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ABSTRACT

Comparably little is known about the impact of down-front-propagating surface waves on the stability of

submesoscale lateral fronts in the ocean surfacemixed layer. In this investigation, the stability of lateral fronts

in gradient–wind balance to two-dimensional (down-front invariant) disturbances is analyzed using the

stratified, rotating Craik–Leibovich (CL) equations. Through the action of the CL vortex force, the surface

waves fundamentally alter the superinertial, two-dimensional linear stability of these fronts, with the classical

symmetric instability mode being replaced by a hybrid Langmuir circulation/symmetric mode. The hybrid

mode is shown to exhibit much larger growth rates than the pure symmetricmode, to exist in a regime in which

the vertical Richardson number is greater than 1, and to accomplish significant cross-isopycnal transport.

Nonhydrostatic numerical simulations reveal that the nonlinear evolution of this hybrid instability mode can

lead to rapid, that is, superinertial, vertical restratification of the mixed layer. Paradoxically, Langmuir

circulation—generally viewed as a prominent vertical mixing mechanism in the upper ocean—may thus play

a role in mixed layer restratification.

1. Introduction

Lateral density gradients associated with submesoscale

fronts are ubiquitous in the ocean surface mixed layer

(Samelson and Paulson 1988; Ferrari and Rudnick 2000;

Munk et al. 2000). These fronts have a width on the

order of one to ten kilometers and are nominally in

gradient wind balance; that is, the cross-front gradient

in hydrostatic pressure is balanced by Coriolis forces

associated with a vertically sheared alongfront current.

There has been significant recent interest in under-

standing frontal instabilities and their role in the conse-

quent restratification of the mixed layer (ML) and in the

loss of balance associated with a forward energy cascade.

Boccaletti et al. (2007), in particular, demonstrate that

a three-dimensional (3D), essentially geostrophic (i.e.,

balanced) but O(1) Rossby number baroclinic Eady

mode, which they refer to as the mixed layer insta-

bility (MLI), causes frontal slumping and restratification

on time scales of a few days—much shorter than that as-

sociated with mesoscale baroclinic instability. Molemaker

et al. (2005) show that a second mode, the ageostrophic

anticyclonic instability (AAI), exhibits a large nonhy-

drostatic unbalanced component, which may be impor-

tant for the extraction of kinetic energy residing in ocean

mesoscale flows and its ultimate dissipation via small-

scale, three-dimensional turbulence.

In addition to these 3D instabilities, lateral fronts,

particularly within the ML where the vertical stratifica-

tion is weak and hence horizontal gradients are com-

parably strong, are subject to a two-dimensional (2D;

down-front invariant) gravitational/centrifugal insta-

bility referred to as symmetric instability (Haine and

Marshall 1998). Linear inviscid stability analysis in an

unbounded domain indicates that the symmetric mode

arises for 0 # Riy , 1, where the vertical Richardson

number Riy 5 N2H2/U2, N2 is the ML buoyancy fre-

quency, H is the ML depth, and U is a velocity scale

characterizing the thermal wind (Stone 1970; Hoskins

1974). Under these conditions, along-isopycnal angular

momentum gradients trigger centrifugal instabilities

that grow on a time scale proportional to the inverse of

the Coriolis parameter f. Fully nonlinear numerical

simulations confirm that themixing accomplished by the

symmetric mode continues until Riy ’ 1 (Haine and

Marshall 1998). Since the most rapidly growing pertur-

bations are aligned with isopycnals, the net result is an

efficient but minimal vertical restratification of the ML.
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[Taylor and Ferrari (2009) show that the saturation of

the growing symmetric instability can be accomplished

by a vertical flux of positive potential vorticity across the

thermocline following a secondary Kelvin–Helmholtz

instability of the symmetric mode.] Indeed, Boccaletti

et al. (2007) argue that the bulk of the restratification

occurs via theMLI which ensues after Riy $ 1 and which

effectively releases the potential energy in the horizon-

tal stratification.

To date, less attention has been paid to the interaction

between lateral density gradients within the ML and

smaller-scale convective (vertical) mixing processes that

can and do arise independently of the existence of fronts.

One notable exception is the recent study by Taylor and

Ferrari (2010) of the impact of a geostrophically balanced

lateral density gradient on turbulent thermal convection

in the upper ocean. Their results suggest that the presence

of the density front can modify the structure of the ver-

tical stratification and the development of the surface

boundary layer.

More significant, perhaps, is the omission in most

prior investigations (including those referenced above)

of surface wave effects on the stability of ML fronts,

which not only precludes the occurrence of Langmuir

circulation (LC), a primary vertical mixing mechanism

in the ocean surface boundary layer under wind forced

seas (Leibovich 1983; McWilliams et al. 1997; Thorpe

2004), but also the modification of other instability

processes by the rectified effects of the waves through

the action of the Craik–Leibovich (CL) vortex force. Not

surprisingly, the focus of nearly all numerical process

studies of Langmuir circulation in a density stratified

environment—starting with a series of two-dimensional

(downwind invariant) numerical simulations by Li and

Garrett (Li and Garrett 1995, 1997), and continuing with

fully three-dimensional large-eddy simulations (LES)

of turbulent Langmuir circulation by, for example,

Skyllingstad andDenbo (1995); McWilliams et al. (1997);

Li et al. (2005)—has been on the effects of an imposed

strictly vertically varying density profile on the devel-

opment of the vortices and the evolution of the surface

mixed layer.

