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A B S T R A C T   

Wave mode of spaceborne synthetic aperture radar (SAR) is designed for the global ocean wave observations. 
Despite the fact that the significant wave height inferred from SAR measurements has been validated against 
model output and in-situ data, SAR’s primary and unique capability for operational 2-dimensional spectral 
description of sea state remains to be fully evaluated. In this study, we extended the previous assessment ap
proaches by introducing a new SAR image spectral parameter, the Mean rAnge Cross-Spectrum (MACS) that 
focuses on the isolated wave scales along the radar line-of-sight direction. MACS is an efficient variable in that it 
characterizes the local wave spectra properties without need of the non-linear wave inversion procedure. The 
assessment is based on the multiple-year data acquired by Envisat/ASAR wave mode, along with the collocated 
WaveWatch III (WW3) hindcast and the in-situ buoy-observed wave spectra, for which the SAR forward trans
formation is systematically performed to obtain the simulated image spectra. Inter-comparison between SAR- 
measured and WW3-simulated MACS demonstrates that the consistency is wavelength (or wavenumber) 
dependent. Three typical wavelengths, around 62 m for windsea, 168 m for intermediate waves and 342 m for 
swell, are selected to present the MACS comparison in detail. Comparable magnitude of SAR-measured and the 
simulated MACS is observed for the intermediate waves and swell, while larger simulation values are predicted 
for the windsea waves. Spatial distribution of MACS agrees well between these two data sets for all wavelengths 
with high correlation coefficients (>0.8) in most of the global ocean. One exception is in the extratropics where 
the quantitative difference is particularly notable. In the contrary, when comparing SAR-measured and buoys- 
simulated MACS, the agreement increases towards the shorter (<100 m) wavelengths. We also found that the 
large-scale atmospheric/oceanic features persistent on SAR images lead to the overestimate of SAR MACS at long 
wavelengths, which is expected to bias the wave inversion. The wave spectra retrieval performance shall advance 
as long as such impact is properly resolved.   

1. Introduction 

Sea state information is crucial to managing the ocean resources and 
safe operations for the ocean going activities. Global wave information 
has been paramount in understanding the wind and wave patterns 
including their regional variability (Young, 1999). Among the various 
means of observations, satellite altimeters measuring the global signif
icant wave heights reaches an accuracy of 30 cm relative to the in-situ 
buoy observations (Queffeulou, 2004; Zieger et al., 2009; Quach et al., 
2020). These data have greatly helped the development, calibration, and 
validation of numerical spectral wave models with improved 

predictability (Ardhuin et al., 2010; Stopa et al., 2016b). While this 
information is important to monitor the regional change (Young et al., 
2011), they are not sufficient to fully represent the sea state conditions, 
particularly for multimodal wave systems. Active radars, such as real 
aperture radars (RAR) and synthetic aperture radars (SAR) are the 
operational spaceborne sensors to measure both the wavelength and 
wave directions at global scales. Of which, SAR is advantageous in, on 
one hand, that its high spatial resolution allows to resolve the short wind 
waves. On the other hand, the operation of SAR sensors since 1990s 
provides the temporal data series for extensive wind-wave study at 
global scale. 
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A SAR emits microwave pulses and precisely measure their Doppler- 
shifted returns. Since the ocean surface is in continuous motion, the 
radar returns are often misplaced when converted from the Doppler- 
frequency domain to the geo-referenced images in space domain. This 
misplacement leads to the nonlinear distortions of wave signatures in 
the along-track direction, referred to as the azimuth cutoff (Kerbaol 
et al., 1998). When the local wind forcing is calm to moderate, the az
imuth cutoff wavelength is usually shorter than the swell components, 
enabling to uniquely estimate both the wavelength, direction and 
spectral energy of swell systems with SAR observations (Collard et al., 
2009; Ardhuin et al., 2017). Note that the high frequency waves in the 
along-track directions are often distorted. This has motivated several 
studies to directly estimate the significant wave height (SWH) from SAR 
images using empirical methods, which is particularly successful for 
Sentinel-1 acquisitions with high accuracy (Schulz-Stellenfleth et al., 
2007; Stopa and Mouche, 2017; Rikka et al., 2018; Pleskachevsky et al., 
2019; Quach et al., 2020). However, the direction and wavelength in
formation is lost especially for waves traveling along the flight at 
wavelengths shorter than the azimuth cutoff which is typically 
150–200 m for C-band SAR with an altitude of 700 km. (Li and Saulter, 
2012) compared the subrange SWH integrated over the distinct wave 
scales, rather than the overall SWH of advanced-SAR (ASAR) aboard 
Envisat satellite relative to buoys and models. Their approach in (Li and 
Saulter, 2012) validates SAR observations in terms of the subrange wave 
height, but relies on the operational quasi-linear inversion scheme 
(Krogstad et al., 1994). It is worth noting that such a scheme is not able 
to fully recover the nonlinear distortions (Krogstad et al., 1994). So far, 
the validations of SAR observations regarding the ocean wave spectrum 
(short for the ocean wave height spectrum) retrieval are based on either 
total or effective SWH. The inversed wave spectra has not yet been 
assessed in terms of their spectral features relative to the reference data. 

