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Ocean Wave Integral Parameter Measurements
Using Envisat ASAR Wave Mode Data

Xiao-Ming Li, Susanne Lehner, and Thomas Bruns

Abstract—An empirical algorithm to retrieve integral ocean
wave parameters such as significant wave height (SWH), mean
wave period, and wave height of waves with period larger than
12 s (H12) from synthetic aperture radar (SAR) images over sea
surface is presented. The algorithm is an extension to the Envisat
Advanced SAR (ASAR) wave mode data based on the CWAVE
approach developed for ERS-2 SAR wave mode data and is thus
called CWAVE_ENV (CWAVE for Envisat). Calibrated ASAR
images are used as the only source of input without needing prior
information from an ocean wave model (WAM) as the standard
algorithms used in weather centers. This algorithm makes SAR
an independent instrument measuring integrated wave parame-
ters like SWH and mean wave period to altimeter quality. A
global data set of 25 000 pairs of ASAR wave mode images and
collocated reanalysis WAM results from the European Centre
for Medium-Range Weather Forecasts (ECMWF) is used to tune
CWAVE_ENV model coefficients. Validation conducted by com-
paring the retrieved SWH to in situ buoy measurements shows
a scatter index of 0.24 and 0.16 when compared to the ECMWF
reanalysis WAM. Two case studies are presented to evaluate the
performance of the CWAVE_ENV algorithm for high sea state.
A North Atlantic storm during which SWH is above 18 m as
observed by SAR and Radar Altimeter simultaneously is analyzed.
For an extreme swell case that occurred in the Indian Ocean, the
potential of using SWH measurements from ASAR wave mode
data derived by the CWAVE_ENV algorithm is demonstrated.

Index Terms—Empirical algorithm, integral wave parameter,
synthetic aperture radar (SAR), wave mode data.

I. INTRODUCTION

O CEAN waves are the ocean’s most obvious surface fea-
ture, which interact with atmosphere, ocean currents,

bottom topography, and with one another. For many reasons,
an understanding of their statistical properties is required, such
as marine transportation, global sea state statistics, and its
changes, as well as ocean wave parameters in specific locations
for harbor and ocean engineering, ship design, and coastal
protection.

Ocean waves are traditionally measured in situ at one point,
as by moored buoys, which are normally located near to
coast, giving very limited spatial coverage. Satellite remote
sensing, particularly active microwave sensors, e.g., synthetic
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aperture radar (SAR) and radar altimeter (RA), offers alternate
approaches to observe ocean surface waves on a global scale.
SAR is a unique sensor that can provide 2-D ocean surface
information with high spatial resolution, independent of cloud
cover and daytime.

The L-band SAR sensor onboard SEASAT launched in 1978
provided a first realization of global ocean surface measure-
ments from space (see [1]). From 1991 until now, the ERS-1,
ERS-2, and Envisat missions launched by the European Space
Agency (ESA) have operationally provided continuous SAR
ocean wave measurements. On these platforms, SAR and RA
are onboard jointly. In principle, two completely independent
surface wave measurements from space are available. While
the altimeter measurements are acquired at nadir, the SAR
measurements are taken at about 300 km away looking to the
right. Therefore, these double tracks provide simultaneous sea
state measurements, which is particularly useful for extreme
sea state validation in storms with strong gradient in wave
height field. Both measurements can be used jointly for wave
climate analysis, reducing the limitation of spatial sampling.
Aside from the assimilation of RA measurements at nadir track,
SAR can provide another source of observation as an additional
quality control for data assimilation in numerical wave models
(WAMs).

The measurement of significant wave height (SWH) by al-
timeters is well established, and the retrieved accuracy is com-
parable to that of in situ buoy measurements, e.g., [2] and [3].
In addition to SWH, mean wave period is another important sea
state parameter. Unlike the approach for SWH measurements,
retrieval of wave period from RA is still under development.
Several empirical models, e.g., [4]–[6], have been proposed to
obtain wave period measurements from altimeter data.

Following an overview of sea state measurements from RA
data, the current algorithms to derive the 2-D ocean wave
spectra from SAR are briefly summarized. A new method to
derive integral wave parameters from Advanced SAR (ASAR)
images is presented.

A. Ocean Wave Measurements From SAR

Nonlinear Retrieval Approach: The mechanisms of SAR
imaging sea surface gravity waves generally consist of the lin-
ear approaches of tilt and hydrodynamic modulation, as well as
the nonlinear distortion induced by the radial wave motions [7].
This leads, among other effects, to image smearing and to a loss
of information beyond the so-called azimuth cutoff wavelength
[8]. For ERS and Envisat SAR, this corresponds typically
to wavelengths shorter than about 200 m in the along-track
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direction. In addition, ocean wave spectra from satellite SAR
images suffer from a basic 180◦ ambiguity of wave propagation
direction, which can be resolved by using complex data [9].
A nonlinear mapping of ocean wave spectra into SAR image
spectra, as well as its inversion, was developed by Hasselmann
and Hasselmann [10] and is referred to as the Max Planck
Institute (MPI) scheme in the following. This inversion algo-
rithm accomplishes the retrieval of ocean wave spectra from
SAR spectra within the computational constraints of real-time
operational applications (see also [11] for a simpler transform).
An assessment of the performance of the algorithm, as well
as the operational feasibility, was given by Heimbach et al.
[12] using three-year (1993–1995) ERS-1 SAR wave mode
User WAve spectrum (UWA) spectral data (i.e., SAR image
spectrum in polar grid; see [13]). Validation results show that
approximately 75% of SAR UWA spectral data were converted
into successful retrievals. There remains a small overestimation
of less than 0.5 m for retrieved SWH by the MPI scheme
compared to the results from a WAM.

A semiparametric algorithm was developed as well for re-
trieving complete ocean wave spectra from SAR by taking into
account the ERS SAR wave mode image spectra and collocated
wind vectors from ERS wind scatterometer as additional input
[14]. The algorithm could not be used for the Envisat mission
on which the scatterometer is not onboard.

A parametric inversion scheme for the derivation of 2-D
ocean wave spectra from SAR look cross spectra is presented
by Schulz-Stellenfleth et al. [15] and is referred to as the
Partition Rescaling and Shift Algorithm (PARSA) algorithm.
This algorithm needs prior information from a numerical WAM
as well, while using the complex information of SAR data to
resolve the ambiguity on wave propagation direction.

SAR Cross-Spectral Algorithm: Taking two looks of SAR
wave mode complex data, the cross spectra can be derived
to remove the 180◦ ambiguity of ocean wave propagation
direction [9], which is demonstrated on airborne C-band SAR
data. Furthermore, the speckle noise is reduced significantly,
e.g., as described by Lehner et al. [16].

This method has been adopted by ESA for the ASAR wave
mode data, the so-called WVW Level 2 products [17]. Ocean
wave spectra of the WVW products only yield information
in the inner spectral bins contained in the ASAR wave mode
data, and inverted SWH has a significant bias of −0.22 m
and a scatter index (SI) of 33% as compared to in situ buoy
measurements [18].

To some extent, the PARSA algorithm mentioned earlier
is the combination of the nonlinear approach and the cross-
spectral algorithm. It uses the cross spectrum of two SAR
looks to remove the 180◦ ambiguity and blends the SAR image
spectra and first prior information from a WAM.

Empirical Algorithm: For the current nonlinear or quasi-
linear algorithms retrieving 2-D ocean wave spectra from SAR
imagery, either prior information from a numerical WAM is
needed, e.g., the MPI or PARSA scheme as used at weather
forecast centers where a first guess is available or when no first
guess information is taken like the ESA WVW products; the
provided information on wave height is limited to part of the
spectrum for waves longer than a certain threshold.