Motivated by the routine occurrence of submesoscale

fronts in the upper ocean, we here address the role of

down-front-propagating surface waves on the evolu-

tion of these fronts. Specifically, we simultaneously in-

vestigate the influence of an imposed lateral density

gradient on Langmuir circulation and the effect of the

CL vortex force on the classical symmetric instability

mode. Note that we do not study the possible two-way

coupling between these instability modes and the more

slowly evolving processes responsible for maintaining

submesoscale fronts—although we view the present

investigation as a necessary first step toward addressing

the two-way multiscale interaction between fronts and

mixed layer turbulence. Instead, our primary aim is to

elucidate the nature of the convective instability and

the physical mechanisms involved. We consider an ide-

alized scenario in which the dynamics are 2D, with no

variation in the alongfront direction, but involve all

three velocity components. We also imagine that the

LC evolves in a preexisting mixed layer which is ‘‘slip-

pery’’ to the cellular flow and that there exists a suf-

ficiently strong pycnocline to inhibit further layer

deepening by the cells over the time scales of interest.

Further details of the problem formulation are given in

section 2. Using a complement of linear stability theory,

energy budgets, and fully nonlinear, nonhydrostatic nu-

merical simulations of the rotating, laterally stratified 2D

CL equations (section 3 and section 4, respectively), we

diagnose the physics of the fastest growing primary

instability mode and its subsequent secondary instability

and nonlinear evolution. We conclude in section 5 with

a discussion of the potential implications of our results for

ML restratification.

2. Problem formulation

As shown in Fig. 1, we adopt a Cartesian coordinate

system inwhich the x axis is alignedwith the front andwith

the presumed direction of both the wind and the vertically

varying surface wave Stokes drift velocity Us 5Us(z)x̂.

The vertical coordinate zmeasures distance upward from

the mean position of the sea surface, and the cross-front

coordinate y is oriented so as to complete a right-handed

coordinate system. To explore the dynamics of LC and

other phenomena characterized by time scales long

compared to the typical surface wave period, we employ

the rotating CL equations—a surface wave–filtered ver-

sion of the incompressible Navier–Stokes equations

FIG. 1. Schematic of LC roll vortices in the presence of a hori-

zontal density gradient within the mixed layer. The wind (with

associated traction tw) and surface waves are aligned in the down-

front, that is, x, direction. The imposed lateral density (tempera-

ture) gradient is oriented in the positive (negative) y direction.

1946 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 42



(Craik and Leibovich 1976; Leibovich 1977; Craik 1977;

Huang 1979; Leibovich 1983; Holm 1996; McWilliams

et al. 1997)—on an f plane (where f is the Coriolis pa-

rameter) and under the Boussinesq approximation,

namely,

DU

Dt
1 f ẑ3U52

1

r0
$p2

r

r0
gẑ1 ne=

2U

1Us 3 (f ẑ1$3U) . (1)

Here, r is the density field, with r0 a constant repre-

sentative value; U 5 (U, V, W) is the incompressible

velocity field; p is a modified pressure; g is the gravita-

tional acceleration; and ne is the presumed constant eddy

viscosity that arises from the Craik–Leibovich wave-

filtering procedure. The substantial derivative operator

D/Dt 5 ›/›t 1 U � $, where t is the time variable. The

final term on the right-hand side of (1) consists of the

Stokes–Coriolis force (McWilliams et al. 1997; Lewis

and Belcher 2004) and the CL vortex force, the cross-

product of the Stokes drift velocity associated with

the filtered surface waves—a prescribed input in this

formalism—and the (time or phase averaged) relative

vorticity vector.

Numerous prior studies have shown that the dominant

(i.e., fastest growing, most energetic) instability modes

take the form of x invariant roll vortices, or ‘‘Langmuir

cells,’’ when the wind and waves are aligned in the x

direction. We presume this to be the case even when

lateral stratification and Coriolis forces are incorporated

and henceforth restrict attention to x invariant dynamics

(although we allow for flow in the x direction). To non-

dimensionalize the governing equations, we choose the

mixed layer depth H to be the relevant length scale.

Attributing density variations entirely to temperature

anomalies, and assuming a linear equation of state re-

lating density r to the temperature T, we scale tem-

perature by

DT[
dTf

dy

�����H[

�
1

ag
M2

�
H ,

����� (2)

roughly the temperature difference across a typical

Langmuir cell. In (2), Tf(y) is the imposed, linear lateral

stratification (with constant gradient dTf /dy), a is the

coefficient of thermal expansion of seawater, and M is,

thus, the Brunt frequency associated with the horizontal

density gradient. The typical alongfront flow speed U 5
O(M2H/f) is then used to scale all velocity components

except for the Stokes drift velocity, which is scaled with

Us0 5 Us(0). The time variable is nondimensionalized by

the convective or eddy-turnover time scale H/U.