In the cross-track direction (range) of SAR image coordinate, the 
distortion is less strong and the mapping could be approximated as a 
quasi-linear process. The Mean rAnge Cross-Spectra (MACS) introduced 
by (Li et al., 2019a, 2019b) has shown its reliability in describing up to 
20 m range-traveling waves Sentinel-1 (S-1) C-band SAR. This param
eter represents the SAR image cross-spectrum values averaged over the 
azimuthal wavenumbers in the range of [− 2π/600rad ⋅ m− 1,2π/ 
600rad ⋅ m− 1] and offers opportunities to investigate the wave infor
mation of isolated wave scale in the range direction. By definition, 
MACS focuses on the SAR image cross-spectrum where the quasi-linear 
mapping applies. Therefore, one advantage of using MACS is there is no 
need to go through the non-linear SAR inversion scheme or perform the 
hypothesis of a quasi-linear imaging mechanism. As a complementary 
study to the SWH assessment (Li and Saulter, 2012), we attempt to 
evaluate the wave spectral signatures through MACS of ASAR observa
tions with respect to the wave spectral model output and in-situ buoy 
measurements. Using this approach can potentially lead to a better un
derstanding of the wave dynamics while assessing the SAR and spectral 
wave model, WW3 (The WAVEWATCH III® Development Group). In 
order to carry out the comparison of MACS between SAR and WW3/ 
buoy, we implement the nonlinear forward SAR mapping trans
formation in (Engen and Johnsen, 1995) for given ocean wave spectra 
and SAR configurations to obtain the simulated SAR image spectra. In 
this study, following the general assessment strategy of integral wave 
height (Young, 1999; Li and Saulter, 2012), the quantitative relationship 
of MACS parameter for various wavelengths is examined between WW3- 
simulation and SAR measurements. The global signatures of SAR MACS 
relative to the simulation is also investigated and discussed to highlight 
their spatial consistency. An independent comparison with buoy ob
servations is invoked to further interpret the inter-comparison results 
between ASAR and the collocated WW3-simulation. 

Specifically in this study we use the two-dimensional wave spectra 
simulated from a hindcast (Stopa et al., 2019) and measured by buoys to 
derive the equivalent MACS values to be compared with Envisat/ASAR 
observations from 2002 to 2012. We take benefit of this entire decade of 

SAR data to statistically compare MACS obtained at various wavelengths 
and at global scale. The manuscript is organized as follows. In Section 2 
we describe the data sets and methodology: forward SAR transformation 
and MACS definition. In Section 3, we present the MACS comparison 
between ASAR measurements and the simulation from the WW3 hind
cast and buoy ocean wave spectra. Discussions and conclusions follow in 
Sections 4 and 5, respectively. 

2. Data and MACS definition 

In this section, we first describe the Envisat/ASAR data and wave 
spectra from the numerical wave model. Next we describe the forward 
SAR transformation used to map the wave spectra into an equivalent 
image cross-spectra. Lastly we describe the estimation of MACS from a 
SAR image cross-spectra. 

2.1. Envisat/ASAR wave mode 

Envisat/ASAR operated for nearly a decade from November 2002 to 
April 2012. It is a C-band radar (center frequency of 5.33 GHz), col
lecting SAR images in various modes. Wave mode is dedicated to 
observing the global ocean waves (Hasselmann et al., 2012). The wave 
mode vignettes are acquired every 100 km along the track, having the 
spatial footprint of 10 km × 7 km (azimuth by range) with the pixel 
spacing of 9 m × 6 m. In this work, we use the wave mode images ac
quired at incidence angle of 23◦ and in VV polarization. 

The SAR image cross-spectrum are systematically processed from the 
single look complex (SLC) SAR images, which are stored in the Level-1B 
products. In this study, the cross-spectral data set distributed by the 
European Space Agency (ESA) are utilized. Each image spectrum is 
composed of 24 discrete wavenumbers ranging from 0.008 rad⋅m− 1 to 
0.2 rad⋅m− 1 and 36 direction in the range of [0◦, 360◦] (Johnsen, 2005). 
The images acquired between the January 2007 and April 2012 are 
collocated with the operational ECMWF (European Centre for Medium- 
Range Weather Forecasts) analysis wind vectors (Nagarajan and Aiyyer, 
2004). The reanalysis product is available at a spatial resolution of 0.5◦

every 6 h (0 h,6 h,12 h,18 h at UTC time). The wind vector at the nearest 
spatial and temporal point to the SAR passing time is taken as the 
reference wind of each SAR image. 

2.2. Hindcast ocean wave spectra 

The wave spectra are generated from version 5.16 of the spectral 
wave model WW3 (The WAVEWATCH III® Development Group). We 
use the parameterizations of wave generation and dissipation proposed 
by (Ardhuin et al., 2010) and the non-linear Discrete Interaction 
Approximation by (Hasselmann and Hasselmann, 1985). It has been 
shown that this model configuration works well for Hs and swell parti
tions in comparison to other parameterization packages (Stopa et al., 
2016a). The global model is implemented at the latitude and longitude 
grid of 0.5◦ with a spectral bin composed of 24 directions and 32 fre
quencies that are exponentially spaced from 0.037 Hz to 0.7 Hz at an 
increment of 10%. The wind and ice fields at a spatial resolution of 0.2◦

(22 km) from the Climate Forecast System Reanalysis (CFSR) (Saha 
et al., 2010, 2014) are used to force the model runs. The hindcast was 
calibrated and corrected in time to match a homogenized satellite 
altimetry database of (Queffeulou and Croizen-Fillon) (Stopa, 2018; 
Stopa et al., 2019). 

We output the wave spectra directly for each longitude, latitude, and 
time corresponding to the Envisat/ASAR acquisition. The minimum 
wavelength of WW3 wave spectra is 3.2 m (0.7 Hz), smaller than the 
wave mode resolution (9 m). This would ensure that all wavelengths 
resolved by SAR are comparable with those of the WW3 wave spectra. 
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2.3. Buoy observations 

The wave measurements from the National Data Buoy Center 
(NDBC) are used in this study as complementary to the SAR observations 
and model outputs. A triple collocation data set is created by limiting the 
spatial distance between the center of SAR images and the location of 
buoys within 100 km and the temporal window shorter than 30 mins. It 
ends up with 1218 valid collocation pairs. 

