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Abstract  10 
 11 
An empirical algorithm to retrieve integral ocean wave parameters such as significant wave 12 

height (SWH), mean wave period and H12 wave height from synthetic aperture radar (SAR) 13 

images over the sea surface designed for ENVISAT ASAR wave mode data is presented in 14 

this paper. The algorithm based on the CWAVE approach was first developed for ERS-2 SAR 15 

wave mode data and is therefore referenced here as CWAVE_ENV. It has the calibrated 16 

ASAR wave mode images as the only input and does not need any first guess information 17 

from an ocean wave model, which makes the SAR to be an independent instrument measuring 18 

integrated wave parameters to Altimeter quality. A globally distributed dataset of 25,000 pairs 19 

of ASAR wave mode images and collocated the European Centre for Medium-Range Weather 20 

Forecast (ECMWF) reanalysis model results is used for CWAVE_ENV model parameters 21 

tuning. Validation carried out by comparing the SWH derived from CWAVE_ENV algorithm 22 

to in situ buoy measurements shows the scatter index is 24% and comparing to ECMWF 23 

model and German Weather Service (DWD) model is 16% and 18% respectively. Two case 24 

studies are particularly presented to evaluate the performance of CWAVE_ENV algorithm for 25 

high sea state. A  North Atlantic storm during which SWH above 18 meters occurred is 26 

analyzed was observed by SAR and Radar Altimeter (RA) in synergy. In the Indian Ocean 27 

extreme swell case, the potential of ASAR wave mode with CWAVE_ENV algorithm used a 28 

forecast tool is demonstrated. 29 



1. Introduction 30 

Ocean waves are the ocean’s most obvious surface feature, which interact with atmosphere, 31 

ocean currents, bottom topography and with one another. For many reasons, an understanding 32 

of their statistical properties is required, such as marine transportation, global climate wave 33 

change statistics, as well as ocean wave parameters in specific locations for harbor and ocean 34 

engineering, ship design and coastal protection. 35 

Ocean waves are traditionally measured in situ at one point, as by moored buoys, which are 36 

normally located near to the coast giving very limited spatial coverage. Satellite remote 37 

sensing, particularly active microwave sensors, e.g., SAR, offer alternate approaches to 38 

observe ocean surface waves on a global scale. As a unique sensor for ocean surface wave 39 

measurements, SAR is the only spaceborne sensor that can provide ocean surface images with 40 

high resolution, independent of cloud cover and light conditions. In particular, the SAR yields 41 

information on the two dimensional spectrum of the sea surface. 42 

The L-band SAR sensor onboard SEASAT launched in 1978 provided a first realization of 43 

global ocean surface measurements from space (e.g., see [Beal et al, 1983]). From 1991 till 44 

now, ERS-1, ERS-2 and ENVISAT missions launched by European Space Agency (ESA) 45 

have operationally provided continuous SAR ocean wave measurements. In this paper 46 

following an introduction, the current algorithms to derive the two-dimensional ocean wave 47 

spectra are briefly summarized. 48 

 49 

1.1 Ocean wave measurements from SAR 50 

Nonlinear retrieval approach 51 

The retrieval of ocean wave spectra from SAR image spectra is not a straightforward mapping. 52 

The SAR imaging mechanism is nonlinear, because of distortion induced by the wave 53 

motions [Hasselmann et al., 1985]. This leads, among other effects, to image smearing and to 54 

a loss of information beyond the so-called azimuth cut-off wavelength [Alpers and Brüning, 55 



1986]. For ERS and ENVISAT SAR, this corresponds typically to wavelengths shorter than 56 

about 100 - 200 m in the satellite flight direction. In addition, ocean wave spectra from 57 

satellite SAR images suffer from a basic 180o ambiguity of wave traveling direction, which 58 

can be resolved from the complex data through [Engen and Johnson, 1995]. A nonlinear 59 

mapping of ocean wave spectra into SAR image spectra as well as its inversion was 60 

developed in Max-Planck-Institute for Meteorology by 0 referred to as MPI Scheme in the 61 

following. This inversion algorithm enables a reliable retrieval of ocean wave spectra from 62 