Using these scalings, the nondimensional, downwind-

invariant, stratified, rotating CL equations can be cast in

a streamfunction vorticity form:

Ut 1czUy2cyUz5Ro21cz1La=2U , (3)

Vt 1czVy2cyVz5RihTy 1Ro21[Uz1 SU9s(z)]

2 SU9s(z)Uy1La=2V , (4)

=2c52V, and (5)

Tt 1czTy2cyTz5Pe21=2T . (6)

In (3)–(6), all variables are now nondimensional and

subscripts denote partial differentiation. Here, V is the

x vorticity component, and c is the associated stream-

function, with V 5 cz [ y and W 5 2cy [ w. For ana-

lytical simplicity, we take the Stokes drift to be a linear

rather than more realistic exponentially decaying func-

tion of depth, Us(z) 5 z 1 1, where we set the Stokes

parameter S [ Us0/U to unity or zero to incorporate or

exclude surface wave effects, respectively. Note that,

even with wave effects included, there is no tempera-

ture advection by the Stokes drift owing to the assump-

tion of streamwise invariance. Five other nondimensional

parameters appear in these equations: the laminar

Langmuir number La [ ne/(UH), which can be in-

terpreted as an inverse Reynolds number; the Peclet

number Pe[ UH/ke, where ke is an eddy diffusivity for

heat; the ML Rossby number Ro 5 U/(fH); and the

horizontal Richardson number Rih [ M2/(U/H)2.

To complete the problem specification, (3)–(6) are

supplemented by appropriate dimensionless boundary

conditions at the mean position of the free surface z 5 0

and along the mixed layer base z 5 21:

Uz5 1, V5 0, c5 0, Tz5 g , (7)

where the ratio of the square of the vertical to horizontal

buoyancy frequency g 5 N2/M2. Following Taylor and

Ferrari (2009), we have specifically chosen the momen-

tum and heat flux boundary conditions in (7) to minimize

the effects of dynamic buoyancy forcing via Ekman drift

(Thomas and Ferrari 2008) and to allow for a base state

with linear vertical and lateral thermal stratification. In-

deed, (3)–(6) and boundary conditions (7) admit a uni-

directional base flow

UB(z)5 z1UB
0

(8)

that is in surface-wave-modified gradient wind balance

with an imposed basic-state temperature distribution
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TB(y, z)5gz2 y1TB
0
, (9)

for constantsUB0
and TB0

, provided that RoRih5 11 S.

In dimensional terms, this last condition can be expressed

as ag(DT/H)dTB/dy52f(U/H)(dUB/dz1 SdUs/dz); that

is, the usual gradient wind balance condition modified by

the Stokes–Coriolis torque. Strictly speaking, it is in-

appropriate to refer to this base state as a front, of course,

since (8) has no horizontal structure. In this study, we

nevertheless continue to use this terminology (again fol-

lowing, e.g., Taylor and Ferrari (2009)) but with the un-

derstanding that we are modeling a L 5 O(1) km wide

section of a lateral front encompassing tens of Langmuir

cells and across which the temperature field may rea-

sonably be approximated as linearly varying. Except

for the total temperature T, all fields are taken to be

L-periodic in the y coordinate.

The traction boundary conditionUz5 1 in (7) ensures

that the imposed down-front wind stress exactly cancels

the so-called geostrophic stress (Thomas and Rhines

2002), eliminating the possibility of a residual Ekman

drift. As discussed in Thomas and Ferrari (2008), down-

front winds driving a dimensional frictional surface shear

u2*/ne greater than the geostrophic shear U/H (5M2/f in

the absence of the Stokes–Coriolis force) will induce an

Ekman drift that tends to destratify the mixed layer by

advecting heavy fluid over light; conversely, down-front

winds driving a frictional surface shear less than the

geostrophic shear will induce an Ekman drift that drives

vertical restratification. Given our nondimensionaliza-

tion, the implied water friction velocity u
*
5 O(0.005)

m s21, using U 5 0.1 m s21 and H 5 50 m as represen-

tative values. When S 5 1, these winds and waves are

appropriate for the dynamical regime identified as

‘‘Langmuir turbulence’’ by McWilliams et al. (1997).

In what follows, we take g $ 0 and consider the linear

and nonlinear stability of the imposed front to down-

front invariant disturbances. We fix La and Pe at

moderately small and large values, respectively, and

treat Rih and Riy [ gRih, the vertical Richardson

number, as the key control parameters.

3. Linear stability analysis

To gain insight into the convective structures likely to

emerge from the base state described in section 2, we first

perform a linear stability analysis. Decomposing the x

velocity component and the temperature into basic-state

(denoted with ‘‘B’’ subscripts) and perturbation contri-

butions,U5 UB 1 u and T5 TB 1 u, and linearizing the

dynamics about this basic state gives the (linearized)

equations governing the evolution of the perturbations:

ut 5cy1Ro21cz 1La(uyy1 uzz) , (10)

Vt 5Rihuy1Ro21uz2 Suy 1La(Vyy 1Vzz) , (11)

=2c52V, and (12)

ut 5gcy1cz1Pe21(uyy 1 uzz) . (13)

The perturbation fields are L periodic in the y co-

ordinate and satisfy homogeneous boundary conditions

along z 5 0 and z 5 21:

uz 5 0, V5 0, c5 0, uz 5 0. (14)

Decomposing the generic perturbation field

f(y, z, t)5 f̂(z)eikyest 1 c.c. (15)

and substituting into (10)–(14) yields an ordinary dif-

ferential eigenvalue problem in z for each horizontal

wavenumber k, where f̂(z) and s are the (generally

complex) vertical eigenfunction and eigenvalue.

With the given boundary conditions, the complete

linear stability problem must be solved numerically (see

below), but the instability physics can be largely un-

derstood by performing a nondissipative stability anal-

ysis (for which La5 Pe215 0) in a vertically unbounded

domain, so that f̂(z)5 eimz in (15). Under these

simplifications, s depends only on the ratio l 5 2m/k

rather than on k and m separately. An analytical

expression for s is readily found to be given by

(11 l2)s252Ro221 (Ro211Rih 2 SRo21)l

2 (Riy 2 S)l2 , (16)

where in the absence of waves S 5 0 and Ro21 5 Rih
while in the presence of waves S5 1 and Ro21 5 Rih/2.