The wave spectra measured by NDBC buoys, is composed of fre
quencies from 0.04 Hz up to 0.4850 Hz (Vandemark et al., 2005). We 
employed the Maximum Entropy Method (MEM) proposed in (Lygre and 
Krogstad, 1986) to reconstruct the two-dimensional wave spectra from 
estimates of the Fourier coefficients. In specifics, this includes α1 that 
represents the mean wave direction, α2 that denotes the dominant wave 
direction, and r1 and r2 that describe the directional spreading relative 
to the main direction. For simplicity, the directional bin for buoy wave 
directional spectral reconstruction is set to be 10◦ throughout rest of this 
paper unless otherwise stated. 

2.4. SAR forward transformation 

The SAR forward transformation maps a wave spectrum into a SAR 
image cross-spectra, which is calculated using the two sub-looks during 
the SAR integration time. The imaginary component is associated to the 
wave motion within the time difference between the two sub-looks. It is 
therefore widely used to remove the 180◦ direction ambiguity of the 
swell propagation (Engen and Johnsen, 1995). In addition, the cross 

spectra helps filter non-coherent signals typically improving the signal- 
to-noise ratio of ocean waves. 

(Engen and Johnsen, 1995) presented the derivation of SAR image 
cross-spectra in detail using the general formula for the nonlinear 
mapping: 
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where Ma represents the modulation transfer function (MTF) for RAR or 
velocity bunching. The detailed formulation of MTF can be found in 
(Engen and Johnsen, 1995; Li et al., 2019a, 2019b). In this study, we 
define the MACS in terms of the real component of SAR image cross- 
spectra. 

Four SAR roughness images acquired by Envisat/ASAR wave mode 
are shown in Fig. 1 (a1)-(a4). Real component of the measured SAR and 
simulated WW3 cross-spectra are accordingly given in (b1)-(b4) and 
(c1)-(c4). In general, the most energetic wave systems appear to agree 

Fig. 1. Examples of ENVISAT/ASAR wave mode images for the definition of range MACS profile. The row (a1)-(a4) shows the SAR backscattering image. Real 
component of the SAR cross-spectra is given in the second row (b1)-(b4) and the corresponding simulated cross-spectra basedon the WW3 wave spectra and the 
forward SAR transformation is in the third row (c1)-(c4). The bottom row (d1)-(d4) shows the MACS profile representing the energy for wavenumbers along the SAR 
range direction. 

H. Li et al.                                                                                                                                                                                                                                        



Remote Sensing of Environment 264 (2021) 112614

4

well between the SAR and WW3 cross-spectra. Despite the matched 
spectral pattern, WW3 has overall larger values for the dominant waves. 
Note that in panel (b3)&(c3) of Fig. 1, a wave system along the SAR 
azimuh direction is predict by WW3, but not well resolved by the cor
responding SAR observations. Also, though it is likely that the non-ocean 
waves patterns inducing large-scale modulation as observed in panel 
(a4) impacts the cross-spectral analysis, its quantitative influence still 
needs to be further investigated. 

2.5. MACS profile extraction 

In this manuscript, we follow the procedure of (Li et al., 2019a, 
2019b) to define the MACS from both observations and simulations by 

MACS(k) =
1
N

∫

A
Ps(k,ϕ), A ∈ [ϕra − 10◦ < ϕ < ϕra + 10◦] (3)  

where Ps(k,ϕ) represents the cross-spectrum in polar coordinate. ϕra is 
the SAR range direction. In this study, we extend our range of wave 
scales from 47 m to 800 m. The smallest wavelength is 47 m because the 
ASAR range spatial resolution is about 9 m and we use a factor of ≈5 to 
ensure the waves are properly resolved by the Fast Fourier Transform. 
The range profile (±15◦ relative to the line-of-sight) of SAR image cross- 
spectra for all wavenumbers is then extracted, denoted as MACS profile 
hereinafter. Fig. 1 bottom row shows the MACS profiles for these four 
representative cases. The overall MACS wavenumber distributions 
generally match, but there are noticeable differences in magnitude. In 
panel (d1) and (d2) of Fig. 1, the simulated MACS profiles have larger 
values than that of the observations. In panel (d3), the SAR exhibits 
higher MACS energy for wavelengths longer than 400 m. While in panel 
(d4), SAR MACS is constantly larger for the wavelengths longer than 
150 m. This is clearly due to the presence of the large-scale phenomenon 
as observed in the SAR image in the subplot of (a4). MACS can be 
computed for any wavelength bins between 30 m and 800 m with ASAR. 
Hereinafter, we denote as MACSλ for each isolated wavenumber/ 

wavelength component where λ is the wavelength. For example 
MACS62, represents MACS for the wavelength of 62 m. 

Envisat is a polar orbit satellite, with both ascending (flying from 
South Pole to the North Pole) and descending trajectories. Since MACS 
only focuses on the wave signatures along the radar range axis, in other 
words, the spatial pattern of MACS between the two passes represents 
waves in different direction. Given that the global MACS is expected to 
highlight the local winds conditions strongly coupled to the waves sig
natures of interest, combination of both ascending and descending ob
servations shall complicate the spatial analyses. We first demonstrate 
the comparison of MACS62 in Fig. 2 and it turns out their spatial patterns 
presents strong similarity. Yet differences does exist. The most note
worthy occurs off the west coast of Arabian Sea where the Indian 
monsoon reverses the wind direction from summer to winter. Given the 
radar configuration, the radar line-of-sight of the ascending pass is 
roughly in alignment with the wind blowing direction, while the 
descending pass sees a direction deviation about 30◦. This looking di
rection results in the smaller MACS62 for the descending pass as shown 
in Fig. 2(c). In addition, the ascending pass seems to capture MACS62 at 
broader extent over the trade winds region in the Pacific Ocean. The 
MACS62 of descending pass has higher values in the Southern Ocean also 
because of the favorable wind direction. As for the average MACS profile 
in Fig. 2(b) and (d), the median values between these two passes are 
comparable. Given the strong similarity of MACS profile between the 
ascending and descending pass, only the observations from the 
ascending pass are included in the following assessment relative to the 
model hindcast output with a total number of SAR images around 
3×106. 