SAR spectra within the computational constraints of real-time operational applications (see 63 

also [Krogstad, 1992] for the simpler transform). An assessment of the performance of the 64 

retrieval algorithm as well as the operational feasibility was given by [Heimbach et al., 1998] 65 

using three years (1993-1995) of ERS-1/SAR wave mode UWA spectra data [Brooker, 1995]. 66 

Validation results show that approximately 75% of the available SAR wave mode spectra data 67 

yielded successful retrievals. There is a small overestimation less than 0.5 m of retrieved 68 

significant wave height (SWH) by MPI scheme compared to WAM model [WAMDI GROUP, 69 

1998].  70 

A semi-parametric algorithm was developed as well for full ocean wave spectrum retrieval 71 

from SAR by taking the ERS/SAR wave mode spectra and collocated ERS wind 72 

scatterometer wind vectors into account as additional input [Mastenbroed and de Valk, 1998]. 73 

The algorithm becomes could not be used for the ENVISAT mission on which the 74 

scatterometer is not onboard. 75 

A retrieval scheme for the derivation of two-dimensional ocean wave spectra from look cross 76 

spectra provided by the ENVISAT ASAR operating in wave mode [ENVISAT Handbook] is 77 

presented by [Schulz-Stellenfleth et al., 2005, referred to as PARSA algorithm] which needs a 78 

prior information from numerical wave model as well [ESA Report].  79 

 80 

 81 



SAR cross spectral algorithm 82 

Using two looks of SAR wave mode complex data, the cross spectral algorithm can be 83 

derived to remove the 180º ambiguity of ocean wave propagation direction and reduce the 84 

speckle noise significantly, e.g., described by [Lehner et al., 2000].  85 

Demonstrated on airborne C-band SAR data, the cross spectral algorithm was developed to 86 

retrieve two-dimensional ocean wave spectra [Engen and Johnson, 1995], which is adopted 87 

by ESA for the ASAR wave mode data of the ENVISAT mission as called WVW level2 88 

products. The retrieved ocean wave spectra of the Level2 products only yield information on 89 

longer wave [Abadalla et al., 2008] contained in the ASAR wave mode data due to the cut-off 90 

effect of SAR ocean wave imaging mechanism.  91 

To some extent, the PASAR algorithm introduced above is the combination of the nonlinear 92 

approach and cross spectral algorithm. It uses the cross spectrum of two looks to remove 180º 93 

ambiguity and blend the SAR image spectra and first prior information from wave model to 94 

solve the nonlinear effect of SAR ocean wave imaging process. 95 

 96 

Empirical algorithm 97 

For the current non-linear or quasi-linear algorithms retrieving 2D ocean wave spectra from 98 

SAR imagery either first prior information from numerical wave model (e.g., MPI scheme or 99 

PARSA scheme) is needed or only a limited part of the spectra for waves longer than a certain 100 

threshold, e.g., ESA Level2 products algorithm, can be derived.  101 

A new approach using an empirical algorithm is given to derive ocean wave integral 102 

parameters, e.g., SWH or mean wave period, rather than 2D spectra, which does not need 103 

prior information. For the ERS mission, the empirical algorithm of CWAVE_ERS [Schulz-104 

Stellenfleth et al., 2007] to derive integral wave parameters was developed for reprocessed 105 