It is instructive to consider various limiting cases of (16)

representing distinct and hybridized modes of linear

instability; see Table 1 for a taxonomy of these various

instability modes.

As suggested in Fig. 2, in the absence of surface waves,

vertical stratification within the ML, and Coriolis accel-

erations [case (i)], counterrotating cellular disturbances

inclined at 45 degrees to the vertical in the direction of the

density gradient are most efficiently able to release the

potential energy stored in the lateral front by moving less

dense fluid above more dense fluid. In addition to this

purely buoyancy-driven instability mechanism, which

leads to inclined convection cells, inertial instability is

possible when Coriolis accelerations are incorporated,

even in the absence of density stratification [case (ii)].
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Specifically, vertical gradients in the perturbation down-

front velocity component u tilt vertical planetary vorticity

filaments into the x direction, creating counterrotating

cellular disturbances. Energy stored in the down-front

basic-state shear flow is extracted by the cellular flow; in

terms of momentum fluxes, the rate at which down-front

momentum near the surface is advected into the con-

vergence zones between the cells exceeds the rate at

which momentum is extracted near the ML base. In-

terpreted in this way, this form of inertial instability is

loosely analogous to the CL2 mechanism responsible

for Langmuir circulation, except that 1) in LC, the im-

posed surface wave Stokes drift tilts vertical vorticity

associated with spanwise-varying streamwise velocity

perturbations into the streamwise direction, while in the

inertial instability, vertical gradients in the streamwise

velocity perturbations tilt the imposed vertical planetary

vorticity filaments into the streamwise direction (as noted

above); and 2) the fastest-growing inertial modes are in-

clined at 45 degrees to the vertical because the imposed

planetary vorticity is of one sign unlike the perturbation

vertical vorticity field in the LC case.

In pure symmetric instability (i.e., in the absence of

surface waves), the buoyancy and vortex-tilting mecha-

nisms are both operative and contribute equally to the

growth rate of the disturbance, which is approximately

equal to the square root of the horizontal Richardson

number [case (iii)]. In what may be termed ‘‘classical

symmetric instability’’ [case (iv)], stabilizing residual

vertical stratification within the mixed layer (which of-

ten is stronger than the lateral stratification there) sig-

nificantly reduces growth rates; in fact, the idealized

analysis suggests that classical symmetric instability is

completely inhibited when Riy $ 1, a result that full

numerical simulations confirm persists into the nonlinear

regime. Moreover, the streamlines of the fastest growing

classical symmetric modes are roughly parallel to iso-

pycnal surfaces (since the fastest growing mode has a

wavenumber ratio satisfying lf’M2/N2), implying that

symmetric instability accomplishes little cross-isopycnal

transport. All these results are consistent with previous

analyses; see, for example, Hoskins (1974), Haine and

Marshall (1998), and Taylor and Ferrari (2009).

Remarkably, the linear analysis suggests that in the

presence of down-front-propagating surface waves

[case (v)] the fastest growing modes again are inclined

at 45 degrees to the vertical, implying significant cross-

isopycnal transport and greatly enhanced growth rates

relative to classic symmetric instability. Indeed, for

Riy5 1, a regime in which the classical symmetric mode

is suppressed, the properties of the fastest growing mode

essentially accord with those for the scenario in which

neither surface waves nor vertical stratification is present

[case (iii)]. Heuristically, the fastest growing disturbance

in case (v) is a hybrid LC/symmetric mode that is able to

exploit multiple instability mechanisms for enhanced

growth, with, for example, the destabilizing CL vortex

torque neutralizing the stabilizing buoyancy torque as-

sociated with vertical stratification.

The predictions of the idealized analysis are broadly

confirmed (albeit refined) by a full linear stability anal-

ysis in which the effects of vertical boundaries and dif-

fusion are retained. We solve the full problem using a

Chebyshev spectral collocation method (Trefethen 2000)

FIG. 2. Schematic illustrating a buoyancy-driven mechanism for

instability in the presence of an imposed, strictly horizontal density

gradient. Counterrotating cellular disturbances inclined in the di-

rection of the density gradient (i.e., in the positive y direction) tend

to move warm fluid above cold fluid, thereby releasing potential

energy stored in the lateral density front.

TABLE 1. Taxonomy of 2D (down-front invariant) linear instability modes of the base state (8)–(9) modeling the central region of

a submesoscale lateral front in the surface ML. Note that in case (i), Coriolis accelerations are (artificially) suppressed (i.e., Ro21 5 0 but

Rih is finite), while in case (ii), lateral density gradients are suppressed (i.e., Rih 5 0 but Ro21 is finite). In scenarios (iii) and (iv), Ro21 5
Rih and in case (v), Ro215Rih/2. The subscript ‘‘f ’’ refers to a property of the fastest-growing linear mode. (Concise analytical forms for

certain properties have been obtained by taking representative asymptotic limits.)