3. Results 

In this section, we examine the consistency of MACS profile between 
the SAR-observations and WW3-simulations. Taking advantage of the 
versatility of MACS, we analyze the statistical relationship as well as the 
global patterns of MACS at three typical wavelengths of 62 m for short 

Fig. 2. Comparison of global MACS62 for (a) ascending pass and (c) descending pass. The averaged MACS profile relative to the wavenumber is given in (b) ascending 
pass and (d) descending pass. Note that this figure is created based on the observations in the years of 2010 and 2011. The latitude and longitude bin of 3◦ is set to 
compile the global map. 
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wind sea, 168 m for intermediate ocean waves and 342 m for long swell. 
We also carried out the MACS comparisons with buoy wave measure
ments as an attempt of interpreting the differences found between the 
SAR and WW3-simulation. 

3.1. MACS profile 

MACS profiles of the SAR-observation and WW3-simulations be
tween January 2007 and April 2012 are presented in the box plot 
relative to wavelengths in Fig. 3. For each wavelength, the box shows 
the distribution of that particular MACSλ. The central box represents the 
likely range of variation: the interquartile range, IQR. The whisker ex
tends to the largest and smallest data value within 1.5 × IQR from the 
lower and upper quartile, respectively. SAR-measured MACS profile 
shares a couple of commonality with that of the WW3-simulation. First, 
for most of the wavelengths, MACS is not normally distributed as the 
distance of the median to the upper quartile is much larger than that to 
the lower quartile. In other words, MACS is generally right-skewed with 
smaller median (red segment) than the mean (blue curve). The mean and 
median are largely apart except over the shorter wavelengths (<62 m) 
where these two are almost identical. Peaks of the profile also differ as 
the mean locates at 223 m and the median at 95 m. The maximum IQR 
locates at the wavelength of 168 m, distinct from both the median and 
the mean. Despite the resembling distributions of MACS for each wave 
scales between SAR and WW3, they differ in several aspects. SAR- 
measured MACS profile in Fig. 3(a) has a clear increase towards 
longer wavelengths beyond 523 m for mean, median and IQR. While the 
WW3-simulation shows a consistent MACS decrease towards both longer 
and shorter wavelengths from the peak. Both data sets have comparable 
mean MACS values except for the very long wavelengths. It is not the 
case for the median and IQR. For wavelengths shorter than 250 m, the 
WW3-simulated IQR is larger than the SAR measurement. As for the 
median, the WW3 exceeds at the wavelengths shorter than 146 m. The 
distribution of WW3-simulated MACS at one particular wavelength 
roughly follows a negative exponential function, while the SAR- 
measured is a log-normal curve (not shown). In any case, the smaller 
IQR suggests a less spread distribution. On the other hand, for wave
lengths longer than 250 m, the slow variation of SAR MACS might result 
from the impact of large-scale oceanic and atmospheric phenomena as 
displayed in Fig. 1(a4)-(d4). This also possibly results in the large spread 
of SAR-measured MACS than its counterpart based on the WW3- 
simulation. 

Going further, we now focus on the observed and simulated MACS 
for short (62 m), intermediate (168 m) and long (342 m) waves. As 

displayed in Fig. 3, MACS at the wavelength of 168 m has both com
parable mean and median between SAR and WW3. MACS of 62 m ex
hibits smaller values in SAR observations than WW3 simulations, while 
it is the opposite trend for MACS at 342 m. The Q-Q plots of SAR- 
measured MACS relative to the simulation for these three selected 
wavelengths are presented in Fig. 4. For 62 m as shown in Fig. 4(a), 
WW3-simulation is consistently higher than that of SAR with most of the 
data points well above the one-to-one line. If we neglect the saturation of 
SAR MACS beyond 4 m2 ⋅ rad− 2, slope of the linear fit to these points 
approximates the value of 2. It means that for most of the SAR acqui
sitions, the predicted MACS by WW3 is twice larger than the SAR ob
servations. As for the wavelength of 168 m shown in Fig. 4(b), the 
agreement improves as most of the data points scatter around the one-to- 
one line. It should be noted that the mean curve (dashed line) slightly 
deviates from a linear variation. While for the wavelength of 342 m in 
Fig. 4(c), the mean curve is indeed well following the one-to-one curve. 
However, the MACS relationship is largely dispersed as represented by 
the greater standard deviation. The standard deviation of MACS342 in 
Fig. 4 gradually increases with the magnitude of MACS342. For the other 
two wavelengths, the standard deviation is almost constant from small 
to large MACS values. In particular, very small MACS values are pre
dicted by WW3-simulation as shown by the large number of data points 
clustered close to the horizontal axis in Fig. 4(c). With this statistical 
comparison in mind, we also examined the spatial consistency between 
MACS of these two data sets to further diagnose the regional variation of 
their agreements. The comparison of global MACS for these three 
selected wavelengths are therefore analyzed in the following. 

