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Based on the extended mild-slope equation, the wind wave model (WWM; Hsu et al., 2005) is modified to
account for wave refraction, diffraction and reflection for wind waves propagating over a rapidly varying
seabed in the presence of current. The combined effect of the higher-order bottom effect terms is incorporated
into the wave action balance equation through the correction of the wavenumber and propagation velocities
using a refraction–diffraction correction parameter. The relative importance of additional terms including
higher-order bottom components, the wave–bottom interaction source term and wave–current interaction
that influence the refraction–diffraction correction parameter is discussed. The applicability of the proposed
model to calculate a wave transformation over an elliptic shoal, a series of parallel submerged breakwater
induced Bragg scattering and wave–current interaction is evaluated. Numerical results show that the present
model provides better predictions of the wave amplitude as compared with the phase-decoupled model of
Holthuijsen et al. (2003).

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

The combined effect of the wave refraction, diffraction and
reflection on the wave transformation can be accounted for by using
the mild-slope equation (MSE) which was first derived by Berkhoff
(1972). The MSE is a phase-resolving wave model to describe wave
transformations from deep water to shallow water depth in a slowly
varying sea bottom. Many studies have been performed to extend the
MSE to describe the wave propagating over a rapidly varying seabed
(e.g. Kirby, 1986; Massel, 1993; Chamberlain and Porter, 1995a,
1995b; Hsu and Wen, 2001a, 2001b; Liu, 1990). The influence of the
ambient current on theMSE using Luke's variation principle was given
by Kirby (1984) and Dingemans (1985). All quantities of the
wavenumber k, the absolute frequency ω and the intrinsic frequency
σ are determined for a linear wave–current interaction system with
the help of the dispersion relation σ2=gk tanh kh, the Doppler-shift
relation ω=σ+k ⋅U, and the condition of irrotationality of the
wavenumber vector ∇ h×k=0, where ∇ h=(∂/∂x,∂/∂y) is the
horizontal gradient operator, k the wavenumber vector and U the
current vector.

Boussinesq equations (BES) are the other types of phase-resolving
models to account for nearshore wave processes in which nonlinearity
and frequency dispersion are included. The classical BES of Peregrine
886 6 2741463.
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(1967) poorly described the frequency dispersion and nonlinearity in
the intermediate water depth. The dispersion property of the classical
BES was improved by modifying the dispersion terms (Madsen and
Sørensen, 1992) or applying a reference velocity at a specified depth
(Nwogu, 1993). The improved BES enhanced the conventional one to an
equivalence of a Padé approximation of the linear dispersion
relation. Wei et al. (1995) presented a set of highly nonlinear BES and
Gobbi et al. (2000) derived a fully nonlinear approach with the fourth
order. Further improvements by introducing higher-order nonlinearity
were also provided by Madsen et al. (2003) and Fuhrman and Madsen
(2009). All of these efforts successfully extended theusefulness of BES to
accurately simulate waves propagating from deep water to shallow
water.

For practical applications, semi-empirical approaches were devel-
oped to account for wave breaking and energy dissipation with the
prescribed criteria for the onset of wave breaking and incorporated
additional terms in the MSE (Isobe, 1987; Tsai et al., 2001; Hsu and
Wen, 2001b) and BES (Zelt, 1991;Wei et al., 1995; Lynett et al., 2002).
The real sea state is notably random, both the MSE and BES are able to
account for the feature of nonlinear waves, irregular random waves
and transient waves in the time-domain. However, from the physical
point of view, they are limited in representing the evolution of the
wave spectrum such as the relative importance of the nonlinear
transfer, the exact source function expression of the wave growth and
decay and their statistical description. As addressed by Holthuijsen
et al. (2003), adding refraction–diffraction to a spectral model has
some advantages such as that large-scale computations remain
hts reserved.
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flexible, the characteristics of random short-crested waves is retained,
and all physical processes as mentioned above are included.

The other phase-averagedmodels, such as SWAN (SimulatingWave
Nearshore)(Booij et al., 1999; Ris et al., 1999), STWAVE (Steady-state
spectral WAVE model) (Smith et al., 2001), TOMOWAC (Marcos, 2003)
and WWM (Wind Wave Model)(Hsu et al., 2005) were developed to
compute the variation of the wave spectra for random short-crested
waves in large-scale oceanic deep water and small-scale shallow water
regions. Although the effect of refraction is readily accounted for, wave
diffraction is still not well implemented in these models. The approach
by adding a diffraction to a spectral model with spatial or spectral
diffusion was suggested by Resio (1988), Booij et al. (1997) and Mase
(2001). Themodel is limited in the simulation of the diffraction induced
turning of the wave direction.

Booij et al. (1997) and Rivero et al. (1997) tried to add wave
diffraction to spectral models in which the diffraction effect is included
in the propagation velocities through the modified wavenumber
obtained from an energy balance equation of the MSE. Mase (2001)
argued that their resulting models seem to be unstable in their
numerical calculations due to the higher-order derivatives of the wave
amplitude with respect to spatial coordinate, and thus developed a
simple and robust spectral model based on an energy balance equation
combined with an energy dissipation term and a diffraction-correction
term. Holthuijsen et al. (2003) proposed an alternative in which a
combination of two different wavemodels is implemented to addwave
diffraction obtained from the MSE to the spectral model SWAN. The
method is referred to as the phase-decoupled wave model. This phase-
decoupled model still retains all the physical processes of energy
generation, dissipation and wave–wave interactions and the specific
feature of random waves is inherent. The model has been validated in
somediffraction-prone cases inwhich verificationsweremade in small-
scale conditions with random, shorted-crested waves., that are more
than in the intended range of applications.