Case Instability mode S Riy lf sf

i Buoyancy driven 0 0 1
ffiffiffiffiffiffiffiffiffiffiffiffi
Rih/2
p

ii Inertial 0 0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ro21/2

p
iii ‘‘Pure’’ symmetric 0 0 1

ffiffiffiffiffiffiffiffi
Rih
p

iv ‘‘Classical’’ symmetric 0 �Rih M2/N2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri2h/Riy 2Ri2h

q
v Hybrid LC/symmetric 1 1 1

ffiffiffiffiffiffiffiffiffiffiffiffi
Rih/2
p
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with 40–50 modes. Figures 3, 4, and 5 show the real part

of the growth rate of the fastest growing instability

mode for Riy 5 0, 0.5, and 1, respectively, for a modest

value of Rih 5 0.15, both without (lower curves) and

with (upper curves) surface wave effects. In these and all

of the following results discussed below, La5 0.001 and

Pe 5 4000. For all parameter values considered, it is

clear that surface wave effects enhance, in some cases by

almost an order of magnitude, the growth rate of the

dominant instability mode. As expected, growth rates

are reduced as Riy is increased, although much more so

for the symmetric than for the hybrid mode. Notably, the

full stability calculations confirm that the hybrid mode

can exist in a parameter regime (Riy $ 1) in which the

symmetric mode is completely suppressed (see Fig. 5).

Also depicted in Figs. 3–5 are the eigenfunctions

corresponding to the fastest-growing perturbation fields.

Although the upper plot in Fig. 3 indicates that in the

presence of surface waves growth rates are essentially

unchanged by lateral stratification (cf. the red and black

curves), the eigenfunction plots clearly reveal that the

Langmuir cells nevertheless feel the influence of the

lateral front by inclining to the vertical in the direction of

increasing density to extract potential energy stored in

the front, as anticipated. As described in section 4, this

cell tilting has a crucial effect on the subsequent non-

linear evolution of the disturbance and, ultimately, on

the stratification within the ML. Figure 4 confirms that,

in the presence of stabilizing vertical stratification, the

fastest-growing classical symmetric instability mode has

streamlines that are roughly parallel to the basic-state

isopycnals (middle plots), while the fastest-growing hy-

brid mode evidently can accomplish cross-isopycnal

transport (bottom plots). Finally, for Riy 5 1, two hybrid

modes appear with comparable maximum growth rates

(see Fig. 5). Unlike the hybrid modes at smaller values of

Riy, the high wavenumber hybrid mode at Riy 5 1 shown

in the bottom plots in Fig. 5 is a traveling instability. The

lower wavenumber mode, which turns out to play a more

 
FIG. 3. Instability growth rates and eigenfunctions for Riy 5 0,

Rih 5 0.15, La 5 0.001, and Pe 5 4000. (top) Real part of the

growth rate sr of the fastest-growing disturbance vs disturbance

wavenumber k both with (dashed curve, S 5 1) and without (solid

curve, S 5 0) surface wave effects. For reference, the dashed–

dotted curve (overlying the dashed, S5 1 curve) corresponds to the

case in which there is no density stratification (i.e., Rih 5 Riy 5 0)

and Coriolis accelerations are suppressed (Ro / ‘); that is,

the canonical Langmuir circulation scenario. (bottom) 2Dmaximally-

growing perturbation eigenfunctions (u, V, c, u) for S 5 1 both

without (middle) and with (bottom) lateral stratification.
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important role in the nonlinear evolution of the ML

stratification, is stationary.

4. Nonlinear simulation of hybrid LC/symmetric
instability

Next, we investigate the finite-amplitude evolution of

the hybrid LC/symmetric linear instability, as well as its

impact onML restratification, by numerically integrating

the fully nonlinear system (3)–(6) subject to boundary

conditions (7). For this purpose, we modified an existing,

thoroughly validated pseudospectral code, developed in-

house, for solving the 2D (nonhydrostatic) CL equations

by incorporating Coriolis accelerations and horizontal

and vertical density stratification through the Boussinesq

approximation. A Fourier–Chebyshev-tau spatial dis-

cretization scheme was employed, and the discretized

system was time advanced using a semi-implicit Crank–

Nicolson/Adams–Bashforth algorithm. The simulations

were initialized with the base profiles (8) and (9) plus

a small-amplitude disturbance having the wavenumber of

the fastest-growing mode predicted by the full linear

stability calculations for the given parameters.

We report the results of three sets of simulations, each

for La 5 0.001, Pe 5 4000, S 5 1, and Rih 5 0.15. Note

that this La corresponds to an eddy viscosity ne5 LaUH5
O(1023) for a reasonable range of U and H, in agree-

ment with the sub-grid-scale—that is, excluding the

effects of LC—viscosity numerically computed in the

LES of Langmuir turbulence by McWilliams et al.

(1997). Our three simulations are distinguished by Riy,

a measure of the initial vertical stratification within the

ML. In the first case, Riy 5 0; in the second, Riy 5 0.5;

and in the third, Riy 5 1. The panels in Figs. 6, 7, and 8

depict snapshots of the total fields (U,V, c, and T, from

top to bottom) at four different instants (with time in-

creasing from left to right) during the evolution of the

instability. In each case, the dynamics is broadly simi-

lar: a hybrid LC/symmetric instability mode, inclined to

the vertical, is excited. As this instability is amplified, the

cells become asymmetric and their inclination angle os-

cillates. After several convective time units, a cross-front

 
FIG. 4. Instability growth rates and eigenfunctions for Riy 5 0.5,

Rih 5 0.15, La 5 0.001, and Pe 5 4000. (top) Real part of the

growth rate sr of the fastest-growing disturbance vs disturbance

wavenumber k both with (dashed curve, S 5 1) and without (solid

curve, S 5 0) surface wave effects. The 2D maximally growing

perturbation eigenfunctions (u, V, c, u) for (middle) S 5 0 and

(bottom) S 5 1.
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shear flow is induced, driving light fluid over heavy fluid.