A new empirical algorithm called CWAVE_ERS [17] to
derive ocean wave integral parameters, instead of the full 2-D
spectra, without needing prior information was proposed for
the reprocessed ERS-2 SAR wave mode data [16]. Validation
results show that the performance of CWAVE_ERS is fairly
good when compared to the European Centre for Medium-
Range Weather Forecasts (ECMWF) WAM using 6000 colloca-
tion data pairs and to 21 buoy measurements during three weeks
in 1996. For both comparisons with respect to SWH, results of
CWAVE_ERS showed that the root mean square (rms) is 0.44
and 0.39 m, respectively. The performance of CWAVE_ERS for
high sea state, e.g., SWH higher than 6 m, is not evaluated in
the comparisons.

B. New Empirical Algorithm CWAVE_ENV

For more than 17 years, SAR global ocean observation data
have been acquired since the launch of ERS-1 in 1991. Us-
ing the CWAVE approach, another independent active satellite
measurement of sea state parameters thus becomes available,
contributing global wave climate analysis in addition to the
RA data.

In this study, an extended empirical algorithm called
CWAVE_ENV (CWAVE for Envisat) to derive integral wave
parameters from Envisat ASAR wave mode data is presented.
The CWAVE_ENV empirical geophysical model function is
adopted from CWAVE_ERS for ERS-2 reprocessed SAR wave
mode data. Considering that ASAR has a different spatial
resolution, image size, calibration constant, and capabilities for
imaging ocean surface to ERS-2 SAR, newly tuned coefficients
for the CWAVE_ENV model are needed.

Previous research states that, due to the cutoff effect of
the SAR imaging mechanism, only long-wave information is
imaged by SAR, which is apparent for high-altitude orbit SAR
systems like ERS SAR and Envisat ASAR. Still here, we
show that the wave parameters corresponding to the complete
spectrum like SWH can be retrieved well not only in low to
moderate sea state but also in high sea state from the ASAR
image by using the empirical model without needing prior
information.

This paper is organized as follows. In Section II, the data
set used in this study is introduced. Section III contains the
empirical model tuning and validation. Global sea state sta-
tistics derived from the ASAR wave mode data acquired in
December 2006 and January and February 2007 are compiled in
Section IV. Two case studies, a North Atlantic storm generating
wind seas with SWH above 18 m and a high ocean swell case
with maximum wave height above 11 m in the Indian Ocean,
are presented in Section V. Finally, summary and conclusions
are given.

II. DESCRIPTION OF DATA SOURCES

A. Envisat ASAR Wave Mode Data

When ASAR is operated in the wave mode, small images
covering 6 km × 5 km to 10 km × 5 km are acquired along the
orbit every 100 km.
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Fig. 1. Examples of Envisat ASAR wave mode data acquired over sea surface
for (a) the homogenous case and (b) the inhomogeneous one.

In the present study, the following filters are applied on the
ASAR wave mode data chosen for the tuning and validation of
the CWAVE_ENV model.

1) The ASAR wave mode data are generally acquired in the
IS2 swath with incidence angles at around 23◦ and VV
polarization. During the experimental period of January
24 to February 6, 2007, ASAR was requested to obtain
wave mode data in the IS4 swath, i.e., with an incidence
angle of around 33◦. These data are excluded from the
data set used in the present study.

2) To avoid effects of sea ice in the north and south polar
regions, the wave mode data acquired between −70◦ S
and 70◦ N are included.

3) A homogeneity test is performed on the ASAR wave
mode data. Examples of homogenous ASAR wave mode
data and inhomogeneous one are shown in Fig. 1(a) and
(b), respectively.

The ratio of image variance and squared image mean is set to
1.05 as a threshold to classify the ASAR wave mode images
into homogenous or inhomogeneous cases [20]. Around 9%
ASAR imagettes acquired in December 2006 fail to pass the

homogeneity test due to surface features, and they are excluded
from the tuning data set.

B. Numerical WAM Data

A summary of the third-generation WAM is given in the re-
port of the WAMDI Group [21]. From June 1992, a new version
of WAM (called cycle 4 [22]) was introduced operationally at
ECMWF. For global ocean forecast, the horizontal resolution
of WAM operated in ECMWF can reach 1.5◦, and for regional
forecast, a higher resolution model up to 10 km can be provided,
e.g., the WAM version operated in the German Weather Service
(DWD).

The basic equation that is used in the WAM is the action
balance equation

∂N

∂t
+ �cg

∂N

∂�x
=

∑
i

Si (1)

in which N(�x, t, f, θ) is the wave action and is equal to
E(�x, t, f, θ)/ω, where E is the directional wave spectrum in
frequency f and direction θ and ω is the radial frequency. �cg is
the group velocity of the wave component. Si is the net source
function, consisting of three terms: Sin is the energy input
by wind, Snl is the nonlinear energy transfer by wave–wave
interactions, and Sds is the high-frequency dissipation.

Integral wave parameters SWH and mean wave period (zero
upcrossing period used in this study) can be derived from 2-D
wave spectra of the model as given in

Hs = 4

√∫
E(f, θ)dfdθ (2)

Tm02 =

√∫
E(f, θ)dfdθ/

∫
E(f, θ)f2dfdθ. (3)

Performance of operational WAM forecast has been im-
proved considerably. During 1992–1993, the rms error (rmse)
of the 24-h forecast of ECMWF was around 0.75 m for SWH,
which has been reduced to 0.25 m in 2002–2003, due to the
assimilation of sea state and surface wind observations provided
by satellite sensors, e.g., RA, SAR, and Scatterometer [23].
The accuracy of some regional numerical WAMs is validated
as well in extreme sea state, for instance, the Local Sea wave
Model operated by DWD. This was tested, e.g., in selected
severe winter storms over the North and the Baltic Sea, giving
reasonable quality for short-period forecasts [24].

However, with respect to the long-term accuracy of global
WAMs, there is still room for improvement, as shown in the
validation for the reanalysis ERA-40 wave products. SWH
is slightly overestimated for low sea state (< 1.5 m) and
substantially underestimated by more than 20% for rough sea
state, when compared to the RA onboard TOPEX/Poseidon and
in situ buoy measurements [25].

In the present study, the provided operational ECMWF wave
spectra output on a 1.5◦ by 1.5◦ longitude–latitude grid at 6-h
synoptic times. The WAM spectra are provided on a polar grid
with 24 directional bins and 30 frequency bins beginning from
0.03452 Hz with a logarithmic increment of 1.1 Hz. It needs
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Fig. 2. Location of collocated buoys used for CWAVE_ENV model
validation.

to be pointed out that satellite observation of wind and wave
has been assimilated in the ECMWF WAM. It is referred to
as the ECMWF reanalysis model in the following. Sea state
parameters integrated from the 2-D WAM wave spectra are
collocated to individual ASAR data points using a ±3-h time
window and a 200-km distance window.

DWD provides integral wave parameters on grid points in-
stead of full 2-D spectra. The spatial and temporal resolutions
of the model are 0.75◦ and 3 h, respectively. Validation of SWH
derived from the DWD 24-h-forecast Global Sea wave Model
(GSM) WAM shows good agreement with a positive bias of
0.04 m and an SI of 0.20 when compared to buoy measurements
during June–August 2007 [26].

C. Buoy Data

Fig. 2 shows a map of the 77 buoys used as the in situ
validation data set. Most of the buoys are maintained by the Na-
tional Oceanic and Atmospheric Administration National Data
Buoy Center (NDBC) and the Environment Canada Marine
Environmental Data Service.

The nondirectional buoys are used to measure sea surface
vertical acceleration, which can be used to derive surface
displacement spectra. The details of the data collection and
analysis procedures for the NDBC nondirectional wave buoys
are described in [27]. Generally, in each hour, a 20-min record
of vertical hull accelerations of the buoy, sampled at a rate
of 1 Hz, is collected. By applying a segmented fast Fourier
transform (FFT) for the record, an acceleration spectrum is
calculated from which the nondirectional wave spectrum S(f),
i.e., frequency spectrum, is obtained.