Holthijsen et al.'s model was also employed to calculate the
multidirectional wave transformation around the detached breakwater
by Ilic et al. (2007). The performance of wave diffraction in the model
was examined for different incident wave conditions of wind–sea,
swell–sea and bimodal spectra. The excellent agreement was found
through comparisons of model predictions and field observations for
broad frequency and directional spectra. The sensitivity tests were also
conducted for the spatial resolution of the computational mesh and the
filtering of the calculation of the wave refraction, diffraction and
reflection correction parameter.

However, the MSE used in the formulation of Holthuijsen et al.
(2003) is obtained by assuming a linear theory of surface gravity
waves over a mildly sloping bottom. In a coastal region, offshore reefs
and bars are usually present on the seabed, and the bottom
configuration is generally arbitrary and extremely complicated.
Furthermore, there usually exists an ambient current field in the sea
due to wind shear stress or gradient of driving forces such as the wind
shear stresses, attractive, coriolis, hydrostatic forces and so on. This is
also not accounted for in the MSE applied by Holthuijsen et al. (2003).
It is thus desirable to extend Holthuijsen et al.'s refraction–diffraction
phase-decoupled wave model to a more realistic condition. Based on
the Ardhuin and Herbers' (2002) method, wave reflection is also
included in the model.

In this paper, the MSE including the higher-order bottom slope
terms and ambient current effects is introduced into the wave action
balance equation. The phase-averaged wave action equation is
formulated to include refraction and diffraction-induced directional
tuning rate of the components. The approximation is thus imple-
mented into the WWM, which has been coded with the finite
element method (FEM) by Hsu et al. (2005). The extension of wave
refraction, diffraction and reflection in the WWM could give more
accurate results and can be applied in most situations with rapidly
varying topography where wave diffraction is dominant such as in
the lee of islands and breakwater. The relative importance of the
higher-order terms of the steep slopes, curvatures andwave–current
interactions that influence the wave diffraction are evaluated in this
study. Several computational cases with wave travelling over an
abruptly varying topography or in current fields were performed to
validate the proposed model.

2. Higher-order MSE with current effect

Considering the second-order bottom effects, bottom curvature
∇h

2h and bottom slope |∇hh|, as well as the influence of the ambient
current fields, the EMSE (extended mild-slope equation) is thus given
by (Liu, 1990)

∇h⋅ ccg∇hϕ
� �

+ k2ccgϕ + f1g∇2
hh + f2gk ∇hhj j2

� �
ϕ

+ iω U⋅∇hϕ + ∇h⋅ Uϕð Þ½ �− σ2−ω2
� �

ϕ

= ∇h⋅ U U⋅∇hϕð Þ½ �

ð1Þ
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ð2Þ

f2 =
sech2kh 8 khð Þ4 + 16 khð Þ3 sinh2kh−9 sinh2kh cosh2kh

h i
6 2kh + sinh2khð Þ3

+
12 khð Þ 1 + 2 sinh4kh
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6 2kh + sinh2khð Þ3
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ϕ = ϕ x; yð Þ = iga x; yð Þ
σ

coshk z + hð Þ
coshkh

eis x;yð Þ is the velocity potential, a

(x,y) the wave amplitude, S(x,y) the phase function, c and cg the phase
and group velocities, respectively, i =

ffiffiffiffiffiffiffiffi
−1

p
the unit complex

number, g the gravitational acceleration and h the mean water
depth. The detailed derivation of Eq. (1) can be found in Liu (1990).

Upon substituting the expression for the velocity potential into
Eq. (1) and taking the real part, we obtain the resulting eikonal
equation due to the wave diffraction effect:

K2 = ∇hSj j2

= k2 +
∇h⋅ ccg∇ha

� �
ccga

+
f1g∇2

hh + f2gk ∇hhj j2
ccg

+
1
ccg

−σ2 + ω−U⋅∇hSð Þ2−1
a
∇h⋅ U U⋅∇hað Þ½ �

� � ð4Þ

where K is the wavenumber caused by the combined effect of the
wave amplitude, bottom configuration and current field. It should be
noted that K=|K| is instead of k=|k| to emphasize the difference
between K and k due to the wave diffraction effect. The derivation of
Eq. (4) is given in Appendix A.

The Doppler-shift relation between the absolute and intrinsic
frequencies for the linear wave–current coexisting system is given
by

ω = σ + kdU = σ + kUx cosθ + kUy sinθ = σ + kUs ð5Þ

where Us=Uxcos θ+Uysin θ denotes the dot product between the
ambient current velocity and the unit wavenumber vector along the
wave propagation direction. Eq. (4) represents a newly defined
wavenumber considering the diffraction due to the presence of
structures, rapid change of bathymetry and current fields. The
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substitution of Eq. (5) into Eq. (4) results in the new wavenumber
owing to the wave diffraction effect:

K = kδn ð6Þ

where δn represents a refraction–diffraction correction parameter
expressed as

δn =
1

Us

c

� �2
−n

Us

c
1 +

Us

c

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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c
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δa

s8<
:

9=
; ð7Þ

where δa is a parameter including the effect of the current and is
written in the form of

δa = 1 +
∇hd ccg∇ha

� �
k2ccga

+
f1g∇2

hh + f2gk ∇hhj j2
k2ccg

+
1
n

2 +
Us

c

� �
Us

c
−∇hd U Ud∇hað Þ½ �

k2ccga

ð8Þ

and

n =
1
2

1 +
2kh

sinh 2kh

� �
ð9Þ

The EMSE used in the present model is only valid for propagating
waves. Non-propagating (evanescent) modes are not considered in
the mathematical formulation. Therefore, we note that K is not
realistic if the square root is imaginary. In the limiting case of the
absence of the ambient current and the elimination of a rapidly
varying bottom seabed, Eq. (7) is readily reduced to the eikonal
equation provided by Holthuijsen et al. (2003)

K = kδm = k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+
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where δm is the refraction–diffraction correction parameter obtained
from the conventional MSE. It has been shown by Holthuijsen et al.
(2003) that δm accounts for the diffraction-induced directional
turning rate in the SWAN model (Booij et al., 1999).