The result of this sequence of events is a remarkably ef-

ficient, although time-dependent, vertical restratification

of the ML—that is, there is an evident oscillation in the

mean isopycnal slope following the time of maximum

restratification, as can be more readily inferred from the

time traces in Fig. 9 and, especially, in Fig. 10 and as

discussed in more detail subsequently.

For Riy5 0, themaximummean vertical stratification,

as measured by the nondimensional Brunt frequency

squared, N2
max [ t

max
[Rih(Tjz50 2 T j z521)], where an

overbar denotes a horizontal average, occurs at roughly

40 time units; see the third set of panels in Fig. 6. For

a 100 m deep ML and a characteristic thermal wind

speed of 0.1 m s21, this corresponds to just over 10 h;

i.e., very fast restratification. For a range of scenarios,

both with and without surface waves, Table 2 quantifies

the value of the first maximum in the mean vertical

stratification and the time at which that maximum is

achieved; the value (N2
min) and time of the first minimum

in the vertical stratification after the first maximum is

also listed. Clearly, for the parameter regime investi-

gated, the hybrid mode is far more effective (roughly

a factor of four in terms ofN2
max forRiy5 0 andRiy5 0.5)

than the pure symmetric mode at restratifying the ML,

and, again, is operative in a regime Riy $ 1 in which

classical symmetric instability is not.

For completeness, we have also tabulated two addi-

tional indicators of the impact of the finite-amplitude

instability (see Table 3):

(DU)
2
min[ t

min
[(Ujz502 U j z521)

2]

and

Riy
max

[ t
max

[Rih(Tjz502T jz521)(Ujz502U jz521)
22] .

The former is a measure of the homogenizing effect of

the cellular instabilities on the horizontally averaged

down-front geostrophic shear, while the latter is the

maximum bulk Richardson number, using this charac-

terization of themean shear. Thesemetrics, too, indicate

 
FIG. 5. Instability growth rates and eigenfunctions for Riy 5 1,

Rih 5 0.15, La 5 0.001, and Pe 5 4000. (top) Real part of the

growth rate sr of the fastest-growing disturbance vs disturbance

wavenumber k both with (dashed curve, S 5 1) and without (solid

curve, S 5 0) surface wave effects. The 2D maximally growing

perturbation eigenfunctions (u,V, c, u) for S5 1 and (middle) k’
2 (stationary mode) and (bottom) k ’ 8.5 (traveling mode).
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that the hybrid mode is a more potent 2D instability of

submesoscale lateral fronts than is classical symmetric

instability. For example, the hybrid mode can dramati-

cally (albeit transiently) reduce the shear of the base

‘‘thermal wind’’ even for Riy $ 0.5, while the symmetric

mode cannot. (In fact, the hybrid mode can effectively

reduce the mean shear to zero during the initial de-

velopment of the linear instability, which in turn yields

a very large Riymax
; for this reason, the tabulated shear

values exclude the early time, exponential growth phase

of the linear instability.) We note that the maximum

values of the vertical Richardson numbers are tempered

somewhat by the oscillatory nature of the restratification

process, for reasons described in more detail below.

To gain insight into the linear and nonlinear mecha-

nisms driving the time-dependent restratification ac-

complished by the hybrid LC/symmetric instability

mode, it is helpful to examine an energy budget for the

fully nonlinear perturbation fields. This budget is de-

rived in the usual way; namely, we multiply the fully

nonlinear versions of (10), (11), and (13), that is, with

nonlinear (i.e., advection) perturbation terms included,

by u, c, and 2Rihu, respectively, and integrate over the

domain. In this way, we obtain, for example, the equa-

tion governing the evolution of the down-front pertur-

bation kinetic energy (per unit mass),

KE9k[ hu2/2i ,

where

h(�)i[ 1

L

ð0
21

ðL
0
(�) dy dz

and L 5 2p/k is the width of the domain:

dKE9k
dt

5PU 2C2D9k . (17)

Here, PU 5 2huw dUB/dzi accounts for the production

of KE9k by the down-front Reynolds stress, C [
2Ro21huyi represents energy transfers from down-

front to cross-front flows by Coriolis forces, and D9k 5
Lahj=u j 2i is the viscous dissipation of KE9k. The evolu-

tion of the cross-front perturbation kinetic energy (per

unit mass),

KE9?[ h(y21w2)/ 2i

is governed by

dKE9?
dt

5PS1B1C2D9? , (18)

FIG. 6. Snapshots of fully nonlinear numerical simulations forRiy5 0, Rih5 0.15, S5 1, La5 0.001, and Pe5 4000. Plotted in each set of

four panels, from top to bottom, is the total down-front velocity U, the down-front vorticity V, the streamfunction c, and the total

temperature field T.
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where the various terms on the right-hand side are

defined in Table 4. Finally, the evolution equation for

the perturbation potential energy (per unit mass)

PE9 5 2Rihhzui is

dPE9

dt
52B1Rih

ð0
21

zy dz1
Rih
Pe

ð0
21

›u

›z
dz , (19)

where the overbar refers to a y average. Note that PE9 is
one metric for restratification: specifically, the layer is

restratifying when PE9 , 0. Considering the first term on

the right-hand side of (19), we observe that whenw and u

are positively correlated, as in Fig. 2, potential energy is

released from the background lateral density gradient

and converted to cross-front kinetic energy. The re-

maining terms vanish for linear disturbances (y, u),

which necessarily have zero horizontal average; that is,

for small-amplitude disturbances, buoyancy production

B is the only factor that can alter the perturbation po-

tential energy. However, during the nonlinear phase of

the disturbance evolution, the potential energy may be

altered by the last two terms in (19). Of these, the term

involving advection of the background potential energy

by horizontally averaged cross-front currents is themore

important, since Pe21� 1.