Integral wave parameter, e.g., SWH, can be estimated from
the frequency spectrum S(f) using an interval [f0, f1] of
frequencies

SWH = 4

⎡
⎢⎣

f1∫
f0

S(f)df

⎤
⎥⎦

1/2

. (4)

For practice, numerically, the frequencies range from 0.03 to
0.40 Hz at intervals of 0.01 Hz.

Name, latitude, and longitude information of the buoy sta-
tions, as shown in Fig. 2, are given in Appendix A.

D. Summary of the Data Set Used in Tuning and Validation

Several data sets are used in the present study for algorithm
tuning and validation, as well as for case studies.

ASAR wave mode data
—Data acquired during the full month of December 2006 are

used as the tuning data set of the CWAVE_ENV algorithm,
excluding 347 wave mode data collocated to in situ buoy
measurements. They are also used as the data set to evaluate
the goodness of fit of the CWAVE_ENV model.

—Data acquired during January, February, and May 2007 are
used separately for validation of the algorithm.

Numerical WAM data
—Results of the ECMWF reanalysis WAM are used for tuning

and validation of the CWAVE_ENV algorithm.
—Results of the DWD forecast WAM are used for compari-

sons. No wave observations are assimilated in the WAM
itself before March 2008.

In situ measurements
—They are acquired from the meteorological buoys, so they are

independent measurements.
Crossover RA measurements
—They are derived from the RAs of GEOSAT Follow-On

(GFO) and JASON used as an independent validation source.

III. CWAVE_ENV MODEL TUNING APPROACH

In this section, the CWAVE_ENV parametric model struc-
ture, model fitting procedure, and its evaluation using the tuning
data set are described in detail.

A. Introduction of the Parametric Model

The CWAVE_ENV model is built based on the multiple-
regression method.

Multiple-Regression Model: ASAR image parameters col-
lected in vector S(s1, . . . , sns) are supposed to be re-
lated to sea state measurement W with coefficient vector
A(a0, a1, . . . , ans). A simple linear regression model collect-
ing these parameters to be used as an estimator is expressed by
(see [28])

W = a0 +
ns∑
i=1

aisi + Ei (5)

where Ei are random variables with zero mean.
In order to also include nonlinearities, as well as possible

coupling, among different ASAR image parameters, a quadratic
term is added on the right-hand side of (5) as shown in

W = a0 +
∑

1≤i≤ns

aisi +
∑

1≤i≤j≤ns

ai,jsisj (6)

which is the geophysical model function used in the
CWAVE_ENV algorithm.

The model states that the sea state parameter W is ex-
pressed as linear combinations of ASAR image parameters

https://www.researchgate.net/publication/234038839_Statistics_Analysis_in_Climate_Research?el=1_x_8&enrichId=rgreq-aaf31073-2fc2-45fe-bf88-a817287364f8&enrichSource=Y292ZXJQYWdlOzIyNDE1NTQwODtBUzoxMDQwNTM2OTg3Mjc5NDNAMTQwMTgxOTc0MzY3NA==
https://www.researchgate.net/publication/256198479_Inter-comparison_of_operational_wave_forecasting_systems?el=1_x_8&enrichId=rgreq-aaf31073-2fc2-45fe-bf88-a817287364f8&enrichSource=Y292ZXJQYWdlOzIyNDE1NTQwODtBUzoxMDQwNTM2OTg3Mjc5NDNAMTQwMTgxOTc0MzY3NA==
https://www.researchgate.net/publication/3989625_The_status_of_data_produced_by_NDBC_Wave_Data_Analyzer_WDA_systems?el=1_x_8&enrichId=rgreq-aaf31073-2fc2-45fe-bf88-a817287364f8&enrichSource=Y292ZXJQYWdlOzIyNDE1NTQwODtBUzoxMDQwNTM2OTg3Mjc5NDNAMTQwMTgxOTc0MzY3NA==


LI et al.: OCEAN WAVE INTEGRAL PARAMETER MEASUREMENTS 159

S(s1, . . . , sns) with the extended coefficient vector A(a0,
. . . , ans, a11, . . . , ans

ans
) in a dimension of nA = 0.5(n2

s +
3ns + 2). However, the parameters themselves can be non-
linear functions of other variables. In the following, the
ASAR parameters chosen in the CWAVE_ENV model are
introduced.

Selection of ASAR Image Parameters in the CWAVE_ENV
Model: Using the model given in (6), it is assumed that the
ns ASAR parameters include all relevant predictor variables. It
is often required to select the variables such that no essential
information is lost. On the other hand, too many variables will
increase the computational effort as well as make the model
rather sensitive to minor changes.

We choose ASAR parameters including the normalized radar
cross section [(NRCS); referred to as well as σ◦, as shown
in (7)], the variance of the normalized SAR image cvar [29]
[see (8)], and spectral parameters computed from the variance
spectrum as essential variables in the CWAVE_ENV model to
derive sea state parameters.

The NRCS of the SAR image is related to ocean surface wind
based on the CMOD function [30], [31] and thus can represent
short-wave information

σ◦ = 10 ∗ log10〈I〉 − K (7)

cvar =var ((I − 〈I〉) /〈I〉) . (8)

In (7) and (8), 〈I〉 is the mean intensity of ASAR wave mode
data, and K is the calibration constant.

In the CWAVE_ENV model, 20 parameters are extracted
from the estimated 2-D ASAR image spectra based on a set
of orthonormal functions. Together with σ◦ and cvar, there are
22 ASAR image parameters that are collected into the vector
S(s1, . . . , sns) as input to model (6).

Estimation of the ASAR image spectrum is performed by
computing the image periodogram with a 2-D FFT algorithm.
This method implemented on the ASAR image spectral esti-
mation is described in Appendix B. The exact definition of the
orthonormal functions used to extract 20 ASAR image spectral
parameters is given in Appendix C.

Although the exact physical meaning behind (6) is not easily
interpreted, the 22 parameters include essential information
relating the ASAR image to both long- and short-wave in-
formation, and therefore, the parametric model is successful
in estimating ocean wave integral parameters of the complete
wave spectrum.

B. Empirical Model Fitting Procedure

A least square minimization approach is used to tune
the CWAVE_ENV empirical model as given by (9), where
(w(1),S(1)), . . . , (w(N), . . . ,S(N)) represents the available
data pairs of ASAR image parameters and the collocated tuning
data of integral wave parameters (e.g., SWH or mean wave
period) derived from reanalysis WAMs or other observational
data sources, which are treated as the “true” or, at least, very
reliable sea state observations. It needs to be pointed out that

different integrated wave parameters correspond to respective
different parametric model coefficients

Jcost(A) =
N∑

j=1

(
w(j) −

nA−1∑
i=0

AiS
j
i

)2

. (9)

As stepwise regression procedure is used for the least
square minimization approach, the 22 parameters defined in
the previous section are all included in the tuning approach;
however, there are possibilities that some parameters will not
lead to a significant improvement of the empirical model. To
diagnose the performance on every ASAR image parameter
collected in the vector S(s1, . . . , sns), several terms are used to
quantification.

The regression (or explained) sum of squares due to regres-
sion denoted RSS is

RSS =
N∑

j=1

(
nA−1∑
i=0

AiS
j
i − W

)2

. (10)

The error (or residual) sum of squares ESS is

ESS =
N∑

j=1

(
Wj −

nA−1∑
i=0

AiS
j
i

)2

. (11)

The multiple regression is performed on every ASAR pa-
rameter. The parameter Sl1 for which RSSl1 is largest is chosen
as the initial parameter. In the next step, a new parameter Sl2 is
selected, for which the incremental regression sum of squares
RSSinc is again the largest

RSSinc = RSSl2 − RSSl1. (12)

In the third step, the testing of hypothesis that the inclusion of
new ASAR parameter Sl2 significantly reduces the regression
sum of squares is performed by computing the test variable of

F (i+1) =
RSSinc

ESSl2/(N − i)
. (13)

This is compared to the critical value of the distribution
F (1, N − i) [28]. The iteration to select ASAR parameters will
be terminated if the testing variable F (i+1) is below 0.99 or
99% quantiles, and the coefficients in (6) are fitted.