3.2. Spatial analyses of MACS 

We also compute global maps of the three representative MACS62, 
MACS168, and MACS342 typical of the short, intermediate and long ocean 
waves, respectively. In the qualitative terms, the global patterns of SAR- 
observed and WW3-simulated MACS are similar. The global averaged 
MACS at wavelength of 62 m from SAR-observations (left) and WW3- 
simulations (right) is given in the top panel of Fig. 5. As shown, the 
spatial signatures mimic that of the overall wind field (Young, 1999) as 
these short waves are closely coupled with the moderate wind speeds 
around 8 m ⋅ s− 1 (Hasselmann et al., 1973). Smaller values of MACS62 are 
observed over the Inter Tropical Convergence Zone (ITCZ) where the 
wind speed is relatively low throughout the year (Žagar et al., 2011). 
Over the extratropics, larger MACS62 is found generated by the high 
wind events associated to the frequent low-pressure storm activities. 
However, the SAR-observed MACS is systematically smaller than the 

Fig. 3. Box plot of the MACS profile from (a) SAR-observation; (b) WW3-simulation with respect to the wavelengths. For MACS at given wavelength, each rectangle 
spans the first quartile to the third quartile (the interquartile range, IQR). The red segment inside rectangles denotes the median. The upper whisker extends to the 
largest data value within 1.5 × IQR above the third quartile and the lower to the smallest value within 1.5 × IQR below the first quartile. The blue curve represents 
the mean for each wavelength/wavenumber. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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WW3-simulated values across the globe, consistent with Figs. 3 and 4(a). 
For example, in the Southern Ocean, WW3-simulated MACS62 is around 
6 m2 ⋅ rad− 2, which is twice as large as the SAR-observed MACS62. Such 
trend of smaller SAR-observed MACS exists for all the wavelengths up to 
150 m (not shown here for brevity). MACS of these two data sets be
comes gradually closer as the wavelength increases to approximately 
170 m (see Fig. 3). 

MACS168 is presented in the middle panel of Fig. 5. Overall, the 
WW3-simulated and SAR-observed MACS168 are in good agreement in 
terms of the global pattern. MACS168 is also consistently high (around 25 
m2 ⋅ rad− 2) throughout the year in the southern extratropics. The trade 
wind regions exhibit reduced MACS magnitude in comparison to the 
extra-tropical regions. Yet, quantitative differences remain. Over
estimates of the simulated MACS mainly locate in the extratropics, 

contrast to the global trend of MACS62. Note that over the Arabian Sea, 
this overestimate is also evident during the monsoon season (seasonality 
not shown). It is thus speculated that WW3-simulation tends to predict 
larger spectral energy for 168 m waves at relatively high wind condi
tions. At low to median wind speed, the relative magnitude depends on 
the geographic locations. For example, SAR-observed MACS168 gener
ally exceeds the simulation in the East Equatorial Pacific Ocean. While in 
the Tropics, SAR-observed MACS168 has larger values. This spatial 
pattern well corresponds to the feature presented in Fig. 4(b). Larger 
WW3-simulated MACS168 is mostly observed for the larger MACS values, 
in other words at high sea state, like in the extratropics. While the larger 
SAR-observed MACS168 mostly occurs at smaller MACS values as 
depicted by the blue cluster in Fig. 4(b). 

At last, global average of MACS342 is displayed in the bottom panel of 

Fig. 4. Q-Q plot of MACS comparison between SAR-measured and WW3-simulated for the three typical wavelengths (a) 62 m; (b) 168 M; (c) 342 m. The dashed lines 
are the mean curve and the error bar stands for the one standard deviation. Color denotes the data count in log scale. 

Fig. 5. Global average of MACS from (left) the SAR-measured and (right) the WW3-simulated for (top) 62 m; (middle) 168 m and (bottom) 342 m. Both latitude and 
longitude are binned into the grid of 2.5◦ by 2.5◦. The bins located within 50 km from the coastline are masked as blank space. Color denotes the magnitude of MACS 
and note that the color bar dynamics differ among the three panels. 
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Fig. 5. It is expected that this longer wavelength relates to wind speeds 
approximately equivalent to 18 ms− 1 (Hasselmann et al., 1973). Large 
MACS342 values are mostly located in the extratropics, particularly in 
the Southern Hemisphere. Given the duration and fetch needed for the 
long waves to grow, MACS342 are mostly observed in the east part of the 
Pacific and Atlantic Ocean, distinguished from the spatially distributed 
MACS for the the other two wavelengths. In the trade wind regions, the 
WW3-simulations show similar regional patterns as the SAR observa
tions but with much lower magnitude. While in the extratropics, WW3- 
simulation exhibit larger MACS values throughout the year. This results 
in the scattered comparison and the large standard deviation in Fig. 4(c). 

To further assess the difference in the geographical pattern, we 
computed the MACS magnitude ratio (SAR over WW3) as shown in 
Fig. 6. The ratio is uniformly smaller than 1 for MACS62 across the globe 
shown in Fig. 6(a). This corresponds to the constantly larger WW3- 
simulation as presented in both Fig. 4 (left panel) and Fig. 5 (top 
panel). With the wavelength increasing, the MACS ratio shows signifi
cant spatial variability. For example, both MACS168 and MACS342 
display lower values in the southern extratropics than the rest of the 
global surface in Fig. 6(b) and (c), respectively. In the contrary, the ratio 
of MACS342 is very high (>6) in the trade winds regions due to the 
smaller WW3-simulation as observed in Fig. 5 bottom panel. It is worth 
noting that the straight boundary line at latitude of 45 ◦ S in Fig. 6(c) are 
present throughout the year. The sharp variation in Fig. 6 (b)(c) corre
sponds to the pattern shown in the WW3-simulation in Fig. 5(b2)(c2). 
While such variation is not found for the MACS62 in Fig. 5(b1). In
vestigations of this abrupt alignment change shall be further addressed. 

The Pearson correlation coefficients for MACS at 62 m, 168 m and 
342 m are calculated from the monthly time series over each latitude/ 

longitude bin of 2.5◦, and shown in Fig. 7. As in Fig. 7(a), MACS62 be
tween the two data sets is highly correlated with correlation coefficient 
larger than 0.8 in most of the open ocean. Similarly, MACS168 has strong 
correlation on the global scale, except over a narrow band at the equator 
(±10◦) where the correlation coefficient decreases to 0.1 as in Fig. 7(b). 
The low correlation along the equator extends to the entire trade winds 
region, reaching ±30◦ for MACS342 as in Fig. 7(c). 