ERS-2 SAR wave mode data [Lehner et al., 2000]. Validation results show that the 106 

performance of CWAVE _ERS is fairly good when compared to the ECMWF WAM model 107 



using 6000 collocation data pairs and to 21 buoy measurements from a time frame of three 108 

weeks. For SWH comparisons, both have quite small bias and RMS of 0.44 m and 0.39 m, 109 

respectively.  110 

 111 

1.2 New empirical algorithm CWAVE_ENV  112 

 113 

More than 17 years SAR global ocean observation data have been acquired since the launch 114 

of ERS-1 in 1991. Another independent active satellite measurement of SWH thus becomes 115 

available contributing to global wave climate analysis in addition to the altimeter data. It is 116 

possible using as well ENVISAT ASAR data to develop an algorithm to derive integrated 117 

wave parameters without any prior information leading to a homogenous ocean surface wave 118 

measurements for nearly 20 years SAR wave mode dataset.  119 

In this study, a new empirical algorithm to derive integral wave parameters from ENVISAT 120 

ASAR wave mode data is developed, which is referred to as CWAVE_ENV. CWAVE_ENV 121 

empirical model function is adopted from the CWAVE_ERS algorithm developed for ERS-2 122 

SAR reprocessed wave mode data. Considering ASAR wave mode data have different spatial 123 

resolutions, image size, calibration constant and ocean surface imaging performance with 124 

ERS-2 SAR wave mode data, new tuned coefficients for CWAVE_ENV model is a bit more 125 

demanding. Using the CWAVE_ENV model, a global dataset of ocean wave integral 126 

parameters from ENVISAT ASAR wave mode data independent of any prior information 127 

becomes available.  128 

The paper is organized as follows. In section 2, the dataset used in this study is introduced in 129 

more detail. The empirical model approach and validation are demonstrated in section 3. 130 

Global sea state statistics derived from ASAR wave mode data acquired in December 2006, 131 

January and February 2007 are compiled in chapter 4. Two case studies, a North Atlantic 132 

storm generating wind seas with SWH above 18 meters and a high ocean swell above 7 133 



meters in Indian Ocean are presented in section 5. Finally, summary and conclusions are 134 

given. 135 

 136 

2. Description of Data Sources 137 

2.1 ENVISAT ASAR Wave Mode Data 138 

When ASAR is operated in the wave mode, a small are image covering 6 km x 5 km to 10 km 139 

x 5 km, namely referred to as imagettes are acquired along the orbit every 100 km. Compared 140 

to ERS/SAR wave mode data, acquisition of ENVISAT ASAR wave mode is much more 141 

flexible. It is operated in C-band with multiple incidence angles from 15º~45.2º, namely 142 

IS1~IS7, as well two single polarizations, i.e., VV and HH. ASAR wave mode data yield a 143 

resolution of 4 m in azimuth direction and 20 m in range direction.  144 

 145 

In the present study, the following filters are implemented for the ASAR wave mode data 146 

used in CWAVE_ENV model for tuning and validation. 147 

(1) Only the ASAR wave mode data acquired in IS2 swath with incidence angles at around 148 

23º and VV polarization are used.  149 

(2) To avoid effects of sea ice in the North and South Polar, only the wave mode data 150 

acquired between -70º S~70º N are included in the dataset.  151 

(3) Homogeneity test is performed on the ASAR wave mode data. Examples of homogenous 152 

ASAR wave mode data and inhomogeneous one are given in Figure1 (a) and (b) respectively. 153 

The ratio of image variance and squared image mean is set to 1.05 as a threshold to classify 154 

the ASAR wave mode imagettes into classes of homogenous or inhomogeneous cases 155 

[Schulz-Stellenfleth and Lehner, 2004]. Around 9% ASAR imagettes acquired in 2006 156 

December fail to pass the homogeneity test, and they are excluded from the CWAVE_ENV 157 

model parameters tuning and validation dataset.  158 

 159 



    160 
                                   (a)           (b)  161 

Figure 1. Examples of ENVISAT ASAR wave mode data acquired over sea surface for 162 

homogenous case (a) and inhomogeneous one (b) 163 

 164 

2.2 Numerical Wave Model Data 165 

Summary of the third generation WAve Model (WAM) is given in the report of the WAMDI 166 