C. CWAVE_ENV Model Implementation

In the CWAVE_ENV empirical model, 22 parameters as
introduced in the previous sector extracted from the ASAR
wave mode image are used for the parametric model tuning
approach.

The selection of a training data set for the empirical model is
a crucial point. Its accuracy should be very near to the ground
truth and be sufficiently representative of different sea states
within the global geographical coverage.

In situ buoy measurements are believed to be the “ground
truth (with 10% or 0.25-m accuracy for wave height)” and are
used generally for assimilation into offshore WAMs, validation
of global wave forecast models, and calibration and validation

https://www.researchgate.net/publication/215722315_Scatterometer_data_interpretation_Derivation_of_the_transfer_function_CMOD4?el=1_x_8&enrichId=rgreq-aaf31073-2fc2-45fe-bf88-a817287364f8&enrichSource=Y292ZXJQYWdlOzIyNDE1NTQwODtBUzoxMDQwNTM2OTg3Mjc5NDNAMTQwMTgxOTc0MzY3NA==
https://www.researchgate.net/publication/224000585_Mesoscale_wind_using_recalibrated_ERS_SAR_images_J_Geophys_Res?el=1_x_8&enrichId=rgreq-aaf31073-2fc2-45fe-bf88-a817287364f8&enrichSource=Y292ZXJQYWdlOzIyNDE1NTQwODtBUzoxMDQwNTM2OTg3Mjc5NDNAMTQwMTgxOTc0MzY3NA==
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of satellite wave sensors. Buoy measurements would be the best
candidate for the tuning of the empirical model. However, the
existing sea state reference buoys are limited in terms of global
distribution and location (few are located in the open sea and in
the Southern Hemisphere) [32].

The SAR/ASAR wave mode data are typically acquired
globally in the open sea where only few buoy measurements
are available. Therefore, in the present study, ASAR collocated
ECMWF reanalysis WAM results in December 2006 are used as
the tuning data set. As mentioned in Section II-B, the reanalysis
ECMWF WAM is assimilated by satellite information. The data
are publicly available, as well as reasonable tuning data set.

The histograms of SWH and Tm02 derived from the collo-
cated reanalysis ECMWF model spectra are shown in Fig. 3(a)
and (b), respectively. It can be observed that the tuning data
set includes different sea states. The dominant SWH ranges
between 1.5 and 2.5 m, contributing around 50% to the entire
tuning data set. The maximum SWH measured by the ECMWF
model in the tuning data set is 12.6 m. The Tm02 distribution
shows that the model measures numerous waves with periods
between 8 and 9 s, and long swell with periods larger than 12 s
does exist in the tuning data set, too.

The coefficient vector A in (9) is thus tuned by using the
ECMWF reanalysis WAM. Fig. 4 shows the goodness of fit on
the optimization procedure in the CWAVE_ENV model based
on the turning data set in December 2006. The left panel is for
SWH, and Tm02 is on the right one. The differences between
ASAR measurements Yi and observations Xi (numerical WAM
or buoy) are quantified in terms of bias, rmse, and SI, which are
expressed in the form of

Bias =Yi − Xi (14)

rmse =

√∑
(Yi − Xi)2

n
(15)

SI =
1
Xi

√
1
n

∑ [(
Yi − Yi

)
−

(
Xi − Xi

)]2
. (16)

One can observe that the tuning approach of the CWAVE_ENV
empirical model is successful, making the difference between
ASAR measurements derived by the CWAVE_ENV algorithm
and the ECMWF reanalysis model results in the tuning data set
quite small with zero bias (as to be expected for the tuning),
and low scatter indexes of 15% and 7% for SWH and Tm02,
respectively. Thus, one can use the CWAVE_ENV geophysical
model function (6) to derive sea state parameters from ASAR
wave mode data.

IV. ASSESSMENT OF THE CWAVE_ENV EMPIRICAL

ALGORITHM PERFORMANCE

In this section, SWH, Tm02, and H12 derived from ASAR
wave mode data are validated with in situ measurement com-
parisons, numerical WAM comparisons, and RA measurement
comparisons on a data set different to the tuning data set.

H12 as given in (17) is associated with wave components
with wavelength longer than 220 m, and such waves are directly

Fig. 3. Histograms of (a) SWH and (b) Tm02 used in the tuning data set of
the CWAVE_ENV model which are derived from the ECMWF-analyzed model
in December 2006.

detectable as patterns on the ASAR images

H12 = 4

√√√√
∫

f<1/12s

S(f)df. (17)

Validation results show that SWH relating to swell events
(wave periods in the range of 10–15 s) as derived, e.g.,
from WAM operated in ECMWF has a positive bias larger
than 0.25 m [23]. Such events are generated by storms in
the Southern Hemisphere in winter season. Therefore, it is
particularly interesting to compare wave height H12 derived
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Fig. 4. Test of the goodness of fit for the optimization procedure in the CWAVE_ENV model based on the tuning data set in December 2006.

Fig. 5. Scatter plots of SWH derived by the CWAVE_ENV algorithm compared to buoy in situ measurements. Comparisons (a) in deep water and (b) in shallow
water.

by the CWAVE_ENV algorithm to model results and SAR
measurements such as the Level 2 product introduced by ESA.

A. Comparison to In Situ Data

Here, we present the validation of SWH derived by the
CWAVE_ENV algorithm against in situ buoy measurements
over the period in December 2006 and January, February, and
May 2007. It should be pointed out that data pairs of ASAR im-
agettes and collocated buoy measurements in December 2006

TABLE I
STATISTICAL RESULTS DESCRIBING THE PERFORMANCE OF

CWAVE_ENV FOR SWH (IN METERS) IN DIFFERENT SEA STATES
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Fig. 6. Percentages of the ASAR wave mode data that pass the homogenous test in different sea states acquired during January–February 2007.

Fig. 7. Scatter plots of SWH derived by CWAVE_ENV compared to (a) the ECMWF reanalysis model and (b) the DWD forecast model for data acquired in
January and February 2007.

were not included in the tuning data set. Buoy positions are
shown in Fig. 2 and listed in Table IV of Appendix A.

The comparison is discriminated between deep water (depth
> 100 m) and shallow water cases, as shown in the scatter
diagrams in Fig. 5(a) and (b), respectively. In deep water, SWH
derived by the CWAVE_ENV empirical algorithm shows a
good agreement against the buoy measurements.

One can observe that, generally, the empirical algorithm can
provide reliable retrieved SWH from ASAR wave mode data
with nearly zero bias, an rmse of 0.70 m, and an SI of 0.24 in
deep water. Considering the 61 data pairs in shallow water, the
retrieved SWH has a lower estimation with a bias of around
0.2 m, and the SI becomes rather higher to 0.33. As such, near-
shore cases may be very variable and depend on collocation.

The tuning data set that we choose in the present study is
the reanalysis numerical WAM, which has a good accuracy

and global distribution and location. Taking into account the
spatial resolution of the reanalysis WAM, the coastal ocean
wave processes, e.g., wave shoaling and refraction induced
by bathymetry, cannot be resolved though [33]. This therefore
makes the retrieved results of CWAVE_ENV in shallow water
show a high bias.

To investigate the performance of CWAVE_ENV for differ-
ent sea states, i.e., from smooth to high sea state, a step com-
parison is carried out. In Table I, the results of the comparison
are summarized. Aside from the three statistical parameters
defined in Section III-B, the bias percent (BP) is used as well,
estimating the relative bias depending on the mean value of
buoy observations

BP = 100% ∗ (Yi − Xi)/Xi. (18)



LI et al.: OCEAN WAVE INTEGRAL PARAMETER MEASUREMENTS 163

Fig. 8. Scatter plots of (a) wave height H12 and (b) Tm02 derived by CWAVE_ENV compared to the ECMWF reanalysis model for data acquired in January
and February 2007.