To further analyze the location-dependent correlations, three areas 
with each covering a 5◦ in both latitude and longitude are selected and 
annotated by the black rectangles in Fig. 7(c). The monthly time series of 
MACS for 62 m, 168 m and 342 m over each area are then plotted in top, 
middle and bottom panel of Fig. 8, respectively. The variation trend of 
temporal MACS62 is found similar for both data sets except that the 
WW3-simulation shows consistently larger values. Despite that the 
simulated and observed MACS differentiate approximately by a factor of 
2 over the time period, the co-variation results in the correlation co
efficients higher than 0.70 for all these three areas. While for MACS168 in 
the middle row, both data sets show comparable variation trends as well 
as quantitative values. Ocean waves of 168 m is better resolved than the 
62 m in the calculation of SAR image cross-spectrum. This produces the 
high correlations (>0.80) found for all the three areas. Contrast to the 
shorter wavelength in Fig. 8(a1), MACS in (a2) exhibits much stronger 
seasonal changes. In winter, long ocean waves are generated by the high 
wind events associated with the winter storms and the averaged 
MACS168 reaches up to 25 m− 2 ⋅ rad− 2. As the winter storms recede, the 
winds lowers and MACS168 accordingly reaches the minimum values in 
summer close to zero. For the long waves of MACS342, both R1 and R3 
see consistent variation of SAR observation and WW3-simulation. Note 
that the WW3-simulation is greatly underestimated over R2 as shown in 

Fig. 6. Global ratio of MACS (SAR over WW3-simulation) for (a) 62 m; (b) 168 m; (c) 342 m. The latitude/longitude bin of 2.5◦ is used in this figure.  
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Fig. 7. Global correlation coefficients of MACS between SAR measurements and WW3-simulation for (a) 62 m; (b) 168 m; (c) 342 m. The latitude/longitude bin of 
2.5◦ is used in this figure. The three black rectangle indicate the areas selected for further detailed correlation analysis. 

Fig. 8. Time series for MACS over the three selected areas annotated in Fig. 7, from left to right are R1, R2 and R3, respectively. For each area, from top to bottom are 
62 m, 168 m and 342 m. The correlation coefficient is accordingly given in each plot. 
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Fig. 8(b3), resulting in the lower correlation coefficient of 0.097. This 
agrees well with the smaller MACS ratio in Fig. 6(c). We attributed this 
discrepancy to the pollution of SAR-observed MACS by the atmospheric 
or air-sea interaction features, including the rain impact and wind 
streaks et al. In fact, high occurrence of such phenomena has been 
detected by the automatic classification of Sentinel-1 SAR wave mode 
data (Wang et al., 2019) and particularly in the Tropics. 

3.3. Triple comparison with buoy measurements 

The global signatures of MACS strongly resemble between both data 
sets. Meanwhile it is found that the WW3-simulation is generally larger 
than the SAR-measured MACS. This quantitative difference also depends 
on the spatial locations at the globe. Taking advantage of the numerous 
Envisat/ASAR acquisitions, a triple comparison between SAR, WW3 and 
buoy measurements is carried out to further diagnose the difference 
between these data sets. 

To extend the inter-comparison with the in-situ measurements, the 
NDBC wave buoys that are capable of obtaining the two-dimensional 
wave spectrum are collocated with the Envisat/ASAR wave mode data 
set. This ends up with 1218 collocated data points. The spatial positions 
of these collocated wave buoys are shown in Fig. 9(a). Of which, 714 
collocated data points are scattered along the east coast of the North 
America and 61 points off the west coast and the rest (443 points) are 
around the Hawaii. We first compared the significant wave height of 
buoys and WW3, which are in good consistency with negligible biases in 
Fig. 9(b). The averaged one-dimensional wave spectra from all the buoy 
measurements and the corresponding WW3 simulations are then given 
in Fig. 9(c). Both data sets present high conformity for most of the 
wavelengths, except at the long waves of 350 m where buoy tends to 

measure slightly larger wave spectral density. The two wave peaks are 
well captured by both WW3 and buoys. One is long swell (wavelength of 
330 m) coming from remote storms in the Southern Ocean and the north 
extratropics. The other corresponds to locally generated wind sea at the 
wavelength of 120 m. This comparison well evidences the capability of 
WW3 in accurately modelling the one-dimensional ocean wave spectra. 

However, the MACS profile derived from the SAR measurement, 
WW3-simulation and buoy-simulation show quite striking disagreement 
as shown in Fig. 9(d). At the low wavenumber (long wavelength), the 
averaged SAR MACS still displays the abrupt increase, while both WW3 
and buoy are in good agreement with much lower spectral energy. To
wards the higher wavenumber, the three data sets all show a decreasing 
trend but with different spectral level. In particular, the WW3- 
simulation predicts the highest MACS values, while buoy predicts the 
lowest. SAR-measured MACS profile lies in between and has comparable 
MACS with buoy-simulations for the waves shorter than 60 m. The 
differing MACS between the two simulation data set of WW3 and buoy 
contrasts their alignment in terms of the one-dimensional wave spectra 
in Fig. 9(a). This indicates that the directional pattern of both wave 
spectra might be different. To confirm, the mean wave direction as well 
as the spectral spread for both wind sea and swell part are calculated. 
The partition of wind sea from swell is based on the assumption of a fully 
developed sea state where the wind and waves are in equilibrium. The 
separation wavenumber ks is set as the wavenumber where its phase 
speed equates the local wind speed. The mean wave direction and the 
directional spread are then computed in terms of the following formulas 
(Herbers et al., 1999) 

tanϕm =

∫ k1
k0

∫ π
− π sinϕS(k,ϕ)dkdϕ

∫ k1
k0

∫ π
− π cosϕS(k,ϕ)dkdϕ

(4) 