Group [1984]. From June 1992 a new version of WAM called cycle 40 was introduced 167 

operationally at the ECMWF. For global ocean forecast, the horizontal resolution of WAM 168 

operated in ECMWF can reach 1.5 º, and for regional forecast a higher resolution model up to 169 

10 km can be provided, e.g., the WAM version operated in DWD.  170 

The WAM model is expressed in terms of an action balance equation: 171 
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where: 173 

),,,( txfEE θ=  is the two-dimensional wave spectrum depending on frequency f , and 174 

direction of propagation θ , time t with different locations of x. 175 

gC is the deep-water group velocity; 176 

S  is the net source function, consisting of three terms; 177 

inS : Energy input by wind; 178 

:nlS Non-linear energy transfer by wave-wave interactions; 179 



dsS : Dissipation. 180 

The ocean wave integral parameters SWH and mean wave period (zero upcrossing period 181 

used in this study) can be derived from model one dimensional spectra as given in (2) and (3).  182 

 183 
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 186 

Modelers have contributed continues effort to improve the wave model forecast performance. 187 

During 1992-1993 in ECMWF, mean RMSE of the 24 hours forecast SWH was around 0.75m. 188 

A significant improvement was achieved in 2002-2003 decreasing the mean RMSE to around 189 

0.25 m, in which the contribution of large increase observation of sea state and surface wind 190 

provided by satellites, e.g., RA, SAR and Scatterometer, is notably [Janssen, 2008]. Some 191 

high resolution local numerical wave models have improved their abilities to analyze extreme 192 

sea state. For instance the LSM (Local Sea wave Model) operated in DWD was compared to 193 

two selected severe winter storms in North Atlantic and shows high quality for short-period 194 

forecast [Behrens and Günther, 2008]. However, with respect to long term global wave model 195 

performance assessment, there is still room for improvement as shown in the ERA-40 wave 196 

products validation. SWH shows slight overestimation (<1.5 m) in low sea state and 197 

substantially underestimation by more than 20% in high sea state when compared to the RA 198 

of Topex and in situ buoy  measurements [Caires and Sterl, 2003].  199 

In this paper, WAM 2D spectra collocated with the ASAR imagettes are provided by 200 

ECMWF as collected from the CERSAT collocation system [CERSAT-Ifremer]. These 201 

WAM spectra are achieved at 6-hour interval (at 00, 06, 12 and 18 UTC). Therefore, the time 202 

of the ASAR imagettes are matched with that of spectra within ± 3 hours. The grid spacing 203 

for the location of ASAR imagettes and the nearest WAM model grid point is 0.5 degree. The 204 



WAM 2D spectra are provided on a polar grid with 24 direction bins and 30 frequency bins 205 

beginning from 0.03452Hz with a logarithmic increment of 1.1Hz.  One should point out, that 206 

the collocated WAM model has been assimilated ASAR wave mode cross spectra information, 207 

referred to as the ECMWF reanalysis model in the following.  208 

Integral ocean wave parameters on grid points are provided by the DWD for this study instead 209 

of 2D spectra. Spatial and temporal resolution of the model is 0.75º and 3 hours, respectively. 210 

Validation of SWH derived from the DWD 24-hour forecast GSM model shows a good 211 

agreement with a positive bias of 0.04 m and scatter index of 20.2% when compared to buoy 212 

measurements during June to August 2007 [Bidlot et al., 2007].  213 

 214 

2.3 Buoy Data 215 

To validate the CWAVE_ENV empirical model, buoy data collected from the CERSAT 216 

collocation system are used. Figure 2 shows a map of 77 buoys used for the validation. Most 217 

of the buoys are from the NOAA National Data Buoy Center (NDBC) and the Environment 218 