Considering the usual measurement for quality, namely, the
SI, it is found that, in rough sea state, i.e., SWH > 2.5 m, the
CWAVE_ENV algorithm has a better performance with scatter
indexes lower than 20%. In a sea state with SWH lower than
1.25 m, there is a distinct difference between CWAVE_ENV
results and buoy measurements. Retrieved SWH is overesti-
mated compared to the buoy measurements, and the SI in this
sea state is 0.43. The distinct difference between radar and
in situ buoy measurements in low sea state is also shown in
the validation for the RA measurements as well, e.g., [35] and
[37]. This somewhat is induced by the spatial inhomogeneity
given by the fact that ASAR is sampling measurements every
100 km spatially while the buoy is averaged within 20 min.

In high sea state, namely, when SWH is higher than 4 m,
SWH derived by CWAVE_ENV is underestimated compared
to buoy measurements, and the bias increases with higher sea
state. However, it is interesting to note that the SI is lower
than 0.15, showing a quite promising agreement with in situ
measurements in sea states with SWH larger than 6 m. Further
investigation of the CWAVE_ENV algorithm will be consid-
ered for cases of very low (< 1.0 m) and extreme sea state
(> 10.0 m) when compared to more collocations of in situ
measurements.

In the next three sections, data pairs are collected in January
and February 2007 for the comparisons to numerical WAMs,
existing ASAR wave mode Level 2 WVW products, and the
crossover RAs. Homogeneity tests are performed as well before
the comparisons and validations. Fig. 6 shows percentages for
the ASAR wave mode data that pass the homogeneity test in
different sea states during the two months. One can observe
that more than 60% data are excluded when SWH is lower than
0.5 m. When SWH is higher than 2.5 m, 90% data are homoge-
nous and can be used for comparisons.

Fig. 9. Scatter plot of Tm−10 derived by CWAVE_ENV compared to the
ECMWF reanalysis model for data acquired in January and February 2007.

B. Comparisons to Numerical WAMs

In this section, SWH, H12 wave height, and Tm02, as well as
wave energy period Tm−10, are compared to the ECMWF and
DWD model results. The scatter plots in Fig. 7(a) and (b) show
the SWH comparisons against the ECMWF and DWD WAM
results, respectively.

Both plots in Fig. 7 show that SWH retrieved by
the CWAVE_ENV empirical algorithm has good agreement
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compared to the reanalysis and forecast models with zero bias,
0.43 and 0.51 m of rmse, and an SI of 0.16 and 0.18, respec-
tively. For all statistical parameters, results derived from the
CWAVE_ENV algorithm compared to the ECMWF reanalysis
model have a better agreement compared to the DWD model.
A plausible explanation is that the CWAVE_ENV algorithm is
tuned by the ECMWF reanalysis model. In extreme sea state,
e.g., when SWH is higher than 10 m, CWAVE_ENV results
have a trend of slightly lower than the ECMWF model but
higher than the DWD model.

As the ECMWF model has been assimilated with the in situ
buoy and satellite data, thus, the DWD forecast results give
more independent comparisons.

H12 and Tm02 measurements are not available for the model
provided by DWD. Results derived from the CWAVE_ENV
algorithm for these parameters are compared to the ECMWF
reanalysis model, as shown in Fig. 8(a) and (b). The SI of the
H12 comparison is 0.3, while the bias still remains very low at
3 cm. Tm02 comparison has an SI of 0.08, and the rmse is 0.6 s.

In addition to SWH, wave energy period Tm−10 = m−1/m0

is another key parameter and is used to calculate the wave
power J via

J = 0.49H2
s Tm−10 (19)

where J has units in kilowatts per meter [36]. The wave
energy period is also retrieved by the CWAVE_ENV algorithm
and compared to the reanalysis ECMWF model, as shown in
Fig. 9. As ASAR images are typically requested as well for
other modes (e.g., image mode with 100 km by 100 km swath
coverage), which is exclusive to wave mode in offshore regions,
we are following the idea of extending the CWAVE_ENV
algorithm to image swath ASAR data to retrieve sea state
parameters. Thus, coastal wave power statistics will become
available. This is interesting for many coastal applications.

In Table II, the statistics of the comparisons to both
WAMs are summarized. Integral wave parameters given by
CWAVE_ENV have nearly zero bias when compared to models.
Tm02 has the smaller SI of 0.08, while it has the highest bias of
−0.05 s and an rmse of 0.59 s in the triple comparisons.

C. Comparison to ASAR Wave Mode Level 2 Products

For the Envisat mission, ESA delivers the ocean wave spectra
of Level 2 products WVW to the users. The data are provided
on a log-polar grid with 24 wavelengths and 36 directions.
In this section, WVW product performance is compared to
the result of the CWAVE_ENV algorithm for SWH and H12.
Fig. 10 shows the two comparisons for different wave heights
of SWH and H12 as derived from ESA WVW product retrievals
and the CWAVE_ENV algorithm. For SWH lower than 4 m,
the WVW products are generally suitable for providing sea
state measurements although, in many cases, cannot yield a
successful spectrum retrieval (as shown by the numerous entries
in the Y -axis with zero value of WVW results). When sea state
is higher than 4 m, a systematic underestimation of wave height
estimated from WVW products is quite obvious.

It is no surprise that the algorithm is limited to retrieve long-
wave information contained in the SAR image. Even if it is

argued that the WVW spectrum results are only available for the
longer wave information resolved by the ASAR sensor, it still
cannot provide reliable sea state measurements in many swell
cases as shown for the H12 wave height comparison, which are,
in fact, the results for waves already longer than 220 m.

D. Comparison to RAs

As mentioned in Section I, RA is another radar remote
sensing instrument that can provide accurate SWH measure-
ments over the sea surface. In this section, cross validation
of SWH retrieved by CWAVE_ENV is carried out. Measure-
ments acquired from the JASON-1 and GFO missions during
January–February 2007 are used. The data are acquired via
the Center for Satellite Exploitation and Research (CERSAT)
database, and the corrected SWH is used. For JASON-1,
the corrected result is SWH_corr = 1.0429 ∗ SWH +
0.0266, and for GFO, the respective equation is SWH_corr =
1.0625 ∗ SWH + 0.0754 [3].

We choose the time window for ASAR wave mode data
collocated to RA to be 1 h and the distance of collocation to
be smaller than 100 km. The crossover sea state measurements
derived from GFO and JASON-1 are fully independent for the
retrieved SWH from ASAR data. Within an area with a radius
of 100 km, several RA single-point measurements are collo-
cated to the ASAR wave mode data. Therefore, the averaged
SWH within the collocation cells and the single SWH from
the nearest point are both compared to the result derived by
CWAVE_ENV from the ASAR wave mode data. Figs. 11 and
12 show the retrieved SWH compared to GFO and JASON-1,
respectively.

One can observe that all the comparisons are in very close
agreement. The overall bias is around 0.10 m, and the rmse
is around 0.50 m. The correlation is higher than 90%, and
the scatter indexes are 0.17 and 0.13 for comparisons to GFO
and JASON-1, respectively. Thus, the SWHs derived by the
empirical model from ASAR data and altimeter measurements
are of the same quality.

In this section, sea state parameters retrieved by
CWAVE_ENV algorithms are compared to different data
sets. The comparisons show that the integral wave parameters
derived from ASAR wave mode data are reliable and
independent. It can be used as another data set for global wave
statistical analysis.