Fig. 9. Comparison of the triple collocation between SAR, buoy and WW3. (a) Position of NDBC buoys collocated with SAR observations in this study. (b) Com
parison of the significant wave height between the collocated WW3 and buoys. (c) The one-dimensional wave spectrum is obtained by integrating over all wave 
directions and averaged for all the spectra from buoy and WW3, respectively. (d) The averaged MACS profile over all collocation pairs for the SAR-measured, WW3- 
simulated and buoy-simulated, respectively. 
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and 

σ2
ϕ =

∫ k1
k0

∫ π
− π sin2(ϕ − ϕm)S(k,ϕ)dkdϕ
∫ k1

k0

∫ π
− π S(k,ϕ)dkdϕ

(5)  

where k is the wavenumber and ϕ is the wave direction. For the wind 
sea, k0 = ks and for the swell part, k1 = ks. S(k,ϕ) is the two-dimensional 
wave spectrum from the WW3 hindcast output or the buoy 
measurements. 

The calculated mean wave direction and directional spread for both 
wind sea and swell part are presented in Fig. 10. As reflected by the 
metrics, the wave spectrum of both WW3 and buoy are consistent in 
terms of the swell partition. The mean swell direction of both data sets 
scatter tightly around the one-to-one line as shown in Fig. 10(a). While 
the swell direction spreads appears to loose relationship with large 
standard deviation in comparison to the magnitude. By comparison, bias 
of the mean wind sea direction in Fig. 10(c) is − 8.97◦, which is larger 
than that of the swell direction. Though bias of the spectral spread for 
wind sea is small of 1.16◦ (Fig. 10(d)), their correlation is 0.34 while the 
swell shows a correlation of 0.56 in Fig. 10(b). In addition, the linear 
slope of least-squared fit to these points is 0.24, which is also much 
smaller compared to the 0.71 for the swell in Fig. 10(b). The impact of 
wind sea on the simulated MACS profile is two-fold. On one hand, the 
slightly shifted wind sea direction might result in differing MACS 
magnitude along the range direction. On the other hand, the wind sea 
spread could cause the nonlinear velocity bunching to be vary between 
buoy and WW3 cases. This would accordingly change the magnitude of 
SAR image spectra as well as the MACS. 

To demonstrate the impact of wave directional spread on the MACS 
profile, two SAR cross-spectra are simulated based on the JONSWAP 
spectrum and the following directional spreading function (Mitsuyasu 

et al., 1975): 

D(k,ϕ) =
⃒
⃒
⃒cos

[(
ϕ − ϕ

)/
2
] ⃒
⃒
⃒
(2s)

(6)  

where ϕ is the wave direction and ϕ denotes the dominant wave direc
tion. The parameter s determines the concentration degree of the 
spreading function relative to the mean direction. For simplicity, two 
constant values of s = 2 and s = 8 are set to calculate the directional 
wave spectra as shown in Fig. 11 (a). The contour lines represent the 
25% and 75% of the maximum wave spectral energy, respectively. The 
mean wave direction is 45◦ from the azimuth, the wind speed is 8m ⋅ s− 1 

and the wind fetch is 500 km. The wave spectrum of s = 2 (blue curve) 
displays wider spread compared to that of s = 8 (orange curve). The 
combined effect of wave direction deviation from the range axis and the 
wider spread function for s = 2 results in larger wave spectra magnitude 
along the radar line-of-sight. In consequence, the simulated image 
spectra of s = 2 shown in Fig. 11 (c) is larger than that of s = 8 in Fig. 11 
(b) in the range direction. This corresponds to the higher MACS profile 
simulated based on the wide-spread wave spectrum (blue curve) as 
given in Figure (d). Note that the configuration of mean wave direction 
is similar to that of the mean wind sea direction in Fig. 10. The results 
that larger direction spread yields higher MACS profile, in accordance 
with the slightly greater wind sea direction spread in Fig. 10(d), to some 
extent explain the MACS comparison in Fig. 9(d). Further in-depth and 
comprehensive evaluation of the WW3 outputs relative to the buoy 
measurements in terms of the spectral perspective, rather than the sig
nificant wave height should be devised. 

4. Discussion 

As a parameter defined relative to the variable wavelengths, MACS 

Fig. 10. Comparison of the mean swell in (a) and wind sea direction in (c) between the WW3 outputs and buoy observations with the directional spread accordingly 
shown in (b) and (d). Metrics are annotated on the bottom right of each plot. 
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offers new perspectives to devise comparisons between SAR observa
tions and the reference data set. In this study, we find that the global 
patterns of SAR-observed MACS promisingly resemble that of the WW3- 
simulation. Yet the quantitative disagreements are noticeable. As 
demonstrated by the percentile analyses of MACS profile in Fig. 3, SAR 
and WW3 have particularly marked difference for the long waves 
(wavelength longer than 300 m) and wind sea (wavelength shorter than 
100 m). The MACS overestimation of wind sea by the WW3-simulation is 
consistent across the open ocean as shown in Fig. 6(a). While the dif
ference for long waves is region dependent (see Fig. 6(c)). As illustrated 
in Fig. 1, the image spectrum for long wavelengths derived from SAR 
observations are subject to impact of atmospheric and/or oceanic fea
tures on the sea surface, which pollutes the wave signals in the MACS 
analyses. In fact, the influence of large-scale features on the radar 
backscatter also depends on the local wind speed. As concluded in 
(Wang et al., 2019), the rain is difficult to be identified particularly at 
high winds. As such, its impact on the image cross-spectra for long 
wavelength is negligible so that MACS342 has consistent values for both 
R1 and R3 regions in the extratropics. While the rain impact at low 
winds are expected to be significant, for example for R2 in the trade 
winds, SAR-observed MACS342 is much higher as shown in Fig. 8(b3). 

