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Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an
imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into
terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean
can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically,
increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal
monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux
divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil
moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified,
and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this
3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and
precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport,
and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS
into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions
of precipitation in vulnerable subtropical regions, such as the Sahel.
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INTRODUCTION

Terrestrial precipitation heavily relies on moisture evaporating from the
ocean surface (1–9). Indeed, oceanic evaporation is the origin and largest
element of the global water cycle, exceeding total river flows by an order
of magnitude (1, 4, 5, 9) and dominating the freshwater budget at global
and regional scales (3, 6, 7). Furthermore, the water cycle is closely coupled
to the global energy balance, in that the latent heat associated with evap-
oration is the largest energy transfer mechanism (more than 88Wm−2) from
ocean to atmosphere to balance the radiative heat flux into the climate
system (10–12). Thus, the ocean-to-land moisture flux has important
implications for maintaining the global water and energy balances (6).

This moisture exchange process leaves its imprint on the sea surface
salinity (SSS) pattern, both spatially and temporally (4, 9, 13–23). Glob-
ally, high-SSS regions are located where evaporation exceeds precipita-
tion, that is, a net loss of freshwater from the ocean surface (1, 4, 5).
Over large regions of the subtropics, evaporation can exceed precipita-
tion by 1 to 2 m per year, representing an energy export to other re-
gions of 75 W m−2 for every meter per year of net water loss. That is,
high-salinity regions are major sources of moisture and latent heat for
the rest of the climate system, implying that salinity should be a val-
uable indicator for understanding variability in the water cycle (9, 15).
This provides motivation for investigating the relationship between
ocean salinity and terrestrial precipitation.

Previous studies have focused on the “response” of ocean salinity
to the water cycle, treating salinity as a passive indicator of local fresh-
water forcing (17–23). As the atmosphere serves to bridge the water
cycle of the ocean and adjacent land, whether and how salinity can be
used as a predictor of terrestrial precipitation are the questions investi-
gated here. This study provides evidence that SSS over the subtropical
oceans can serve as a seasonal predictor of terrestrial precipitation,
focusing on the subtropical North Atlantic and the African Sahel, where
monsoonal precipitation is critically important for human health, agri-
culture, and socioeconomic stability (24).
RESULTS

Salinity and Sahel precipitation
To examine the relationship between SSS and precipitation, we applied
singular value decomposition (SVD) (25) to the covariance matrix of
African precipitation and Atlantic SSS anomaly (SSSA) data for the
period 1950–2009 (see Materials and Methods). The precipitation data
are from the National Oceanic and Atmospheric Administration (NOAA)
Precipitation Reconstruction over Land (Prec/L), and the salinity data are
from the Hadley Centre EN4.1.1 archive (see Materials and Methods).
The SSSA signal leads precipitation by one season, indicating potential
predictive skill for terrestrial precipitation over Africa (Fig. 1). Specifically,
the leading SVD mode (that is, SVD-1) explains 44% of the variance be-
tween springtime [March-April-May (MAM)] SSSA andmonsoon-season
[June-July-August-September (JJAS)] precipitation over Africa. The signif-
icant precipitation signal appears over the Sahel (10°N to 20°N, 20°W
to 30°E) (Fig. 1B), and the corresponding SSSA signals are over the sub-
tropical North Atlantic and South Atlantic (Fig. 1A). SVD-1 has stronger
loading over the subtropical North Atlantic than its southern hemispheric
counterpart (Fig. 1A). Consistent with the spatial distribution of SVD-1,
the SSSA and precipitation SVD time series are significantly correlated
with SSS in the North Atlantic box (R = 0.88) and precipitation in the
Sahel box (R = 0.95), respectively (Fig. 1C; see Materials and Methods).