According to Eq. (6), the diffraction-correction phase speed C can
be obtained as follows.

C =
ω
K

=
c + Us

δn
: ð11Þ

Substituting the velocity potential into Eq. (1), the imaginary part
leads to the energy transport equation after multiplying the wave
amplitude a:

∇hd CCg∇hS + ω−U⋅∇hSð ÞU
h i

a2
n o

= 0: ð12Þ

Using the relations K=∇hS, K=kδn and c=σ/k, Eq. (12) is in
terms of the energy transport equation given by

∇h⋅ δncg + 1 +
Us

c

� �
1−δnð Þ

� �
U

	 

a2

� �
= 0 ð13aÞ

or ∇h⋅ CgE
� �

= 0: ð13bÞ

Based on Eq. (13), it is seen that a modified wave propagation
velocity with the current effect (Eq. (13a)) is represented by the
conventionalwaveenergy conservation equation (Eq. (13a)). Therefore,
the energy propagation speed due to the diffraction and current effects
in the geographic space is written as

Cg = δncg + 1 +
Us

c

� �
1−δnð Þ

	 

U ð14Þ

where Cg=(Cx,Cy), Cx and Cy are the wave energy propagation velo-
cities due to the diffraction with current and higher-order bottom
effects in the x- and y-components, respectively. In the absence
of currents and higher-order bottom effects, Eq. (14) is reduced to
Cg=δmcg which is identical to the theory of Holthuijsen et al. (2003).

If the source term representing the processes of wave generation,
dissipation and nonlinear wave–wave interactions is retained, then
the energy equation is written in the form (Janssen et al., 1994)

∇h⋅ CgE
� �

=S̃ ð15Þ

where S̃ is the source termofwaveenergy toaccount forwavegeneration,
dissipation and nonlinear wave–wave interactions. By comparing
Eqs. (14) and (15), we note that the phase-decoupled model includes
wave–wave interaction when it is based on a local linear approach.

3. Modified wave action balance equation

The evolution of the wave spectrum is described by the wave
action balance equation (e.g., Hasselmann et al., 1973), which is used
in the wind wave model of the SWAN. The equation is expressed by
Cartesian coordinates:

∂N
∂t +

∂
∂x cxNð Þ + ∂

∂y cyN
� �

+
∂
∂σ cσNð Þ + ∂

∂θ cθNð Þ = Stotal ð16Þ

where N=N(σ,θ) is the wave action density spectrum; t the time; cx
and cy the wave propagation velocities in x and y components,
respectively; cσand cθ the wave propagation velocities in σ and θ
coordinates, respectively; Stotal =S̃ = σ the source term in terms of
energy density representing the processes of wave generation,
dissipation and nonlinear wave–wave interactions.

Adding wave diffraction to the action balance equation involves
only replacing cx, cy, cσ and cθ by the correction corresponding
propagation speeds Cx, Cy, Cσ and Cθ with the aid of δn. When the wave
diffraction is included and the phase-decoupled approximation is
used, the expressions for the wave propagation speeds are modified
by the change of the directional turning rate of a single wave
component as it travels along the wave ray with the group velocity.
Using Eq. (14), the resulting expressions for the propagation speeds in
the geographic and spectral spaces are given, respectively, by

Cx = δncg cosθ + 1 +
Us

c

� �
1−δnð Þ

	 

Ux ð17Þ

Cy = δncg sinθ + 1 +
Us

c

� �
1−δnð Þ

	 

Uy ð18Þ
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∂σ
∂h

∂h
∂t + Ux

∂h
∂x + Uy

∂h
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−δncgk cosθ

∂Us

∂x + sin θ
∂Us

∂y

� �
ð19Þ

Cθ = cgδn
1
k

sinθ
∂k
∂x− cosθ

∂k
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� �
+

1
δn

sinθ
∂δn
∂x − cosθ

∂δn
∂y

� �	 


+ sinθ
∂Us

∂x − cosθ
∂Us

∂y

� �
:
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Referring to Eqs. (7) and (8), we notice that δn includes the
combined effects of a, |∇hh|, and∇h

2h and Us. Holthuijsen et al. (2003)
indicated that the diffraction of random, short-crested waves can also



Fig. 1. Relationship of δn versus ∇ h ⋅(ccg∇ ha)/k2ccga without current effect.
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be computed as the superposition of solutions for a number of
incident monochromatic, directional waves. Each component is
calculated independently by the wave refraction and diffraction, but
this method is impractical in the wave spectral model because of the
problems of physical property such as ignorance of the wave–wave
interaction as well as numerical convergence. For computational
convenience in the phase-decoupled model, it is plausible to express
the wave amplitude a in Eq. (7) by the square root of the summation
of the wave action densities, that is

a =
ffiffiffi
E

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
I

i=1
∑
J

j=1
σiN σi; θj

� �
dθdσ

vuut ð21Þ

where I and J are the total numbers of components in the wave
frequency and direction spaces, respectively.

The inclusion of δn in the expressions of Eqs. (17)–(20) for the
directional turning rate of the wave propagation velocities provides a
straightforward way for the refraction–diffraction effect of the action
balance equation to describe the wave transformation in the
nearshore region. The present mathematical formulation indicates
that the phase-decoupled approximation can account for the wave
refraction, diffraction and reflection of the random waves for an
arbitrary bathymetry in the presence of an ambient current.

By adding the refraction–diffraction correction parameter δn to the
action balance equation, the expressions for the group velocity and
the propagation velocities in the geographic and spectral spaces have
been implemented in theWWM (Hsu et al., 2005). A numerical model
was developed in the WWM using FEM for wind wave simulations in
both large-scale oceanic deep water and small-scale shallow water
regions. The FEM code with unstructured grids improves the
numerical scheme of the nested grids to maintain the computational
efficiency and accuracy for practical applications.