A test is performed as a first attempt to illustrate the impact of large- 
scale features on the MACS estimates. In general, SAR image spectra of 
these patterns have an unusually high tail at low wavenumber of MACS 
profile similar to that in Fig. 1(d4). A simplified criteria is employed to 
sort out the cases with such high-tail form. If the averaged MACS for 
wavelengths longer than 342 m is larger than its counterpart for shorter 
wavelengths (<342 m), this case is assumed to be impacted by the large- 
scale features. Otherwise, ocean wave signatures are expected to 
dominate in this case. The histogram of MACS for two wavelengths of 
342 m and 453 m is presented in Fig. 12 calculated for these two classes, 
respectively. For SAR-measured MACS in Fig. 12(a), all cases with large- 
scale features tend to have larger MACS magnitude in comparison to the 
cases with dominant waves. The two curves of MACS342 (blue) are closer 

to each other in comparison to those of MACS453 (orange). This is 
indicative of the enlarging impact of these large-scale features with 
wavelengths. While WW3 wave spectra are only able to predict surface 
wave properties, the MACS contrast between the pure waves (solid line) 
and potential large-scale (dashed) in Fig. 12(b) is not as evident as that 
in Fig. 12(a). Given the non-negligible difference shown in Fig. 12(a), 
processing steps are essential to identify the presence of large-scale 
phenomena and filter out their contributions in the SAR image spec
trum for a proper interpretation of the image cross-spectra. As a matter 
of fact, on-going efforts are being made to classify these features based 
on a deep learning technique for Sentinel-1 observations. Valid algo
rithms are expected to be deployed and a consistent reprocessing from 
ASAR to Sentinel-1 shall then be feasible for the improved wave 
retrieval. 

5. Summary 

Despite the previously extensive studies to evaluate the SAR wave 
observations based on the subrange wave height (Li and Saulter, 2012), 
the capability of SAR mapping isolated wave component remains un
disclosed. This study further advances the SAR wave validation towards 
the image spectral level through the newly defined MACS parameter. 
One of its advantages is its versatility, allowing the comparison to be 
directly made for various wavelengths without the nonlinear SAR 
inversion scheme. 

The large volume of data acquired by Envisat/ASAR aids the exam
ination of MACS relationships with respect to the collocated WW3 
hindcast wave spectra. Both data sets show a couple of similarities in 
terms of the MACS signatures. First of all, MACS magnitudes of all 
wavelengths are comparable between SAR-measured and WW3- 
simulation. The global patterns of SAR- and WW3-derived MACS agree 
well with high correlations in the open ocean. However, the quantitative 
inconsistency between these two is not only wavelength variant, but also 
regionally dependent. WW3 appears to constantly predict larger MACS 

Fig. 11. (a) The normalized directional wave spectrum for s = 2 (blue curve) and s = 8 (orange curve) in Eq. (6). The contour lines give the 25% and 75% relative to 
the maximum spectral energy. The simulated SAR image cross-spectrum is given in (b) s = 2 and (c) s = 8, respectively. (d) The accordingly extracted MACS profile. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Histogram of the (a) SAR-measured and (b)WW3-simulated MACS342 and MACS453 with (dashed curves) and without (solid curves) the potential impact of 
large-scale features on SAR images. 
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magnitude for the short wind sea (λ<100 m) at global scale. For the long 
waves (λ>300 m), such overestimate by the WW3-simulation only ex
hibits in the southern extratropics with opposite trend in the trade winds 
where WW3 predicts consistently smaller values. In contrast to the well 
aligned significant wave height (Li and Saulter, 2012; Stopa and Mou
che, 2017), the difference observed by MACS of various wave scales is 
expected to offer new insights into the assessment approach of SAR 
observations. 

Even with the assumption that the SAR forward transformation used 
in this paper is able to accurately reproduce the wave imaging process, 
several points still need to be addressed in order to better interpret the 
results of MACS comparison. On one hand, the large-scale impact should 
be further quantified as effort to isolate the MACS quantity that is 
associated with ocean surface waves. This will in turn help refine the 
SAR wave inversion and further enhance the utility of SAR measure
ments in accurately illustrating the ocean swell partitions. For example, 
taking the WW3 wave spectrum as the absolute reference data, the input 
real aperture radar (RAR) modulation transfer function (MTF) could be 
adjusted to match the SAR-measured values. This shall devise a more 
comprehensive RAR MTF relative to wave scales at various wind con
ditions as in (Romeiser et al., 1994), which can be readily used to the 
wave inversion. In addition, other geophysical applications, such as air- 
sea interactions and sea ice monitoring shall also benefit. On the other 
hand, the spectral spread has been demonstrated to have impact on the 
MACS magnitude along with the mean wave direction. The inconsis
tency observed between buoy-based and WW3-based simulations also 
invokes the necessity of validating the numerical outputs in terms of the 
two-dimensional wave spectra rather than the integrated parameters. 

In this paper, we focused on the assessment of MACS profile from the 
Envisat/ASAR wave mode observations. There are also multiple SAR 
sensors in orbit now, including Sentinel-1 constellation, Radarsat 
Constellation Mission, Gaofen-3 et al. Instrument characteristics, such as 
spatial resolution, swath and incidence angles, generally differ among 
these satellites. While the commonly used validation procedure through 
significant wave height is limited to evaluate the SAR wave measure
ments. This MACS approach can be readily extended to grade the per
formance of SAR observations from the spectral point of view as well as 
to determine the consistency between sensors. 
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