The lead relationship between springtime SSSA and African monsoon-
season precipitation as shown in SVD-1 can be verified by a cross corre-
lation between African monsoon-season precipitation and SSSA in the
subtropical North and South Atlantic (Fig. 2 and figs. S1 to S3, A and B).
Consistent with Fig. 1, the most coherent and significant correlation is
between springtime North Atlantic SSSA and summertime precipitation
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over the Sahel, with correlation coefficients reaching 0.58 (P < 0.01) (Fig.
2B). The South Atlantic SSSA also significantly correlates with Sahel pre-
cipitation, albeit with lower correlation coefficients (fig. S3B). In addition, a
significant correlation with Sahel precipitation is already emerging in the
wintertime (January to March) SSSA (Fig. 2A). These results are robust
across data sets (table S1; see the SupplementaryMaterials for details), which
consistently show wintertime and springtime SSSA in the North and South
Atlantic leading monsoon-season precipitation in the Sahel (figs. S1 to
S3, A and B). Overall, the analysis identifies a significant lead relation-
Li et al. Sci. Adv. 2016; 2 : e1501588 6 May 2016
ship between Atlantic SSSA and monsoon-season precipitation in the
Sahel, suggesting that terrestrial precipitation is potentially predictable
on the basis of ocean salinity.

Physical processes
With the foregoing evidence that SSS is a strong indicator of the oceanic
water cycle and the moisture exchange between ocean and land by
atmospheric transport (3, 4, 6, 7, 15), atmospheric moisture budgets were
examined to elucidate the processes that physically link ocean salinity
and Sahel precipitation.

Composite analysis was used to construct atmospheric moisture flux
fields from the National Centers for Environmental Prediction (NCEP)/
National Center for Atmospheric Research (NCAR) reanalysis data
associated with the high- and low-salinity cases (Fig. 3; see Materials
and Methods). In the spring, high salinity in both the North Atlantic
and South Atlantic regions is accompanied by strong moisture flux
divergence (MFD) away from the local ocean. The increase in MFD
indicates that more moisture is leaving the two net moisture export re-
gions in the spring to sustain precipitation elsewhere (Fig. 3A and fig. S3C).
Over the subtropical North Atlantic, the increased MFD is maximal in
the eastern part of the domain, reaching 0.8 mm day−1 (Fig. 3A). In addi-
tion, in the subtropical South Atlantic, the increases in MFD are mainly
over the southern part of the domain (fig. S3C). In both subtropical
regions, the maximum increases in MFD slightly shift from the centers
of maximum SSSA, reflecting the contributions of ocean currents in
advecting the SSSA forced by surface freshwater flux (26, 27).
Fig. 1. Springtime Atlantic SSSA and Sahel monsoon-season rainfall. (A and B) The leading SVD mode of springtime (March to May) Atlantic SSSA (A)
and June-to-September African precipitation (B). Shading indicates where the loading of the SVDmode is significant at the a = 0.05 level. The North Atlantic
and South Atlantic regions aremarked on (A), and the box in (B) denotes the Sahel region. (C) Time series of the first SVDmodes of SSSA (solid red curve) and
precipitation (solid blue curve), as well as the normalized March-to-May SSSA in the North Atlantic region (dashed red curve) and June-to-September Sahel
precipitation (dashed blue curve).
Fig. 2. North Atlantic SSSA leads Sahel precipitation. (A and B) Correla-
tion between June-to-September African precipitation and (A) wintertime
[January-February-March (JFM)] and (B) springtime (MAM) SSSA over the North
Atlantic. Areaswith correlation coefficients significant at the a = 0.05 level are
hatched. The effective degrees of freedom used to determine the signifi-
cance level are calculated using tools described in Materials and Methods.
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Analysis of MFD suggests a potential linkage between salinity in the
net moisture export regions and terrestrial precipitation. In addition,
we calculated the divergent component of the moisture flux to identify
regions where moisture export can physically contribute to Sahel pre-
cipitation (see Materials and Methods). Examining the divergent
component of the moisture flux reveals that the contributions of North
and South Atlantic moisture to the variation of Sahel precipitation differ
significantly. With positive springtime (MAM) SSSA in the North
Atlantic, the increased MFD from the subtropical ocean tends to move
toward the Sahel and converge there (Fig. 3A). In contrast, the increased
moisture fluxes originating from the South Atlantic are mainly directed
poleward rather than toward the Sahel (fig. S3C). Thus, the statistically
significant relationship between South Atlantic SSSA and Sahel precip-
itation is not physically meaningful but must be derived from other
teleconnections linking the Northern and Southern Hemisphere expres-
sions of the Hadley circulation (28).