The wave reflection from natural beaches and man-made
coastal and marine structures influences the hydrodynamics, the
currents and the sediment transport in the front of the reflector. It
is of great importance to estimate the nature of the reflection
coefficients accurately in many coastal applications. The wave
refraction, diffraction and reflection effect are the focus of the
present study. Referring to Ardhuin and Herbers (2002), wave
reflection is also involved in the refraction–diffraction approxima-
tion in the WWM.

Notably the propagation speed of the directional space in Eq. (16)
includes fourth-order derivatives of the wave amplitude a. The
resulting calculation is unstable and oscillates because of the
higher-order derivatives. Holthuijsen et al. (2003) used a convolution
filter in the geographical space to decrease these instabilities. Later, a
numerical sound solution to the instability problem is under-
relaxation as used by Holthuijsen (2007). However, the traditional
convolution filter is not easy to apply in the WWM due to the
unstructured grid system, the value of a is thus smoothened by the
following averaged spatial filter,

an+1
i =

1
Q

∑
Q

j=1
anj ð22Þ

where the superscript n denotes the number of iterations for the
smoothing procedure and Q represents the number of nodes
connecting to the i-th node of the unstructured mesh. This filter was
used as the averaged spatial filtering applied to each individual node.
The divergence of the wave energy∇h⋅ ccg∇h

ffiffiffiffiffiffiffi
σN

p� �
in the expression

of δn is thus obtained using the smoothing filter.
In each time step of the computation δn is calculated by Eqs. (7)

and (8). The new smoothened wave amplitude a is obtained for
each grid point and is only used to estimate the value of δn with the
help of Eq. (7) and replace k by the wavenumber K, while the
directional turning rate of the wave propagation speeds Cx, Cy, Cσ
and Cθ are corrected using Eqs. (17)–(20). The value of a is only
smoothened and is not iterated in the convolution filter, therefore
there is no need to define the maximum tolerance level in the
model. The number of iterations for smoothing is controlled by the
parameter L/2Δx, where L is the local wavelength and Δx is the grid
size. The parameter L/2Δx means that the number of the grid points
L/Δx is prescribed in a wavelength for accurately describing the
wave profile and the denominator is used as a relaxation coefficient
for numerical stability. It is expected that the number of iterations
for smoothing should result in a higher resolution of the wind
wave simulation.

All the new correction propagation velocities are inserted into the
action balance equation to solve the spectral densityN. The estimation
of δn is repeated based on the values of the action density N obtained
from the preceding iteration.

4. Relative importance of additional terms

In this section the relative importance of the additional terms of δn
is examined in order to know the contribution of these influencing
factors, which include the wave amplitude∇ha/ka, bottom slope∇hh/
kh, bottom curvatures∇h

2a/k2a, and∇h
2h/k2h and the ambient current

strength Us/c. It should be noted that the difference between the
present theory and the approximation of Holthuijsen et al. (2003) is
reflected in the different eikonal equation as given in Eq. (7). For
convenience, the second term on the right-hand side of Eq. (8) is
further rearranged using the spatial differentiation ∇h(ccg)=(∂ccg/
∂h)∇hh+(∂ccg/∂k)∇hk. To have a simple expression of δn in the
analysis, a one-dimensional uniform current Us=U is also assumed.
These expressions are then substituted into Eq. (8) to yield the
following expression:

δa = 1 + f1
kh

n tanh kh
∇2

hh
k2h

+ f2
khð Þ2

n tanh kh
∇hh
kh

����
����2 + f3

∇hh
kh

⋅∇ha
ka

+
2
n
U
c

+
1
n

U
c

� �2
−1

n
U
c

� �2 ∇2
ha

k2a
+

∇2
ha

k2a

ð23Þ

in which f3 is given by

f3 =
kh 1− tanh2kh
� �

3 tanh kh + kh−3kh tanh khð Þ
tanh2kh + kh 1− tanh2kh

� 

2 tanhkh + kh−kh tanh2 kh
� 
 : ð24Þ

For the simple case of the refraction approximation to be a valid one,
then δn=1 and K=k, and Eq. (7) shows that the following conditions
should be met:

∇hh
kh

≈∇2
hh

k2h
bb1;

∇ha
ka

≈∇2
ha

k2a
bb1; and

Us

c
bb1: ð25Þ
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For the combined wave refraction–diffraction on a horizontal
bottom without current, i.e. |∇ hh|=∇ h

2h=Us/c=0, Eq. (7) is
reduced to the following expression with the help of Eq. (25).

δm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

∇2
ha

k2a

s
: ð26Þ

The term ∇h
2a/k2a accounts for the effect of the diffraction for

travelling waves at a constant water depth. The importance of δn in
terms of the eikonal equation (Eq. (10)) proposed by Holthuijsen et al.
(2003) is shown in Fig. 1. It is evident that δn increases with the
increase of ∇h ⋅(ccg∇ha)/k2ccga, indicating that a larger curvature of
the wave amplitude ∇h

2a/k2a and the spatial rate of the directional
turning due to the varying wave speed (∇hccg) would produce a larger
Fig. 2. (a) Relationship of δn versus kh for various bottom slopes∇hh/kh, (b) relationship of δn
for various current velocities Us/c.
wave diffraction. To have a better understanding of the factors
influencing δn, a slow scale β is introduced to express the order of
magnitude in each of the additional terms in Eq. (7), in which the
water surface elevation is written as ς = a βXð ÞeiS and X = x; yð Þ is
the position vector. We then have∇hh/kh=∇ha/ka=O(β) and∇h

2h/
k2h=∇h

2a/k2a=O(β2) for the condition of the refraction effect only
being valid. The order of β=0.01 is chosen as an index of the
influencing factors in the present study.