The time evolution of a subset of the various terms in

the perturbation energy equations is shown in the series

of plots in Fig. 9, which were taken from the simulations

depicted in Figs. 6–8. Careful inspection of these ener-

getics along with insights gleaned from the linear sta-

bility analysis suggests the following restratification

mechanism.

(i) Linear instability: Hybrid LC/symmetric counter-

rotating cellular disturbances incline to the vertical,

in the direction of the density gradient, to exploit

buoyancy production (i.e., to maximize positive or

minimize negative B).

(ii) Nonlinear evolution: A ‘‘self–self’’ interaction of

the dominant linear mode generates a nonzero y9w9
Reynolds stress (RS), since for tilted cells, y9 andw9
(where the primes refer to fluctuations about the

horizontal mean) are correlated.

(iii) Mean flow generation: The vertical divergence of

this RS drives a horizontally averaged, vertically

sheared cross-front mean flow:

yt 2
. . . 52(y9w9)z1

. . .

(iv) Mean flow advection: The sign of the induced shear

is such that light fluid is carried over heavy fluid,

FIG. 7. Snapshots of fully nonlinear numerical simulations for Riy5 0.5, Rih5 0.15, S5 1, La5 0.001, and Pe5 4000. Plotted in each set

of four panels, from top to bottom, is the total down-front velocity U, the down-front vorticity V, the streamfunction c, and the total

temperature field T.
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restratifying the ML and, owing to the combined

influence of cross-cellular shear and increased ver-

tical stratification, shutting down the convection.

(v) Inertial oscillation: Coriolis forces imply that a non-

zero y will induce a nonzero u, since

ut 2
1

Ro
y52(u9w9)z1Lauzz ,

yt 1
1

Ro
u52(y9w9)z1Layzz .

For small La and weak or nonexistent convection,

an inertial oscillation ensues.

The high-frequency content evident in the energy evo-

lution plots seems to be associated with an asymmetry in

each pair of counterrotating cells that, itself, is caused by

the induced cross-front mean flow. Asymmetry in the

structure of a given cell pair implies an asymmetry in the

buoyancy and vortex torques experienced by the cells,

which evidently tends to right the tilted cells (see, e.g.,

the second set of panels in Fig. 6). In contrast, the low-

frequency part of the signal appears to be the manifes-

tation of a simple inertial oscillation, driven by the action

of the Coriolis force on the induced shear flow and having

anO(Ro21) frequency. The phase relationships inherent

in this oscillation are such that N2 is maximum approxi-

matelywhen y’ 0, at which time (DU)2 is alsomaximum;

this phase relationship thus limits the maximum achiev-

able Riy. For this reason, N2
max is a more appropriate

indicator than is Riy of the extent of restratification ach-

ieved by this instability mechanism.

More compelling evidence for the inertial oscillation

is presented in Fig. 10; see, in particular, the time evolu-

tion of the perturbation potential energy PE9, advection
of perturbation potential energy ADV, and down- and

cross-front perturbation kinetic energies KE9k and KE9?.
These results were obtained by running the Riy 5 0.5

simulation to a physical time that is unrealistically

long in view of the time-independent forcing conditions

and suppression of down-front variability. The effects of

eddy diffusion also seem exaggerated over this longer

time scale, as the inertial oscillation is more strongly

damped than might be expected in reality. Note that

from t’ 200 to t’ 500 the (nonmonotonic) decrease in

themagnitude of PE9 is also attributable to exaggerated

eddy diffusion in combination with the specification of

fixed-flux thermal boundary conditions; that is, with

these boundary conditions and in the absence of convec-

tion and cross-front flow (for 200 # t # 500), it is readily

shown that u/ 0 as t/ ‘ on a time scaleO(p2/Pe). For

weaker eddy diffusion of heat andmomentum, however,

FIG. 8. Snapshots of fully nonlinear numerical simulations forRiy5 1, Rih5 0.15, S5 1, La5 0.001, and Pe5 4000. Plotted in each set of

four panels, from top to bottom, is the total down-front velocity U, the down-front vorticity V, the streamfunction c, and the total

temperature field T.
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the diffusive relaxation of u would be greatly slowed

and the inertial oscillation presumably would continue

nearly unabated, implying that u, 0 for all times of

interest. Nevertheless, it is interesting to observe that

the long-time dynamics for the given parameter regime

apparently consists of intermittent bursts of convec-

tive activity, with amplification of residual hybrid LC/

symmetric disturbances following nearly convection-free

periods.

5. Conclusions

In this investigation, we have used a combination of

linear stability theory and fully nonlinear numerical sim-

ulations to assess the influence of down-front-propagating

surface waves on the evolution of submesoscale lateral

fronts in the upper ocean. We briefly summarize our

primary findings.