The divergent component of moisture flux suggests that the water
cycle in the subtropical North Atlantic that generates the SSSA directly
contributes to the regional water balance in the African Sahel during
the spring season. Accompanying the high SSSA, the local ocean appears
to be an additional moisture source that supplies moisture to the African
Sahel (7). It is noteworthy that in the monsoon season, the increased
Li et al. Sci. Adv. 2016; 2 : e1501588 6 May 2016
MFC over the Sahel more likely originates from the tropical eastern
Atlantic and the Mediterranean, two climatological moisture source
regions identified by previous studies (7, 29–31). In contrast, the sum-
mer moisture flux over the subtropical North Atlantic tends to diverge
toward the midlatitudes (Fig. 3B). The results, however, do not contra-
dict our claim that moisture fluxes over the subtropical North Atlantic
can physically influence the monsoon-season precipitation through pre-
conditioning. In the following sections, we will show that the moisture
supply from the subtropical North Atlantic provides the initial mois-
ture that can be extended to the subsequent monsoon season through
a positive contribution by local soil moisture.

In the Sahel, the moisture flux from remote sources is balanced by
the local rate of change of soil moisture content (fig. S4; see the Sup-
plementary Materials for details). Furthermore, previous studies have
characterized the Sahel as an area of active land-atmosphere interaction,
through which soil moisture couples with atmospheric moisture flux to
influence precipitation (32–36). Figure 3 (C and D) shows the seasonal
evolution of atmospheric MFC and soil moisture anomalies during high-
and low-salinity years. Consistent with Fig. 3A, in high-salinity years, the
moisture flux from the North Atlantic provides an above-normal mois-
ture supply to the Sahel region in spring (Fig. 3C). According to the region-
al moisture budget analysis, the 0.8–mm day−1 increases in net moisture
Fig. 3. Mechanisms linking springtime SSSAandSahelmonsoon-seasonprecipitation. (A andB)Moisture flux divergence anomaly (shaded;mmday−1)
and the divergent component of moisture flux (vectors; kg m−1 s−1) composites on North Atlantic SSSA: (A) March-to-May composite; (B) June-to-September
composite. Vectors are only shown for moisture flux anomalies significant at the 0.05 level according to a Hotelling t2 test (65). The purple boxes denote the
subtropical North Atlantic. (C and D) Moisture flux convergence anomaly (C) and soil moisture (SM) content anomaly (D) over the Sahel composited on
springtime North Atlantic SSSA. The green bars are composites of high-SSS events, and the brown bars are those of low-SSS events. The high-SSS events
and low-SSS events are selected as the top and bottom decile of the North Atlantic MAM SSS time series. The error bars denote the upper and lower bound
of soil moisture or moisture flux convergence (MFC) anomaly defined by 1 SD. AMJ, April-May-June; MJJ, May-June-July; JJA, June-July-August; JAS, July-
August-September; ASO, August-September-October; SON, September-October-November; OND, October-November-December.
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export from the subtropical North Atlantic during high-salinity years
can lead to 1.1–mm day−1 increases in MFC in the Sahel because the
area of the North Atlantic SSS box (Fig. 1A) is about 40% larger than
the Sahel box (Fig. 1B). This expected increase in MFC matches that
observed over the Sahel (1 mm day−1) during high-salinity years in
comparison with low-salinity years (Fig. 3C). The 1–mm day−1 differ-
ences in MFC almost triple the MAM climatology of precipitation in
the Sahel (0.3 mm day−1 according to Prec/L) and are about 80% of
the annual mean precipitation in the region. The results suggest that
moisture supplied from the subtropical North Atlantic can significantly
modulate the springtime regional moisture balance in the Sahel. The
increased moisture supply elevates the level of soil moisture content
(Fig. 3D) as constrained by the land surface moisture balance (see the
Supplementary Materials for details). In the subsequent months, MFC
and soil moisture content further increase to peak in the summer mon-
soon season (Fig. 3, C and D). The seasonal evolution of soil moisture
content anomalies in the Sahel is also supported by the composite using
a 30-year merged soil moisture product developed in the framework of
the European Space Agency’s (ESA) Water Cycle Multi-mission Obser-
vation Strategy and Climate Change Initiative (CCI) projects, as well as
a case study using the 5-year soil moisture record (2010–2014) from the
Soil Moisture and Ocean Salinity (SMOS) satellite (figs. S5 and S6; see
the Supplementary Materials for details).