Fig. 2(a) illustrates that δn is a function of the relative water depth
kh for different values of∇hh/kh=β0, β1/2 and βwhile∇ha/ka=∇h

2a/
k2a=1.0. The results show that δn increases with the decreasing
relative water depth. Note that a larger value of δn could be obtained
at a shallow water depth. Meanwhile, a steeper bottom slope would
lead to a larger value of δn, when the order of the slope and the
curvature of the wave amplitude are supposed to be at the higher
versus kh for various wave amplitude slopes∇ha/ka, and (c) relationship of δn versus kh
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Fig. 3. Normalized wave height distribution around a semi-infinite breakwater.
(a) Computational grids, (b) WWM without diffraction, (c) WWM with diffraction
and (d) Sommerfeld solution.
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value of ∇ha/ka=∇h
2a/ka2=1. We thus conclude that the effect of

rapidly varying bathymetry on the wave diffraction becomes
important in the shallow water region for the case of ∇ha/ka=∇h

2a/
ka2=1 without the current effect. Fig. 2(b) displays δn as a function of
kh for three different values of the wave amplitude slope ∇ha/ka=1,
0.1 and 0.01 for the cases of the bottom slope and curvature ∇hh/kh
and ∇h

2h/k2h of O(1). It is found that the effect of the wave amplitude
slope on δn becomes notable with the increase of ∇ha/ka in the
shallow water region. The value of δn increases with the decrease of
the relative water depth kh. A larger value of the wave amplitude
slope would yield a larger value of δn for a rapidly varying bottom
configuration. The combined effect of the wave profile, bathymetry
and current on the diffraction-correction parameter is presented in
Fig. 2(c). In the figure, two typical current strengths Us/c= 0.1 and
0.01 are considered for∇hh/kh=∇ha/ka=1. It is evident that a larger
relative current velocity would produce a smaller value of δnwhen the
relative water depth decreases.

To illustrate how realistic the ranges of parameters shown in
Figs. 1 and 2, we take a practical example of the significantwaveheight
of H1/3=1 m (wave amplitude a=0.5 m), wave period of T1/3=5 s,
water depth of h=10 m to calculate the values of the bottom slope, the
curvature of the wave profile and the current velocity. The results are
∇hh=1.717; 0.1717 and 0.01717 for ∇hh/kh=1.0; 0.1 and 0.01;
∇ h

2a=1.47×10− 4 m− 1; 1.47×10− 3 m− 1; 1.47×10− 2 m− 1 for
∇h

2a/k2a=0.01; 0.1 and 1.0; Us=0.73186 m/s and 0.073186 m/s for
Us/c=0.1 and 0.01. Clearly, the calculated physical quantities match
very well in the nature of the practical conditions.

5. Model validation

Notably the present model is based on a phase-averaged
approximation; the wave phase cannot be resolved in the numerical
simulation. The main purpose of adding the phase-decoupled
refraction–diffraction approximation to the action density equation
for a rapidly varying sea bottom with the current effect is to obtain a
reasonable estimate of the wave diffraction in a computation of the
WWM. Verifying the validity of the present model requires observa-
tions or superior computations with convincing diffraction effects.
Unfortunately, they are unavailable due to the difficulty of obtaining
measurements in the real situations. Instead, as done by previous
researchers, we consider small-scale computations for which mea-
surements are available from the laboratory tests. Different numerical
cases were also tested under such conditions of random, short-crested
wave transformations over a rapidly varying bottom with significant
diffraction effects in the presence of currents. In this study, four cases
were carried out to validate the refraction, diffraction and reflection
correction parameter with higher-order terms. If the model performs
reasonably well in these conditions, it will almost certainly function
well within the proper range of applications.

As for the inclusion of the wave reflection in the WWM, we follow
the method proposed by Ardhuin and Herbers (2002). The triad
wave–wave-bottom interaction source term S for the spectral energy
balance equation yields to the reflection estimates for a localized
scatter. The bottom elevation is represented by small bottom
amplitudes δ* and the mean water depth h. The wave–bottom
interaction source term is given by (Ardhuin and Herbers, 2002)

S kð Þ = 4πg1=2h−9=2χ khð Þ∫
2π

0
cos2 θ−θ′

� 

FB k−k0� 


E k0� 

−E kð Þ� �

dθ′

ð27Þ

with χ khð Þ = khð Þ9=2 tanh kh1=2

sinh 2kh 2kh + sinh 2khð Þ ð28Þ

where k is the wavenumber vector defined by k = k cosθ; k sinθð Þ, θ
defines the travelling wave angle, E kð Þ is the surface elevation
spectrum and FB kð Þ is the small-scale bottom elevation spectrum
obtained by discrete Fourier transform of the bottom. Details are
referred to Ardhuin and Herbers (2002).

5.1. Semi-infinite breakwater

Considering a vertical, rigid and semi-breakwater in the constant
water depth, the effect of diffraction on the directional turning rate of the
waves is estimated by the present phase-decoupled approximation
model. The unidirectional, monochromatic waves are approximated by a
δ-spectrum,which isdefinedasone frequencywithverynarrowGaussian
directional distribution around the mean direction, approaching the
breakwater perpendicularly fromthebottom to the top as shown in Fig. 3.
The incidentwave height and period are 0.055 mand 1.30 s, respectively.
In the computation, the directional spreading is taken asσθ=1.50 and the
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Fig. 5. Normalized wave heights for unidirectional waves propagating over an elliptical shoal. Section 1 is along the centre line of the domain and Section 2 is a line normal to the
centre line behind the location of the elliptical shoal. (a) EEMSE (Hsu and Wen, 2001a); (b) and (c) WWM without diffraction; (d) and (e) WWM with diffraction.
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directional resolution is chosen as Δθ=0.250. The wave field in this case
can be obtained using the analytical solution of Sommerfeld in terms of
the normalizedwaveheight. It is clear fromFig. 3 that the pattern ofwave
heights predicted by the present phase-decoupled WWM model with
diffraction (Fig. 3c) is in good agreement with the Sommerfeld's solution
(Fig. 3d), but the results of theWWMwithout diffraction do not properly
reproduce the wave pattern. Fig. 4 shows the comparison of the wave
height at the circular section of 3L, where L is the wavelength. The wave
height rising on the open side of the shadow line and in the area behind
the breakwater is well reproduced by the WWM with δn. The present
phase-decoupled model could not reproduce the oscillation of the
Sommerfeld solution due to the phase averaged treatment in the wave
balance equation.