Through the action of the CL vortex force, surface

waves fundamentally alter the linear stability of sub-

mesoscale fronts in (modified) thermal wind balance over

inertial time scales. Unlike classical symmetric instability

modes, the hybrid Langmuir circulation/symmetric mode

accomplishes significant cross-isopycnal transport. Over

a wide parameter regime, surface waves are strongly

destabilizing, leading to growth rates much larger than

those exhibited by the classical symmetric mode. In

fact, our linear analysis shows and nonlinear simula-

tions confirm that the hybrid mode is operative for

vertical Richardson numbers Riy $ 1, while symmetric

instability is completely suppressed in this regime.

Our numerical simulations also suggest that the non-

linear evolution of the hybrid mode can drive vertical

restratification within the mixed layer. This restratifi-

cation process is efficient in that it has been shown to

occur on a time scale of less than one day—faster than

the restratification accomplished by the 3D ‘‘mixed

layer instabilities’’ (MLI) discussed by Boccaletti et al.

(2007). The restratification is also potentially significant

in that maximum vertical Brunt frequencies up to an

order of magnitude larger than those associated with the

base state, and approximately 4 times larger than are

FIG. 9. Evolution of a subset of the various terms in the volume-averaged perturbation energy Eqs. (17), (18), and (19) for S5 1, Rih 5
0.15, La5 0.001, Pe5 4000, and (top) Riy 5 0, (middle) Riy 5 0.5, and (bottom) Riy 5 1. ‘‘ADV’’ refers to the second term on the right-

hand side of (19).
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attainable by classical symmetric instability, can be

achieved. The key physical mechanism at work in the

restratification process is a cross-front shear flow, driven

by a nonlinear interaction of the inclined and counter-

rotating cells. Paradoxically, this result suggests that

Langmuir circulation, which is generally viewed as a key

vertical mixing mechanism within the upper ocean, may

actually play a role in supporting vertical stratification.

Of course, these conclusions must be tempered by

a number of factors. First, owing to Coriolis forces, the

restratification is time-dependent. However, the time-

averaged vertical stratification is indeed increased dur-

ing the nonlinear stages of the instability. (For example,

for Riy 5 0 and S 5 1, the appropriately time-averaged

N2 is roughly 2.7.) The crucial result of this investiga-

tion is that, in the presence of down-front-propagating

surface waves, some fraction of the potential energy

stored in the front can be accessed by the hybrid in-

stability mode and converted into mean kinetic energy.

In the absence of dissipative and three-dimensional

(3D) effects, the oscillation in the vertical stratification

would presumably continue unabated. Of course, this

assertion also presumes that there is strictly one-way

coupling between the submesoscale front and the

convective instabilities, and that various submesoscale

external forcings remain fixed indefinitely, including

those responsible for the occurrence or lack of dynamic

buoyancy forcing via Ekman drift. Thus, two key ques-

tions to be addressed in future studies include the role of

three-dimensionality—that is, both the 3D evolution of

the hybrid instability and its possible interaction with

other 3D frontal instabilities, particularly the baroclinic

FIG. 10. Long-time evolution of various terms in the volume-averaged perturbation energy equations for S5 1, Rih 5 0.15, La5 0.001,

Pe 5 4000, and Riy 5 0.5, corresponding to the middle panels in Fig. 9. (top) Evolution from t 5 0 to t 5 750. (bottom) Close-up of

evolution from t 5 500 to t 5 750, when the hybrid instability is re-excited. Note that, except for a short transient near t 5 0, the

perturbation potential energy PE9 , 0, indicating the occurrence of restratification. Moreover, the period of the slow oscillation in PE9 is
consistent with that of a damped inertial oscillation for the given parameters.

TABLE 2. N2
max and N2

min for Rih 5 0.15, La 5 0.001, and Pe 5
4000. tmax and tmin correspond to the nondimensional times at

which N2
max and N2

min are attained. Note that N2(t 5 0) 5 Riy.

Riy S N2
max tmax N2

min tmin

0 0 1.4816 30.3 0.3443 51.5

0 1 4.0204 37.3 0.5782 80.7

0.5 0 0.8050 148.7 ’0.75 200

0.5 1 3.3897 40.9 0.6897 83.9

1 0 1 0 1 0

1 1 2.3265 62.9 1.1129 107.1

TABLE 3. (DU)
2

min andRiymax
for Rih5 0.15, La5 0.001, and Pe5

4000. tmin and tmax correspond to the nondimensional times at

which DUmin and Riymax
are attained.

Riy S (Ujz=02Ujz=2 1)
2

min
tmin Riymax

tmax

0 0 0.2776 50.7 1.2744 49.1

0 1 0.1353 78.5 4.5668 75.7

0.5 0 0.9965 170.3 0.7821 163.5

0.5 1 0.2441 81.9 2.9641 78.3

1 0 1 0 1 0

1 1 0.5991 104.7 1.8892 100.9
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MLIs—and the fully two-way coupling between sub-

mesoscale flows and convective instabilities, such as the

hybrid mode studied here.
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TABLE 4. Definition of various terms in the volume integrated

perturbation energy Eqs. (17)–(19).

2Dk 2Lahj$uj2i Dissipation of KE9k

2D? 2Lahj$yj2 1 j$wj2i Dissipation of KE9?

B 1Rihhwui Buoyancy production

C 2Ro21huyi Coriolis transfer

PS 2

�
uw

dUs

dz

�
Stokes production

PU 2

�
uw

dUB

dz

�
x-shear production
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