The mutual reinforcement of soil moisture anomalies and MFC
suggests a positive coupling between soil moisture and atmospheric cir-
culation (35, 37, 38). Specifically, the wetter soil conditions will moisten
the atmospheric boundary layer, destabilize the lower troposphere, and
favor the convection and convergence of airflow into the Sahel (Fig. 3B)
(39). The changes in circulation provide favorable conditions for MFC,
which can further moisten the local land surface. At the same time, wet
soil can contribute to precipitation by increasing local evaporation (33, 40).
According to our analysis, such a positive coupling is stronger in the
composites of high SSS cases than in those of low SSS cases (Fig. 3, C
and D), which is consistent with previous studies suggesting the depen-
dency of land-atmospheric coupling strength on the wetness of soil (41).

We acknowledge the limitations of both model-based and satellite re-
mote sensing soil moisture data sets in our mechanistic studies of the ob-
served salinity-precipitation relationship. However, the consistency between
the three independent data sets suggests that a positive contribution of soil
moisture can be an important factor to link the springtime salinity signal
in the subtropical North Atlantic with summertime Sahel precipitation.
We now focus on the rainfall-predictive skill that this newly identified
SSS-precipitation relationship provides for the African Sahel.

Predictability of Sahel rainfall using North Atlantic SSSA
The significant relationship between springtime North Atlantic SSSA
and Sahel monsoon-season precipitation can help to improve seasonal
forecasts of Sahel rainfall, especially because it is found that the SSSA
signals are independent of previously identified sea surface tempera-
ture anomalies (SSTA) modes (42–50) (fig. S7; see the Supplementary
Materials for details).

Here, we demonstrate the improvements in seasonal forecasts of Sahel
precipitation using North Atlantic SSSA as a predictor. Random forest
regression/prediction (51), a machine-learning algorithm, was applied
to assess the predictability of summertime Sahel precipitation (see Materials
and Methods). The prediction model ranks the North Atlantic SSSA as the
most important predictor among the eight variables (including the
seven SSTA-based predictors listed in table S2) incorporated in the
Li et al. Sci. Adv. 2016; 2 : e1501588 6 May 2016
random forest algorithm (Fig. 4A). The importance factor of North
Atlantic SSSA is 1.16, but it drops to 0.52 for the Pacific Decadal Os-
cillation (PDO), the second most important predictor (Fig. 4A), indicating
that the North Atlantic SSSA, first identified in this study, is overwhelm-
ingly more important than the previously identified SST predictors.

Consequently, incorporating SSSA into the prediction model does
improve the seasonal forecast of Sahel monsoon-season precipitation.
Specifically, the random forest regression/prediction can achieve a skill-
ful prediction of Sahel monsoon-season precipitation (Fig. 4B). The pre-
dicted time series explains 58% of the observed precipitation variance
(R2 = 0.58), and the observed precipitation is within the 95% confidence
interval of the prediction (Fig. 4B). The predictive skill, however, would
decrease substantially if SSSA were excluded from the prediction model.
The prediction without SSSA underestimates the variability of precipita-
tion by about 65%, and the R2 decreases to 0.22 (Fig. 4C). In contrast,
the predictions with SSS alone explain 40% of the observed rainfall var-
iance. Except for the early 1970s and mid-1980s, when the SSSA-based
prediction underestimated the drought intensity, the predicted precipita-
tion closely follows the observations (fig. S8A).

In addition, we constructed prediction models using multiple linear
regression methods (figs. S9 and S10; see the Supplementary Materials
for details). Both methods demonstrate substantial improvements in
Fig. 4. Sahel rainfall prediction using North Atlantic SSSA. (A) Box-and-
whisker plot of the importance of predictors for Sahel monsoon-season pre-
cipitation according to 1000 trials of the random forest regression. Definition
of the importance factor is in theMaterials andMethods. Med. SSTA, Med-
iterranean SSTA; AMO, Atlantic Multidecadal Oscillation; Nino34, Niño 3.4;
Atl. Nino, Atlantic Niño; SAOD, South Atlantic Ocean Dipole; IOD, Indian
Ocean Dipole. (B and C) Precipitation anomaly (bold black curves; mm
day−1) over the Sahel predicted by the random forest algorithm: (B) predic-
tion using the combination of all predictors including SSSA (Materials and
Methods); (C) predictionwithout the SSSA predictor. The light blue envelope
is the 95% confidence interval derived from 1000 trials of the regression. The
red curve is the observed precipitation anomaly. The Sahel precipitation pre-
dicted by each predictor is shown in fig. S8.
4 of 9