V. GLOBAL WAVE PARAMETER STATISTICS

Knowledge of the global behavior climate of ocean surface
waves, in terms of seasonal patterns and natural variability, is
of central importance to climate studies. The information used
to study wave climatology comes mainly from two sources:
1) direct wave measurements and observations and 2) hindcast
with WAMs. In situ measurements using wave buoys and
shipborne wave recorders, as well as visual inspections from
vessels participating in the voluntary observing ship scheme,
are the traditional data source for wave observations. Using the
visual wave data along the major ship routes covering the period
from 1958 to 1997, the climatology of swell and wind sea in
global scale is derived [37].
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TABLE II
STATISTICS OBTAINED BY THE CWAVE_ENV ALGORITHM VERSUS THE ECMWF MODEL AND THE DWD MODEL FOR SWH

(IN METERS), H12 WAVE HEIGHT (IN METERS), Tm02 (IN SECONDS), AND Tm−10 (IN SECONDS) IN JANUARY AND

FEBRUARY 2007. BIAS IS WITH RESPECT TO OBSERVATIONS, AND SI INDICATES SCATTER INDEX

Fig. 10. Scatter plots of (a) SWH and (b) H12 derived from ESA WVW spectra compared to CWAVE_ENV algorithm results for data acquired in January and
February 2007.

Fig. 11. Scatter plots of SWH derived by CWAVE_ENV compared to the measurements of RA GFO. (a) Comparison to the averaged SWH within the collocation
cells. (b) Comparison for the single SWH of the nearest point to ASAR wave mode data.
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Fig. 12. Scatter plots of SWH derived by CWAVE_ENV compared to the measurements of RA JASON-1. (a) Comparison to the averaged SWH within the
collocation cells. (b) Comparison for the single SWH of the nearest point to ASAR wave mode data.

Fig. 13. Mean SWH in 1.5◦ by 1.5◦ boxes derived from ASAR wave mode measurements.

Numerical WAMs are playing an important role in wave
climatology analyses. Numerous wave climatology studies,
particularly regional climatology, are based on numerical WAM
hindcast or reanalysis data set, e.g., using the three WAM data
sets spanning 40 years, i.e., ERA-40 [25], WASA [38], and
ODGP2 [39]. In general, all of these studies show similar wave
climate changes, e.g., compared to research by Sterl and Caires
[40], a trend in 99-percentile SWH of about 7 cm/year was also
found in the North Atlantic in the study of Wang and Swail
[39]. Another highlight of this 40-year analysis of ODGP2
adds convincing support to the WASA group’s conclusion that
“the northeast North Atlantic has indeed roughened in recent
decades, but the present intensity of the wave climate seems

to be comparable with that at the beginning of this century.”
Satellite remote sensing, particularly from RA and SAR, as
well contributes to global wave climate analysis, although the
time span still only covers about 20 years. Concentrated on the
combined monthly gridded data set from ERS-1, ERS-2, and
TOPEX that provides continuous coverage of the period August
1991–February 2000, the pattern with the highest interannual
variability, similar to the North Atlantic oscillation, was found
by Woolf et al. [41]. Using three years of reprocessed ERS-2
SAR wave mode data, global and zonal mean SWH variability
is derived by König et al. [42].

Here, global maps of mean SWH and Tm02 derived from
ASAR wave mode data are presented for the three-month
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Fig. 14. Mean energy wave period in 1.5◦ by 1.5◦ boxes derived from ASAR wave mode measurements.

period of December 2006–February 2007. It is used as demon-
stration for a compilation of a global wave statistical analysis.

A. SWH

In Fig. 13, the global map of SWH retrieved by the
CWAVE_ENV algorithm from ASAR wave mode data is
shown. In some coastal regions, where the antenna stations
regularly acquire data in other modes (e.g., image mode with a
swath of 100 km by 100 km), wave mode data are not available,
and together with the wave mode acquired in both polar regions,
they are indicated black areas on the map.

It is obvious that, in the North Atlantic and North Pacific,
mean SWH is higher than that in all other ocean basins. In
particular, in the area between 40◦ N to 60◦ N and 0◦ W to
50◦ W, winter storms often lead to mean SWH higher than 5 m.

B. Mean Wave Period

A global map of mean wave period is compiled and shown in
Fig. 14. In the North Central Pacific, features of the distribution
of wave period are similar to the one for SWH shown in Fig. 13.

In the north, high waves with average SWH above 5 m almost
cover the entire region between 40◦ N and 60◦ N. Mean wave
period builds up continuously toward the east. This shows that
the North Atlantic is a fetch-limited basin with steeper waves
toward the west. Storm systems of high forward speed generate
high waves, which often are not fully developed.

The two global maps are compiled based on three months of
data, which is too short to derive global wave statistical prop-
erties. Further investigation using the CWAVE_ENV empirical
algorithm to derive the sea state statistics will be spanning the
entire era of Envisat mission. In principle, the ERS data have
been available since 1991.

VI. CASE STUDIES

Two case studies are investigated in this section, namely,
a severe storm that occurred over the North Atlantic on

February 10, 2007, and the La Reunion extreme swell event,
which was generated by a distant storm in the south of Cape
Town, South Africa. Both cases are analyzed using WAM
outputs and double tracks of ASAR and RA-2 onboard the
Envisat satellite. With respect to the storm case, performances
of different SAR retrieval algorithms in extreme wind speed and
sea state are compared to WAM results. In the La Reunion case
study, we investigate ASAR measurements over a storm, which
generated high swell across the entire Indian Ocean basin.
Based on the empirical swell propagation law, the capability
of ASAR wave mode data to be used for early warning systems
is analyzed as well.

A. North Atlantic Storm Event

In this section, a North Atlantic storm event is investigated
in detail by using ASAR wave mode data, RA data, and
DWD forecast WAM results. Fig. 15 shows radar measurements
and WAM results for the event. In (a) and (c) in the figure,
SWHs of the DWD forecast model results at 00:00 and 12:00
UTC are shown as the background, on which collocated SWH
measurements from the double tracks of ASAR and RA-2 are
superimposed. ASAR provides sea surface measurements in
right-looking mode; thus, its surface track is around 300 km
away from the nadir measurements of RA-2. At 00:00 UTC,
the eastern track is the one of ASAR. Due to ascending and de-
scending orbits, it becomes the western track in the descending
case at about 12:00 UTC.

SWH derived from radar measurements and model forecast
results through the western high-wave system is analyzed in the
following. SWHs derived from ASAR and RA-2 data along the
tracks are represented by different curves in Fig. 15(b) and (d)
for 00:00 and 12:00 UTC. For SWH retrieved by the ASAR
algorithms, estimation by using the CWAVE_ENV algorithm
is shown in blue line; the nonlinear retrieval algorithm PARSA
and the Level 2 WVW products are shown in brown and yellow
ones, respectively. The DWD model results collocated with the
ASAR track are plotted as well as a pink line. Estimation of
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Fig. 15. Comparison of SWH derived from the DWD forecast model, ASAR wave mode data, and RA-2 data for the North Atlantic storm on February 10, 2007.
(a) DWD forecast model at 00:00 UTC superimposed with ASAR (eastern) and RA-2 tracks. (b) SWH derived from ASAR track using different algorithms, RA-2,
and the collocated DWD model results at 00:00 UTC. (c) Same with (a) while at 12:00 UTC. (d) Same with (b) while corresponding to the tracks acquired at
12:00 UTC.
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TABLE III
AVERAGED SWH ESTIMATED FROM DIFFERENT ASAR ALGORITHMS

AND DWD MODEL RESULTS IN THE HIGHER WAVE FIELD FOR

ASCENDING AND DESCENDING PASSES

SWH derived from the RA-2 Ku-band is also used for compari-
son. It is represented by green lines in the plot, and pink dashed
lines are used to denote its collocated DWD model results. As
RA-2 has the nadir footprints which are 300 km away from the
ASAR measurements, the WAM results collocated to RA-2 are
different to the ones for the ASAR track.

Both curve plots show that SWH derived from ASAR wave
mode data and RA-2 has quite good agreement with wave
forecast model results when sea state is lower than 6 m. In
high sea state, the differences are quite obvious though. At
00:00 UTC, the ASAR track is crossing the area of the wave
system, yielding high SWH. The PARSA algorithm provides
the highest value of 11.4 m, while the WVW product has a
large underestimation and yields only 5.7 m. The differences
of using the ASAR algorithms to estimate SWH in high sea
state are investigated in detail as follows.

