the flow to be in the radiation field of each quad- 
rupole, the differentiation in (30) may be applied to only. This requires a know­
ledge of the derivative of | x  — y | with respect to xi} keeping iq constant, where 
x and y are related as in (28). This is easily calculated as

— I x - v l  = ”<-»< '
dx{1 J | | x - y | - M . ( x - y ) ‘ (31)
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Hence (30) becomes

_____ L f 1 s2
H 47ragJ {| x  -  y | -  M . (x -  y)}3 ajj

l * - y |
a o

(32)

Comparing (32) with the sound field (16) due to fluctuations in momentum flux 
across fixed surfaces, we see that given fluctuations, when they take place across 
moving surfaces, will send an increased quantity of sound in directions making an 
acute angle with the direction of motion, and a decreased quantity in those making 
an obtuse angle with it. If the said angle is 0 then the factor multiplying the ampli­
tude, due to motion of the axes, is (l —M cos d)~z. (Note that the added sound 
emitted forwards is more than the reduction in sound emitted backwards.)

There are two physical factors contributing to these differences, corresponding 
to the two mathematical factors emerging from the above (the Jacobian of the 
transformation and the effect of double differentiation). These factors are the 
position and time of origin (respectively) of those rays of sound from a single eddy* 
which arrive at a distant point simultaneously. First, the positions of origin of 
such rays fill a greater volume when the rays are emitted forward, since the foremost 
parts of the eddy have moved on before they need emit. Secondly, the cancelling 
out. of rays from different parts of a quadrupole is less effective for rays emitted 
forward, owing to the time interval between emission from fore and aft parts being 
increased. Speaking more crudely, waves emitted forward by an object in motion 
pile up (the Doppler effect) and this makes cancelling of successive waves less 
effective.

The intensity field derived from (32) takes the form (19), with Tit a function of 
Y) rather than y, and similarly TM of £, and the integrations taken over yj and £ space. 
Also the denominator | x —y |3 is replaced by (| x  — y | — M . (x — y)}3, and similarly 
with | x  —z |3. Hence to obtain the power output, as in § 5, one must evaluate not 
the integral (20) but rather the integral

i S(a ;-M .x )6 (33)

It is convenient for this purpose to choose the a^-axis in the direction of the vector 
M. Then it is clear that the integral (33) vanishes, by symmetry, unless i, j ,  l are
equal in pairs. The evaluation when they are is somewhat tedious, but straight­
forward if spherical polars are used. One finds that the corresponding values for the 
case M  =  0 are multiplied by

1
(1 -A f2)3

1 + 5 M2 
( 1 - J f 2)4’ (c )

l + 10Jf2 + 5Af4 
( 1 - J f 2)6 ’

(34)

according as (a) neither, (6) one or (c) both of the pairs of suffixes is 1.
This means that the power output is given by an expression precisely of the form 

(21), but with each term multiplied by one of the factors (34), according as it results

* Here the reader may understand ‘eddy’ as meaning simply a small (imaginary) volume 
carried along with velocity a0M.
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from quadrupoles with (a) neither, (6) one or (c) both of their axes in the direction 
of motion. The cross-terms between two longitudinal quadrupoles are multiplied 
by factor (6) when one is in the direction of motion and by factor (c) when 
neither is.

M. J. Lighthill

F ig u r e  1. Change, as a result of translation at a Mach number M, in the total acoustic power 
output of (i) three equal mutually orthogonal longitudinal quadrupoles and (ii) a lateral 
quadrupole with one axis in the direction of translation.

To illustrate the above theory, the increase in power output, expressed in decibels, 
is shown as a function of Mach number in figure 1 for (i) three equal longitudinal 
quadrupoles (which for M  = 0 would produce a simple source field, see § 4), (ii) a 
single lateral quadrupole of which one of the axes is in the direction of motion. The 
effect o£ translation of the fluctuating field in case (ii) is multiplication by the 
factor (6), so that it is 10 times the logarithm to base 10 of factor (6) which is plotted. 
In case (i), by combining the effects of the factors (34) according to the laws given 
above, one finds that the intensity is multiplied by 1

1 +  2 iff2 +
( 1 - i f f 2)6 *

(35)
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The increase in intensity level in cases (i) and (ii) is farther analyzed in figures 2 
and 3 respectively, by a plot of variation in intensity level with direction 6 (mea­
sured from the direction of motion*) and with Mach number M. The quantities 
plotted are ten times the logarithm to base 10 of

(1 -J fc o s 0 )6’
4 sin2 0 cos2 6 
(1 — Mcos )6 (36)

in figures 2 and 3 respectively (so that in each case the maximum of the curve for 
M  — 0 is arbitrarily chosen as the intensity level 0). Thesfe figures illustrate the

F ig u r e  2. Change in directional intensity distribution due to three equal mutually orthogonal 
longitudinal quadrupoles as a result of translation at a Mach number, the value of which 
is indicated against each curve, the direction 6 being measured from the direction of 
translation.

change with Mach number of the directional intensity field of a moving fluctuating 
eddy, at points far from it compared both with (27r)_1 times a typical wave-length 
and also with the largest distance between points y  and z in the flow such that a

* Note that the direction 6 is measured relative to the position of the eddy when it emits, 
not its position when the sound arrives at the point x.
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covariance such as that in (19) is significant. For when this is so the difference 
between and in (19) can be neglected, and both replaced by

|x  — y | c o s 0  or | x  — y | s i n 0

according as iis 1 or not.

M. J. Lighthill

—/0'S

F ig u r e  3. Change in the directional intensity distribution due to a lateral quadrupole as 
a result of translation at a Mach number, indicated against each curve, in the direction 
of one of its axes, the direction 6 being measured from the direction of translation.

Figure 2 shows the preference for forward emission increasing with M. Figure 3 
shows this effect superimposed on the basic directional pattern of a lateral quad­
rupole. Notice that the parts of the curves above the level 0 are more effective in 
increasing the power outputs (figure 1) tL an are the parts below in decreasing them, 
owing to the logarithmic scale used in plotting the curves.

Finally, the frequency analysis of the sound produced by fluctuations of at 
points in motion relative to the atmosphere will be governed by the principle stated
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at the end of § 5 only if  it is modified to include the Doppler effect. Thus the band of 
frequencies retained in Ti}- (tq , t )will be responsible for the sound radiation to a 
distant point x with frequencies in a band obtained by multiplying those in the 
original band by

M. (x  —y )\-1
l * - y |  /  '

(37)

The frequency is of course increased for sound emitted forwards, and decreased for 
sound emitted backwards.

The drawing of practical conclusions from the results of this section is postponed 
to part II.
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