http://advances.sciencemag.org/


R E S EARCH ART I C L E
Sahel rainfall prediction with knowledge of the springtime SSSA signal
over the subtropical North Atlantic. The random forest regression,
which is capable of representing the nonlinear relationship between
predictors and response, improves the accuracy of Sahel rainfall predic-
tion over the multiple linear regression model (Fig. 4B and fig. S10A).

Overall, this study suggests that springtime North Atlantic SSSA pro-
vides significant skill for predicting monsoon-season precipitation
over the Sahel. Thus, in addition to previously identified SSTA modes
(42, 45–47), incorporating subtropical North Atlantic SSSA can sub-
stantially improve the seasonal forecast of Sahel rainfall.
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DISCUSSION

SSS reflects the variability and changes of the oceanic water cycle,
serving as “nature’s rain gauge” (15, 22). Previous research efforts were
primarily directed toward understanding the response of salinity to the
water cycle (13, 14, 17, 18, 20, 22, 23), whereas its potential role as a
rainfall predictor has been previously underappreciated. From the per-
spective of ocean-to-land moisture transport, this study investigated the
potential of SSSA as a predictor of terrestrial precipitation. For the first
time, the springtime SSSA over the subtropical North Atlantic has been
identified as a physically meaningful predictor for Sahel precipitation
during the summer monsoon season.

This analysis shows that higher springtime SSS over certain regions
of the subtropical North Atlantic tends to be followed by above-
normal monsoon-season precipitation over the African Sahel. Physi-
cally, the high springtime salinity over the subtropical North Atlantic
is associated with enhanced MFD from the local ocean, which is directed
toward and converges over the Sahel. This excessive moisture flux from
the subtropical oceans elevates local soil moisture content in the Sahel,
and the latter, in turn, provides a positive feedback to precipitation
through its positive coupling with moisture flux from remote sources.
The positive contribution of soil moisture to Sahel regional hydroclimate
is one of the likely mechanisms to extend the springtime water cycling
signal in the subtropical oceans to the monsoon season. This proposed
mechanism is supported by currently available soil moisture data sets
from multiple sources, including satellite remote sensing and those
derived from water balance models. However, we acknowledge the lim-
itations of these data sets (for example, assumptions made in land-surface
water balance model and remote sensing retrieval algorithms) in cor-
roborating the detailed processes involved in the proposed mech-
anism. Thus, we leave the further discussion of physical mechanisms
open and expect that a better understanding of the connection between
salinity and terrestrial precipitation will be achieved with more reliable
soil moisture data sets.

It is noteworthy that the relationship between North Atlantic SSSA
and Sahel precipitation is not merely an imprint of SSTA’s influence
on precipitation (fig. S7). Thus, the springtime SSSA signal can be used
as an independent predictor of Sahel precipitation. The constructed
prediction models, both the machine-learning algorithm and the multiple
linear regression model, show significantly improved forecasts of Sahel
monsoon-season precipitation with the knowledge of springtime SSSA.

Our study provides evidence that SSSA can be a very important pre-
dictor of terrestrial precipitation by virtue of it being an integrator of
“upstream” water exchanges between oceanic and terrestrial moisture
reservoirs. In particular, oceanic regions with evaporation exceeding
precipitation and thus higher SSS are exporting moisture (and latent
Li et al. Sci. Adv. 2016; 2 : e1501588 6 May 2016
heat energy) to other areas, indicating potential teleconnection patterns
between SSSA and the water cycle in other regions. Thus, this study calls
further attention to the need for sustained ocean salinity measurements.
In this context, it is worth noting that the present generation of satellites
that use L-band radiometry [SMOS and Soil Moisture Active Passive
(SMAP)] for salinity and soil moisture should prove useful for im-
proved seasonal rainfall predictions in the Sahel.
MATERIALS AND METHODS