ASAR wave mode data are acquired along the orbit every
100 km to provide sample and instantaneous measurement over
sea surface. To avoid high variations for SWH estimation using
ASAR wave mode data in high sea state, an averaging way is
used. In the ascending pass of Envisat at around 00:15 UTC,
five data pairs of ASAR measurements and collocated DWD
model located in the region between 42.32◦ N and 45.85◦ N
which is near to the high-wave system are linear averaged,
avoiding the effect of sampling of ASAR measurements. In the
descending pass at around 12:40 UTC, the area is chosen to
be between 43.47◦ N and 49.63◦ N, where eight data pairs are
located with all wave heights higher than 7.0 m.

The averaged SWH measurements derived from different
algorithms and collocated DWD model results for both tracks
are given in Table III.

For both tracks, the CWAVE_ENV algorithm shows the
capability to derive reliable measurements even in this extreme
sea state, while the WVW products cannot be used to measure
high sea state. Even when the SWH is lower than 5 m, the
WVW products have a positive bias compared to other algo-
rithms and model results, which is particularly obvious in the
descending pass as shown with the yellow line in Fig. 14(d).
Therefore, from this case study, one can conclude that WVW
has a substantial underestimation in high sea state and rather
overestimation in low and moderate sea states.

The PARSA algorithm yields higher estimation of SWH in
both tracks than the DWD WAM and the CWAVE_ENV results.
Moreover, the positive bias increases significantly along with
the sea state. The PARSA algorithm is implemented using the

prior information from the ECMWF reanalysis WAM, in which
the ASAR wave mode cross-spectral information and RA mea-
surements have been assimilated. The PARSA algorithm might
have an overestimation due to instantaneous measurements in
comparison to averaged model results. This needs to be further
validated.

At around 12:35 UTC, the RA-2 track was very near to the
high-wave system and yields an estimation of SWH of 18.9 m,
which is 2.9 m higher than the DWD model forecast result.
For this high sea state, the performance of different ASAR
algorithms to derive SWH is investigated in detail, particularly
to evaluate the CWAVE_ENV algorithm and the existing WVW
Level 2 products. CWAVE_ENV results for both passes show re-
liable measurements of SWH in different and variable sea states.

This case study shows that the quality of retrieved sea state
parameters by CWAVE_ENV is comparable to RA measure-
ments and to the SAR nonlinear retrieval approach, although no
prior information is used. The double tracks of ASAR and RA
can be used jointly to validate the WAM performance, as well
as for data assimilation, under the condition that a suitable algo-
rithm for ASAR is adopted. With respect to the CWAVE_ENV
algorithm, one issue that needs to be further investigated is the
performance in extreme sea state for extended data sets.

B. Indian Ocean Swell Case

On the evening of May 12, 2007, a series of very high waves
damaged the coasts of La Reunion island (21◦ S, 55◦20′ E)
and neighboring islands in the Indian Ocean. The extreme
swell with a peak period of up to 19.5 s reached a maximum
individual height of 11.3 m and an SWH of 6.4 m [43].

The extreme swell is generated by a severe storm around
40◦ S, 30◦ E in the south of Africa, as shown in Fig. 16, with
wind (upper panel) and wave field (lower panel) given by the
DWD forecast model on May 10, 2007, at 06:00 UTC. The
storm engendered swell, which propagated through the Indian
Ocean covering about 1000 km/day, hitting La Reunion.

Early Warning of Extreme Wave Using ASAR Wave Mode
Data: In Fig. 17, SWH measurements derived from both tracks
of ASAR wave mode data using the CWAVE_ENV algorithm
and RA-2 data are superimposed on collocated DWD forecast
model results. The time difference between the Envisat track
and the DWD model is around 1.5 h.

Compared to Fig. 16, one can observe that the storm was
moving toward northeast and spanned quite a large region of
more than 1000 km. The Envisat tracks cross the area of the
storm at around 19:45 UTC on May 11. The highest SWH mea-
sured along the ASAR track is 9.2 m located at 32.2◦ S, 4.7◦ E.
A high-swell system traveled to the northeast and arrived at La
Reunion island on May 12 at around 16:00 UTC after traveling
1700–2000 km. Using straightforward wave propagation rela-
tionships introduced by Dietrich et al. [44], about 5-m waves
can be forecasted in La Reunion island at around 12:00–16:00
UTC on May 12. This shows good agreement with the in situ
and reanalysis model, which yields 6 m [43].

In this case, around 20 h earlier, the extreme swell arriving
at La Reunion island can be forecasted by ASAR wave mode
measurements derived from the CWAVE_ENV algorithm. The
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Fig. 16. (a) Wind field and (b) SWH with direction of wind sea of the DWD
forecast model on May 11, 2007, at 06:00 UTC.

ASAR wave mode data may also be used together to cross val-
idate; thus, an extreme-wave early warning system is possible.

VII. CONCLUSION AND DISCUSSION

An empirical algorithm referred to as CWAVE_ENV to
estimate integral wave parameters from ASAR wave mode data
without prior information has been presented in this paper. The
empirical model function is tuned using globally distributed
ASAR wave mode data and collocated ECMWF reanalysis
model results. The tuning approach is implemented using a
stepwise regression method to select ASAR image parameters.
The geophysical model coefficients are derived by cost function
minimization.

Validation of the CWAVE_ENV algorithm is carried out by
comparison against in situ measurements, numerical WAMs,
Envisat/ASAR Level 2 WVW products, and crossover RA mea-
surements. Validation results show that the accuracy of integral
wave parameters retrieved by the CWAVE_ENV algorithm has
the quality of the RA measurements and is near to in situ buoy

Fig. 17. SWH and swell direction of the DWD model on May 11, 2007, at
21:00 UTC. The double tracks of (squares) ASAR wave mode and (circles)
RA-2 at around 19:45 UTC are superimposed.

measurements. A brief summary of the algorithm validation is
given in the following.

1) SWHs retrieved from ASAR data compared to buoy
in situ measurements are divided into comparisons in
deep water and shallow water. In deep water, retrieved
SWH has a good correlation of 0.9 to buoy measure-
ments, a reasonable rmse of 0.70 m, and an SI of 0.24.
The comparison in shallow water yields rather high rmse
of 1.0 m and an SI of 0.33 m, due to the limitation of the
reanalysis WAM data in the empirical model tuning.

Investigating the comparison of the CWAVE_ENV
algorithm in different sea states demonstrates that the
algorithm has good performance in rough sea state (with
SWH higher than 2.0 m), while it has an overestimation
around half meter in the rather low sea state for SWH less
than 1.25 m.

2) SWH, H12 wave height, and Tm02 compared to
the ECMWF reanalysis models are also presented.
CWAVE_ENV results have a low bias of −0.02 and
−0.03 m for SWH and H12 and an rmse of 0.43 and
0.34 m, respectively, while the wave period comparisons
show a very low SI of 8%.

As the DWD WAM is independent of ASAR informa-
tion, comparison of SWH estimated by CWAVE_ENV to
the DWD WAM, with a small bias of −0.05 m and an SI
of 0.18, shows more realistic results than the comparison
to the ECMWF reanalysis WAMs, which is using the
in situ measurements and satellite data in the assimilation
scheme.

3) The retrieved results of SWH and H12 by CWAVE_ENV
are also compared to the ASAR wave mode Level 2
products. The comparison results reveal that the existing
Level 2 products significantly underestimate SWH, and
the measurements vary with the change of ASAR cutoff
wavelength.
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4) RA measurements are also used for the validation of the
CWAVE_ENV algorithm. Crossover measurements from
the GFO and JASON-1 missions are collocated to the
ASAR wave mode data. A bias of around −0.1 m and an
rmse of around 0.5 m are found for both comparisons. Low
scatter indexes of 0.13 and 0.17 are achieved when com-
pared to GFO and JASON-1, respectively. Few cases over
extreme sea state with an SWH of around 10 m have con-
sistent results from the ASAR wave mode and GFO data.