5.2. Elliptical shoal

The present phase-decoupled model is applied to predict wave
transformations over an elliptical shoal. The shoal rests at the bottom
of a laboratory wave tank, and has major and minor radii of 3.96 m
and 3.05 m, respectively. The experiment was conducted by Vincent
and Briggs (1989) for waves propagating across the shoal, with
significant refraction, diffraction and reflection effects and wave
amplitude variations including caustics. The simulated monochro-
matic, unidirectional waves are the same as the wave conditions in
the above section. Goda's (1999) JONSWAP spectrum is given by

S fð Þ = σ1
H1=3

T2
p

 !2

f−5 exp −1:25 Tpfð Þ−4
� �

γ exp − Tpf−1ð Þ2 =2σ0

� �
ð29Þ

where γ is the peak enhancement factor, σ1=0.2189 the spectral
parameter, Tp=1/fp the peak period, σ0=0.07as f≤ fp and σ0=0.09
as f≥ fp.

For the case of the irregular waves, the incident wave with a narrow
JONSWAP spectrum γ=22 and a narrow Gaussian directional distri-
butionwere implemented in the laboratory experiments of Vincent and
Briggs (1989). The incident significant wave height is H1/3=0.0254 m
-4 -3 -2 -1 0 1 2
y

0.5

1

1.5

2

2.5

3

3.5

4

H
/H

i

Section 1
measurement (Vincent and B
WWM without diffraction
WWM+δm 
WWM+δn 

-5 -4 -3 -2 -1 0

x(m)

0.5

1

1.5

2

2.5

3

3.5

4

H
/H

i

Section 2
measurement(Vincent and B
WWM without diffraction

WWM+δm

WWM+δn

Fig. 6. Comparisons between observations of Vincent and Briggs (1989) and wave heights c
MSE; and δn: derived from EMSE.
and the peak period is Tp=1.3 s, respectively. The incident directional
spreading is σθ=3° and the directional resolution is Δθ=0.3°.

The computational results are compared with the experiments of
Vincent and Briggs (1989) and with the numerical results of the
EEMSE (Evolution Equation of MSE) developed by Hsu and Wen
(2001a). The normalized wave height for the monochromatic and
random waves is presented in Fig. 5. The computational results of the
WWM (Fig. 5(d) and (e)) shows that using the phase-decoupled
refraction approximation without diffraction (Fig. 5(b) and (c)) will
spread the effect of the shoal on the wave pattern over a larger area.
Notably the wave field with the approximation δn in the case of the
random waves (Fig. 5(e)) is almost the same with that of the
monochromatic case (Fig. 5(d)). The wave convergence calculated by
the EEMSE (Fig. 5(a)) and WWM with the diffraction of higher-order
bottom slope terms and reflection (Fig. 5(e)) is more visible than that
of the WWM with only the refraction (Fig. 5(d)). The comparison of
3 4 5 6 7 8 9 10
(m)
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alculated by WWM with and without diffraction at Sections 1 and 2. δm: derived from
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Fig. 5(b) and (d) implies that the WWM model with the present
phase-decoupled approximation predicts a smoother wave height
distribution than without the diffraction.

The computational results are also presented along with two lines:
the centre line of the tank (Section 1) and the line normal to the centre
line (Section 2) that is located just behind the shoal, as shown in Fig. 5.
The comparisons at Sections 1 and 2 are shown in Fig. 6. Notably there
are significant discrepancies between the results of δn and δm and the
higher-order bottom effect of the phase-decoupled approximation
yields a better estimation of the wave height around the shoal.

5.3. A series of submerged breakwaters

For water waves propagating over a patch of seabed, Bragg
scattering occurs when the surface wavenumber is equal to one-half
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Fig. 8.Normalizedwaveheightpatterns for irregularwaves travelling over a series parallel
submerged breakwater; (a) 8 units of breakwater with infinite length; (b) 4 units of
breakwater and(c) 8units of breakwaterwithfinite lengths. The resultswere calculatedby
the correction parameter δn and wave–bottom interaction source term S(k).
of the wavenumber of the undulating bottom. In this condition, the
reflected waves will return in equal phases with the forward waves
and enhance each other as they match the condition given above.
Ardhuin and Herbers (2002) presented a phase-averaged model to
account for the Bragg reflection for random waves travelling over an
irregular seabed. Wave reflection is included in the present model.
The scattering due to the wave refraction, diffraction and reflection is
also important for waves passing over a series of submerged
breakwaters in practical applications of coastal protection.

Several numerical simulations were performed to investigate the
effect of higher-order bathymetric terms on the Bragg scattering,
particularly for the case of the wave refraction, diffraction and
reflection of over sinusoidal or artificial undulations (e.g. Chamberlain
and Porter, 1995a; Chandrasekera and Cheung, 1997; Lee et al., 1998;
Hsu and Wen, 2001a). Their computational results confirm that the
inclusion of the bottom slope and second-order horizontal derivatives
in the MSE is able to provide better reflection coefficients at the
resonant peak.