Experimental design
To extract a maximum covariance pattern between African monsoon
precipitation and pre–monsoon season SSSA over the Atlantic Ocean,
we applied SVD analysis (25) to the covariance matrix derived from
the 60-year JJAS precipitation and MAM SSSA. The leading SVD
mode (SVD-1) explains, in total, 44% of the precipitation and SSSA
variance (Fig. 1, A and B). The precipitation mode shows the largest
loading over the Sahel region (Fig. 1B), whereas the SSSA mode shows
two centers of actions: the subtropical North Atlantic and the subtropical
South Atlantic (Fig. 1A).

According to the leading SVD mode, we define the Sahel precipita-
tion index as the JJAS precipitation averaged within the box delineated
in Fig. 1B. At the same time, the North Atlantic and South Atlantic
SSSA indices are respectively defined as the area-averaged SSSA within
the two subtropical boxes shown in Fig. 1A. The two-mode time series
are highly correlated with the area-averaged SSSA (R = 0.88) and Sahel
precipitation (R = 0.95), respectively. The high correlation coefficients
are not merely due to the presence of the low-frequency variability in
the time series. After removing the low-frequency quadratic variation
from the time series, the correlations remain almost unchanged: R =
0.76 (R = 0.93) between the area-averaged North Atlantic SSSA (Sahel
precipitation) and SSS (precipitation) mode time series (table S3).

To explore the possible physical processes that connect the springtime
SSSA signal to monsoon-season precipitation, we applied composite
analysis to related variables. The high- and low-salinity cases are the years
with SSSA ranked in the top and bottom decile of the salinity index time
series. Atmospheric circulation, that is, MFD and the divergent
component of moisture flux, was composited during the high/low-
SSS cases to quantify the moisture export from the Atlantic and its
exchange with the African continent. Linear trends in all data have been
removed before analysis, and the study focuses primarily on interannual-
interdecadal variability.

With the physical mechanisms diagnosed in the study, we aimed
to assess the feasibility of predicting Sahel precipitation using pre-
season subtropical SSSA. A random forest regression method was applied,
taking potential nonlinear relationships between predictors and response
into account. The random forest regression is a machine-learning
algorithm that takes an ensemble learning approach for prediction.
The algorithm is based on the average of decision trees that are built
according to input training samples (51). The training processes rely
on bootstrap aggregating. The algorithm repeatedly subsamples the
input data to create regression trees that best fit the relationship be-
tween predictors and responses. After training, predictions based on
unseen samples can be made by the ensemble from the trained regres-
sion trees. According to previous studies, the random forest algorithm
has advantages in predictive modeling because of its ability to avoid over-
fitting (51).
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In the random forest algorithm, we train the model with eight variables,
that is, North Atlantic SSSA and seven SSTA-based predictors identified in
previous studies (table S2). The seven SSTA-based predictors are averaged
over the MAM months to match the SSSA. The random forest algorithm
ranks the importance of predictors in the constructed regression trees.
Here, the importance of the ith predictor is quantified as the errors that
would be introduced to the prediction if the ith predictor was permutated
while the other predictors remain unchanged.

Using the eight predictors, we constructed a random forest regression
model to predict Sahel monsoon-season precipitation. The prediction
was run 1000 times. Each time, 30 samples were randomly drawn for
training the algorithm, whereas the remaining 30 samples were used for
prediction. Combining the eight predictors, the prediction by the ran-
dom forest regression explains 58% of the observed precipitation var-
iance (Fig. 4B). The observed precipitation is within the 95% confidence
interval derived from the 1000 iterations of the prediction (Fig. 4B).
Furthermore, we decomposed the prediction skill to the contributions
from each individual predictor. Consistent with the importance factors
shown in Fig. 4A, North Atlantic SSSA makes the most significant
contribution to Sahel rainfall prediction (fig. S8A). The SSSA alone
explains 40% of the observed rainfall variance, although the SSSA pre-
diction underestimates the drought intensity during the early 1970s and
mid-1980s (fig. S8A). Except for these two periods, the predicted pre-
cipitation closely follows the observations (fig. S8A). In contrast, the
predictions using SSTA predictors substantially underestimate the inter-
annual variation of Sahel precipitation (fig. S8, B to H); thus, these cli-
mate indices are less skillful in predicting the precipitation.