The results of the two case studies for extreme wave condi-
tions thus demonstrate that the CWAVE_ENV algorithm per-
forms well under extreme sea states.

In the North Atlantic storm event case, the SWHs given by
ASAR and RA-2 are compared to the DWD forecast WAM. All
measurements derived from radar and models agree well along
the orbit, but for the extremely high sea state within the storm,
there are distinct differences. CWAVE_ENV results agree well
with the DWD model results but are around half meter higher
for SWH above 7 m. Both RA-2 and ASAR PARSA results are
higher than the wave forecast with a bias of more than 1 m
in extreme sea state. The ASAR standard Level 2 WVW
products show a significant underestimation of wave height in
storm areas.

The analysis of the high-swell case at La Reunion island
demonstrated that ASAR wave mode data can be used as a
forecasting tool for extreme waves contributing to a global early
warning system.

Despite the overall good quality of integral wave parameters
derived by the CWAVE_ENV algorithm, the assessment is
based on a three-month period. Therefore, a more intensive
validation by in situ buoy measurements and crossover RA
measurements is needed to confirm its performance under
extreme sea state conditions.

In the present study, coefficients in the CWAVE_ENV model
are tuned by the reanalysis ECMWF WAM, in which available
wave observations have been assimilated. This, to some
extent, limits the current results to be used fully independent.
However, the empirical algorithm demonstrates that the
integral wave parameters can be retrieved correctly, even
without using a priori information. Further investigations using
buoy data and data from field experiments in severe sea state,
e.g., during the expedition ANT-XXV of R/V “Polarstern”
(http://www.awi.de/en/infrastructure/ships/polarstern/weekly_
reports/all_expeditions/), are in preparation.

APPENDIX A
LIST OF BUOYS USED FOR CWAVE_ENV

ALGORITHM VALIDATION

Name, latitude, and longitude of buoys used for the
CWAVE_ENV empirical algorithm validation are given in
Table IV. The positions of the buoys are shown in Fig. 2.

APPENDIX B
ESTIMATION OF ASAR IMAGE SPECTRUM

USING PERIODOGRAM METHOD

Estimation of the ASAR image spectrum is performed by
computing the image periodogram with a 2-D FFT algorithm.

The idea behind it is to divide the entire set with N samples into
many subsets with M samples, to compute the FFT of each sub-
set, to square it to get the power spectral density, and to compute
the average of the ensemble. This approach implemented on the
ASAR image spectral estimation is described in Appendix B.

A 2-D ASAR image with sizes of Bx and By in the range
and azimuth directions is divided into nbx and nby subscenes,
respectively. The relation is given by

nbx = Bx/nx nby = By/ny (B1)

where nx = 256 and ny = 512 are taken to be the subscene
sizes used to divide the entire samples of Bx and By in the
range and azimuth directions. The 2-D FFT is performed on
every subscene, i.e., normalized subscene G [computed via (8)]
with pixel size nx and ny

FG = fftnx∗ny(G). (B2)

The power density spectrum for every subscene is denoted
by PS

PS = (FG)2. (B3)

Summing the subscene power density spectrum and averaging
to reduce the variance, the entire ASAR image spectrum P is
given by

P =
1

nbx ∗ nby

∑
PS . (B4)

The Fourier transform theory states that the integral of the
image in the frequency domain is equal to the image variance
in the spatial domain. The Cartesian spectrum computed in (B4)
needs to be normalized to ensure this case. The normalized
ASAR image spectrum is denoted as P

P = P ∗
(∑

P ∗ dkx ∗ dky

)−1

. (B5)

In (B5), dkx, dky is the wavenumber spacing in the ASAR
image range and azimuth directions, given by

dkx = 2π/(Bx ∗ dx) dky = 2π/(By ∗ dy) (B6)

where dx, dy is the pixel spacing in meters of the ASAR image.
The ASAR spectral parameters to be used for the

CWAVE_ENV model are then computed from the ASAR image
spectrum P by projection onto the subspace spanned by the
orthonormal functions, i.e., by computing the respective scalar
products

S =
∑

P (kx, ky)hi(kx, ky)dkxdky (B7)

where 1 ≤ i ≤ nϕnk and hi are the orthonormal functions, and
their exact forms are given in Appendix C.

APPENDIX C
CONSTRUCTION OF ORTHONORMAL FUNCTIONS

The orthonormal functions hij used in the CWAVE_ENV
model to extract ASAR image spectral parameters in
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TABLE IV
NAME, LATITUDE, AND LONGITUDE OF BUOYS USED FOR VALIDATION, CORRESPONDING TO THE RED CROSS MARKS SHOWN IN FIG. 2

wavenumber and angular dimensions are composed of
Gegenbauer polynomials gi(αk) and harmonic functions
fj(αϕ), respectively

hij(αk, αϕ) = η(kx, ky)gi(αk)fj(αϕ),

1 ≤ i ≤ nk; 1 ≤ j ≤ nϕ. (C1)

In the CWAVE_ENV model, four Gegenbauer polynomials
gi(αk) and five harmonic functions fj(αϕ) are used, respec-
tively, to generate the orthonormal functions

g1(αk) =
1
2

√
3
√

1 − α2
k

g2(αk) =
1
2

√
15αk

√
1 − α2

k

g3(αk) =
1
4

√
7
6

(
15α2

k − 3
) √

1 − α2
k

g4(αk) =
1
4

√
9
10

(
35α3

k − 15α2
k

) √
1 − α2

k (C2)

f1(αϕ) =
√

1/π

f2(αϕ) =
√

2/π sin(2αϕ)

f3(αϕ) =
√

2/π cos(2αϕ)

f4(αϕ) =
√

2/π sin(4αϕ)

f5(αϕ) =
√

2/π cos(4αϕ). (C3)

In (C2) and (C3), αk and αϕ are the definitions of integration
area A in the wavenumber domain of the ASAR image spectra.
Considering the velocity bunching effect of SAR imaging sur-
face waves, which leads to a bunching wave spectrum in the
SAR azimuth direction, the integration area A is chosen as an
elliptic shape. αk and αϕ are defined respectively as

αk(kx, ky) = 2
log

√
a1k4

x+a2k2
x+k2

y−log kmin

log kmax−log kmin
−1 (C4)

αϕ(kx, ky) = arctan(ky, kx). (C5)
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η(kx, ky) =

(
2

(
a2k

2
x + 2a1k

4
x + k2

y

)
(
k2

x + k2
y

) (
a2k2

x + a1k4
x + k2

y

)
(log kmax − log kminx)

) 1
2

(C9)

The maximum wavenumber kmax used in the integration area
A is

kmax = 2π/(60 m) (C6)

where corresponding to the shortest wavelength of surface
waves is 60 m, which is on the order of twice the sensor spatial
resolution. The minimum wavenumber kmin is set to

kmin = 2π/(624 m). (C7)

Wavenumbers less than kmin, which generally are associated
with atmospheric features observed in SAR imagery, are ex-
cluded from the integration area A.

Two parameters a1 and a2 in (C4) are defined as

a1 =
γ2 − γ4

γ2k2
min − k2

max

a2 =
k2
max − γ4k2

min

k2
max − γ2k2

min

(C8)

where γ = 2 is the parameter describing the bunching effect
in the SAR imaging process, i.e., the ratio of the highest
wavenumber in the respective range and azimuth in domain A.

In (C1), η(kx, ky) is the weight function defined in (C9),
shown at the top of the page. Substituting (C2), (C3), and (C9)
into (C1), one can obtain the orthonormal functions to extract
ASAR image spectral parameters used in the CWAVE_ENV
model.
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