Although the main purpose of this study focuses on the irregular
waves, it is instructive to compare the results of the phase-decoupled
model with Davies and Heathershwa's (1984) laboratory experiments.
The δ-spectrum of Eq. (29) is again approximated to simulate the Bragg
scattering of regular waves propagating over sinusoidal undulations.
Fig. 7 shows the nature of the dependence of the reflection coefficient R
on thedimensionlessparameter2S/Lunder theexperimental conditions
of D=0.05 m, S=1.0 m, M=10, h=0.313 m, D/h=0.16, where D
and M are the amplitude and the number of bars, respectively, and S is
the periodic bar spacing. We note that the numerical results are
compared favorably with the experimental data.
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The present model computes the Bragg scattering of water waves
propagating over a series of submerged parallel breakwaters. Fig. 8(a),
(b) and (c) shows the computational results of the wave pattern for
the δ-spectrum wave and the bottom configurations consist of 4 and
8 units of the submerged breakwaters, respectively. The height of the
breakwaters is hb=0.25 m, and the mean water depth over the
breakwater is 0.25 m. The breakwaters are 12 m long and 0.35 mwide
with a spacing of 0.35 m for infinite length and 6 m long for finite
length, respectively. The normal incident monochromatic wave
period and wave height are T1/3=1.0 s and H1/3=0.04 m, respec-
tively, to produce a significant reflection. For irregular waves, the
JONSWAP spectrum for the peak enhancement factor γ=3.3 is
chosen as the input condition in the model. The directional spreading
is σθ=3° and the directional resolution is discretized as Δθ=0.3°.

In Fig. 8, comparisons are made between the results of three
different cases taking the effect of the wave diffraction and the
number of breakwaters into account. Note that waves are converged
in Fig. 8(b) and (c) behind the finite submerged breakwaters because
of the wave diffraction at the tip of the breakwaters. It is evident that
the refraction–diffraction correction parameter δn and the wave–
bottom interaction source term S(k) result in the Bragg scattering in
front of the breakwaters and the larger wave heights on the down-
wave end of the breakwaters.
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Fig. 10. Comparisons of the normalized wave height for waves propagating over a ser
The Bragg scattering of random waves by 4 and 8 units of parallel
submerged breakwaters with finite length is presented in Fig. 9. The
results are in terms of the triad wave–wave-structure interactions due
to the combined effect of the wave refraction, diffraction and
reflection. It is noted that the wave pattern of Fig. 9(a) and (b) are
quite similar to those of Fig. 8(b) and (c) except that the Bragg
reflection tends to become small. This might be caused by the spectral
energy spreading in the processes of the Bragg scattering.

To have a better evaluation of the diffraction and reflection effects
on the Bragg scattering, the wave height distributions along
x=0~20 m and y=6 m; x=11 m and 4 m, y=6~12 m are plotted
in Figs. 10 and 11, respectively. It is seen that the difference of wave
heights obtained from δm and δn becomes noticeable in the region of
x=0 m to 10 m. This result implies that the inclusion of the higher-
order bottom effect terms in δn could produce a pronounced
refraction–diffraction effect of the Bragg scattering.

5.4. Jet-like current

To validate the application of the phase-decoupled wave model,
numerical calculations are performed to investigate thewave refraction–
diffraction owing to thewave–current interactions, whichwas originally
studied by Arthur (1950) and later by Liu (1983). As shown in Fig. 12a, a
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jet-like current system exists on a uniform sloping beach of 1/50. The
current velocity is written as (Liu, 1983)

Ux = −1:73016 2− y
76:2

� �2	 

F

y
76:2

� �
∫

x=7:62

0
F αð Þdα ð29Þ

Uy = 0:04395F
y

76:2

� �
F

x
7:62

� �
ð30Þ

with

F αð Þ = 1ffiffiffiffiffiffi
2π

p e−α2
=2 ð31Þ

where the length and the time units are in meters and seconds,
respectively. The normal incident monochromatic wave of H0=1 m
and T=8 s is generated at the boundary of y=240 m from the
shoreline. Fig. 12 (b), (c) and (d) shows the computational meshes of
the WWM model, a typical current velocity profile at the centerline
and the distribution of the current field, respectively. The δ-spectrum
is further used as the input condition in which the directional
spreading is σθ=3° and the directional resolution is described as
Δθ=0.3°.
The contours of the dimensionless wave height due to the current
effect obtained by Liu's (1983) parabolic approximation of the MSE are
shown inFig. 13(a). Thewaveheightdistributionobtainedby theWWM
without the diffraction correction is plotted in Fig. 13(b). The wave
patterns of theWWMwith δm and δn are presented in Fig. 13(c) and (d),
respectively. All figures show that the offshore current, refraction and
wave shoaling appear to enhance the growth of the wave height.
Because the direction of an offshore current velocity component is
opposite to that of the wave propagation, the effect of the offshore
current would increase the local wave height. In Fig. 13(a), we notice
that the longshore current component near the shoreline seems to
produce a smaller local wave height in the range of x=10–30 m.
Comparing Fig. 13(b) and (c), it is clear that the wave refraction–
diffraction correction parameter could reduce the wave height in the
opposite current region. A comparison of Fig. 13(a) and (d) indicates
that the wave pattern in the region of x=10–30 m and y=30–90m
where the currents turn from the longshore direction to the offshore
direction is quite similar to Liu's approximation. This result demon-
strates that the WWM model incorporating the δn parameter is more
capable of describing the wave refraction–diffraction for waves
travelling on a sloping beach in the presence of a current. Notably the
white-capping that dominates the wave field in a rip–current system
does not exist in this case because no wind is the input and the wave



Fig. 12. Normal incident waves propagating over the opposite nearshore current. (a) The beach topography, (b) computational grids, (c) the typical current profile at centerline and
(d) the nearshore current field.
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condition is the δ-spectrum. Wave blocking may occur in this case
resulting from the nearshore current in the opposite region.