Observational data
Precipitation data sets. The primary precipitation data set used

in this study was the NOAA Prec/L. The data cover the period from 1948
until 2015. We used the high-resolution version of the data set (0.5° ×
0.5°) at monthly temporal resolution (52). To ensure the robustness of
the relationship between springtime North Atlantic SSSA and Sahel pre-
cipitation, we tested the results in Fig. 2 using four other independent
precipitation data sets. These include the Global Historical Climatology
Network (53, 54), University of Delaware (55), Global Precipitation
Climatology Centre (56), and Climate Research Unit (57) (table S1).
These data sets differ in spatial resolution, sources of observational
data, and data assimilation/objective analysis methods (table S1).

Figure S1 shows the correlation between pre–monsoon season North
Atlantic SSS and African precipitation in JJAS using the four precipita-
tion data sets over the common analysis period of 1950–2009. Consistent
with Fig. 2, the significant correlation between springtime North Atlantic
SSS and the Sahel monsoon-season precipitation appears in all of the four
data sets. Further, the data sets consistently show a stronger springtime
signal than in winter (fig. S1). Although the exact correlation coefficient
differs among the data sets, likely due to the differences in observational
sources, data assimilation methods, and spatial resolution, the key
conclusions in Fig. 2 are verified. Thus, the results obtained in this study
are robust and independent of precipitation data sets. We used Prec/L for
subsequent analysis in the study, and the analysis period was 1950–2009.

Salinity data sets. The salinity data used in this study are from
the UK Met Office EN4.1.1 observational data set (58). The sources of
the observations are mainly from the World Ocean Database 2005
(the global temperature-salinity profile program and the Argo float
data). These observed salinity profiles are quality-controlled. We used
the objectively analyzed data product, with horizontal resolution of 1° ×
Li et al. Sci. Adv. 2016; 2 : e1501588 6 May 2016
1° and monthly temporal resolution. The SSS in this data set refers to
salinity measured at 5-m depth.

We also assessed the dependence of the North Atlantic SSSA–Sahel
precipitation relationship on the selection of salinity data sets by cor-
relating the North Atlantic SSSA from Simple Ocean Data Assimilation
(SODA) 2.2.4 with African monsoon-season precipitation. Consistent
with Fig. 1, the springtime SSSA over the subtropical North Atlantic
shows the most significant correlation with monsoon-season precipi-
tation over the Sahel (fig. S2). The results, combined with those in fig.
S1, suggest that the relationship between North Atlantic SSSA and Sahel
precipitation is not sensitive to the choices of available salinity and pre-
cipitation data sets. This ensures the robustness of our conclusions built
on the observed SSSA-precipitation relationships.

Soil moisture. The soil moisture was adopted from the NOAA
Climate Prediction Center (CPC) soil moisture version 2. The data are
takenmonthly and cover the global terrestrial area with 0.5° × 0.5° resolu-
tion (59). It is noteworthy that the data are not from observational sources
but rather from models constrained by the land surface water balance.
However, the data are used because it is the only global soil moisture data
set that provides long enough records covering the analysis period.

In addition, we verified our results using the soil moisture data from
a 30-year merged soil moisture product developed in the framework of
ESA CCI projects (60) and SMOS satellite remote sensing products (61).
The soil moisture composite upon the 30-year ESA CCI soil moisture
qualitatively shows the same results as the NOAA CPC data (fig. S5),
supporting the conclusions that soil moisture helps to extend the initial
moisture flux signal. The results are also supported by the case study
based on the short SMOS soil moisture record (2010–2014), that is, that
high-salinity years are associated with increased soil moisture in spring
over the Sahel, which is further amplified in subsequent months to the
monsoon season (fig. S6; see the Supplementary Materials for details).

NCEP/NCAR reanalysis. We used NCEP/NCAR reanalysis data
set (62) to calculate the processes associated with the atmospheric
branch of the water cycle. This data set is generally consistent with others
in quantifying the water cycle processes associated with the global mon-
soon. The moisture flux was calculated as 1

g ∫
ps
0 qVdp, where q is specific

humidity,V is horizontal wind vector, and ps is surface pressure. TheMFD
was thus quantified asMFD ¼ 1

g ∇⋅∫
ps
0 qVdp:The divergent component of

the moisture flux was derived on the basis of MFD by solving the Poisson
equations (63). In Fig. 3 and fig. S3, the units of MFD have been converted
to millimeter per day to be consistent with precipitation.

Statistical analysis
Significance test. Here, the cross-correlation coefficients between spring-

time SSSA and monsoon-season African precipitation were calculated as

R ¼ ∑N

i¼1ðxi � �xÞðyi � �yÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1ðxi � �xÞ2
q �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N

i¼1ðyi � �yÞ2
q �

where N is the sample size (60 in this case). The effective degrees of
freedom (N*) were calculated as

N� ¼
ðN � 1Þ

�
1 � rxxðdtÞryyðdtÞ

�
1 þ rxxðdtÞryyðdtÞ

taking into account the low-frequency variability presented in both the
salinity and precipitation time series (Fig. 1C). Here, rxx(dt) and ryy(dt)
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are the lag-1 autocorrelation of North Atlantic SSSA and precipitation,
respectively (64). In the Sahel, the effective degrees of freedom at each
grid cell are in the range of 30 to 35. The significance level of the cor-
relation coefficients was determined on the basis of a Student’s t test,
in which the t statistics is calculated as t ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � R2Þ=ðN� � 2Þ
p for a sam-

ple with N* degrees of freedom. It is noteworthy that the definition of

N* is based on the assumption that the time series represent AR(1)
processes. Using a partial autocorrelation function, we confirm that
both the salinity and precipitation time series generally fulfill the AR(1)
assumption. However, we are aware that the limited number of data
samples makes it difficult to ascertain that the AR(1) process is stationary.
We thus recalculated the correlation coefficients by removing the low-
frequency quadratic terms from the original time series (table S3). The
obtained significance level is consistent with that derived using N*.

The Student’s t test was also applied to the composite analysis of
MFD, whereas the two-sample Hotelling t2 (65) test was applied to de-
termine the significance of the differences in the divergent component of
moisture flux during high- and low-SSS years. Specifically, we have a set
of two response variables (u and v), which were measured for each of the
two cases. Suppose the (u, v) in the high-SSS cases is distributed as two-
variable multivariate normal distribution X ~N2(u1, S1) with mean vector
u1 and covariance matrix S1. At the same time, (u, v) in the low-SSS
case has the distribution Y ~ N2(u2, S2). The null hypothesis is u1 =
u2, meaning that the divergent component of moisture flux does not
differ between the high- and low-SSS cases. The null hypothesis can be
tested using the t2 statistics

t2 ¼ nxny
nx þ ny

ð�x � �yÞTW�1 �x � �yð Þ

which has the T2 distribution, that is

t2 ∼ T2ð2; nx þ ny � 2Þ

Here, nx and ny are the number of high-SSS and low-SSS cases, re-
spectively, and are set to 6 in this study

�x ¼ 1
nx
∑nx

i¼1xi

�y ¼ 1
ny
∑ny

i¼1yi

and W −1 is the inverse matrix of W, which is calculated as

W ¼ 1
nx þ ny � 2

∑nx
i¼1ðxi � �xÞðxi � �xÞT þ∑nx

i¼1ðyi � �yÞðyi � �yÞT
� �

The null hypothesis can be rejected at a significance level if t2 >

T2
1�a; 2;nxþny�2.

Goodness-of-fit test. The performance of rainfall predictions was
evaluated on the basis of the coefficient of determination

R2 ¼ 1� SSres
SStot

SStot ¼ ∑N
i¼1ðy � �yÞ2
Li et al. Sci. Adv. 2016; 2 : e1501588 6 May 2016
quantifies the total variance of observed precipitation

SSres ¼ ∑N
i¼1

�
f ðXÞi � yi

�2

is the sum of variance unexplained by the prediction model, where
f (X) is the random forest prediction. In the multiple linear regres-
sion model, the R2 defined above equates to the square of the corre-
lation coefficients between predictions and observations.
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fig. S4. Land surface moisture balance in the Sahel.
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