To examine the current effect on the wave refraction–diffraction
correction parameter, the dimensionless wave heights along the
centre line (x=0) are plotted in Fig. 14(a). A relative error defined by
Er=|H−HMSE|/HMSE is used to evaluate the importance of the current
effect on the refraction–diffraction correction parameter. The results
of Er with and without the current-correction term are given in
Fig. 14(b). From Fig. 14(a) it is interesting to note that the wave height
increases monotonically only due to the shoaling and refraction effect
without currents. The differences between the results of the Liu
(1983) approximation and the WWM (with and without current
effects) start to appear from y=200 m and increase rapidly shore-
ward. In Fig. 14(a), it is also clear that the effect of the jet-like currents
reduce the wave height in the nearshore region. From Fig. 14(b),
it is found that the WWM model with δn may decrease around a 10%



Fig. 13. The contours of normalized wave amplitude. (a) Liu (1983), (b) WWM without diffraction, (c) WWM with δm and (d) WWM with δn.
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error when compared with Liu's approximation. The current speed
relative to the wave phase speed Us/c is presented in Fig. 14(c). This
computational case is a typical example representing a realistic rip–
current situation. In real situations, wave breaking often occurs and
the nearshore currents can be driven by breaking waves toward the
surf zone. However, this phenomenon is not considered in the present
model.
6. Conclusions

Based on the EMSE, the phase-decoupled refraction–diffraction
approximation for the waves propagating over a rapidly varying
topography with an ambient current for the spectral wave model was
developed in this study. The diffraction is assumed to be an additional
parameter to the refraction/diffraction-induced directional turning

image of Fig.�13


Fig. 14. Comparisons along the centerline of the currents (x=0). (a) Wave amplitude distributions, (b) relative errors (Er=|H−HMSE|/HMSE) and (c) the profile of Us/c.
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rate of the wave components in a given wave spectrum. The relative
importance of the additional higher-order terms that influence the
refraction–diffraction correction parameter is discussed. The model
has been verified by five cases, and the computational results are in
reasonably good agreement with observations or the results of the
refraction, diffraction and reflection models.

The higher-order bottom slope and second-order horizontal
derivative terms with the current effect derived from the EMSE
provide more reasonable predictions where wave refraction and
diffraction occur in the presence of a current on a rapidly varying
sloping bottom. However, only the Liu's (1983) case considering
currents, in which the wave propagating on a mild-slope was
demonstrated in the present investigation. As aforementioned,
several computational results by the EMSE or EEMSE indicated that
a rapidly varying sea bottom could produce a larger wave reflection.
Following Ardhuin and Herbers (2002), the problem of the Bragg
scattering of water waves considering the effect of a rapidly varying
topography solved by the phase-averaged model was also investigat-
ed. Wave reflection is included in the present model in which the
scattering source term was implemented to solve the wave–wave-
structure interaction problem. In summary, the proposed phase-
decoupled wave model with the refraction–diffraction correction
parameter can be applied to simulate wave scattering over an
abruptly varying topography in the presence of an ambient current.

As discussed by Holthuijsen et al. (2003), the approach has the
advantage to be applied in large-scale calculations inwhich the nature
of irregular waves and the evolution of a wave spectrum and the
processes of energy generation, dissipating and wave–wave interac-
tions are included. The present phase-decoupled model does not take
into account the changes in the Doppler-shift of the effective
wavenumber and the wave direction as addressed in Liu (1990).
Themodel is limited for the case that the ambient current strength has
the same order with the wave speed, i.e. Us/c=1.
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Appendix A

The EMSE (Extend Mild-Slope Equation) is given as

∇h⋅ ccg∇hϕ
� �

+ k2ccgϕ + f1g∇2
hh + f2gk ∇hhj j2

� �
ϕ

+ iω U⋅∇hϕ + ∇h⋅ Uϕð Þ½ �− σ2−ω2
� �

ϕ

= ∇h⋅ U U⋅∇hϕð Þ½ �

ðA:1Þ

and the velocity potential is defined as

ϕ x; yð Þ = iga
σ

coshk z + hð Þ
cosh kh

eiS x;yð Þ ðA:2Þ
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Substituting Eq. (A.2) into Eq. (A.1) yields a complex equation,
such that

∇h ccg∇ha
� �

−ccga ∇hSj j
h i

eiS

+ i a∇hccg⋅∇hS + 2ccg∇ha⋅∇hS + accg∇2
hS

� �
eiS

+ k2ccg− σ2−ω2
� �

+ f1g∇2
hh + f2gk ∇hhj j2

h i
aeiS

+ f∇h⋅ U U⋅∇hað Þ½ �−∇hS⋅½U aU⋅∇hSð �geiS

+ if∇hS⋅½U U⋅∇hað � + ∇h U aU⋅∇hSð Þ½ �geiS = 0

ðA:3Þ

and the real part of Eq. (A.3) is written as

∇h⋅ ccg∇ha
� �

+ k2− ∇hSj j2
� �

ccga + f1g∇2
hh + f2gk ∇hhj j2

� �
a

+ −σ2 + ω−U⋅∇hSð Þ2
h i

a

= ∇h⋅ U U⋅∇hað Þ½ �:

ðA:4Þ

The wavenumber K is defined as K=∇hS where S denotes the
scalar phase function. Eq. (A.4) can thus be rewritten as

K2 = ∇hSj j2

= k2 +
∇h⋅ ccg∇ha

� �
ccga

+
f1g∇2

hh + f2gk ∇hhj j2
ccg

+
1
ccg

−σ2 + ω−U⋅∇hSð Þ2−1
a
∇h⋅ U U⋅∇hað Þ½ �

� � ðA:5Þ
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