Canada Marine Environmental Data Service (MEDS). 219 

The non-directional buoys are used to measure the sea surface vertical acceleration, which can 220 

be used to derive surface displacement spectra. The details of the data collection and analysis 221 

procedures for the NDBC non-directional wave buoys were described in detail by [Steele and 222 

Earle, 1979]. Generally, in each hour a 20-minute record of vertical hull accelerations of the 223 

buoy, sampled at a rate of 1Hz, is collected. By doing a segmented FFT for the record, an 224 

acceleration spectrum is calculated and the non-directional wave spectrum ( )fS , i.e., 225 

frequency spectrum, is obtained from it.  226 

Integrated wave parameter e.g., SWH can be estimated from the frequency spectrum ( )fS  of 227 

the wave displacement record according to following equation, see as well formula (2), using 228 

a limitation of frequencies in addition: 229 
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The frequencies usually range from 0.03 to 0.40 Hz at intervals of 0.01 Hz. 231 

 232 
Figure 2. Location of collocated buoys used for CWAVE_ENV model validation 233 

 234 

The name, latitude and longitude information of the buoy stations as shown in Figure 2 are 235 

given in Appendix A. 236 

 237 

3 CWAVE_ENV Model Tuning Approach 238 

In this section, the CWAVE_ENV parametric model structure, model fitting procedure and its 239 

evaluation using the tuning dataset are described in detail. 240 

 241 

3.1. Introduction of the Parametric Model  242 

3.1.1. Multiple Regression Model 243 

Suppose n  parameters or factors S(s1,…,n)  are thought to affect the expected observation W  244 

with coefficients A(a1,…,n). A simple linear regression model collecting these parameters to be 245 

used an estimator is expressed by (5) see [von Storch and Zwiers, 1999], 246 
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where iE are random variables with zero mean. Formula (5) is the simple linear regression for 248 

modeling n data points and independent factors, which corresponds to a straight line. For the 249 

CWAVE_ENV empirical model, a quadratic term is added on the right side of formula (5), 250 

i.e., it is a multiple linear model, taking account into the nonlinearities as well as possible 251 

coupling among different variables. Thus the final form of the model is given as,  252 
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The model states that the observation W is expressed as a linear combinations of the factors 254 

S(s1,…,n)  and thus the model is linear in its parameters. However, the factors themselves can 255 

be nonlinear functions of other variables. In following the variables chosen in CWAVE_ENV 256 

model are introduced.  257 

 258 

3.1.2. ASAR Image Parameter Selection in the CWAVE_ENV Model 259 

Using model given by the formula (6) it is assumed that the n variables include all relevant 260 

predictor variables. It is often required to select the variables such that no essential 261 

information is lost. On the other hand, too many variables will increase the computational 262 

consuming as well as make the model rather sensitive to minor changes.  263 

In the CWAVE_ENV model, we assume that ASAR parameters SA (s1,…,sn), i.e. Normalized 264 

Radar Cross Section (NRCS, referred as well oσ  as shown in formula (7)), variance of the 265 

normalized SAR image (cvar, see formula (8) [Kerbaol, 1998]), and other parameters 266 

computed from variance spectrum can be regarded as related to ocean surface wave. Previous 267 

research described that due to the cut off effect of SAR imaging mechanism only longer wave 268 

information is contained in the spectrum, particularly apparent for high altitude orbit SAR 269 

system, e.g., ERS SAR and ENVISAT ASAR. At the same time, NRCS of SAR image is 270 



related to ocean surface wind based on the CMOD function [Stoffelen and Anderson, 1997; 271 

Lehner et al., 1998] and thus can represent short wave information.   272 

                                                   KI −= 100 log*10σ                                                      (7) 273 
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In (7) and (8), I is the mean intensity of ASAR wave mode data and K is the calibration 275 

constant.  276 

Estimation of the ASAR image spectrum is performed by computing the image periodogram 277 

with two-dimensional FFT algorithm. The raw periodogram is not a good spectral estimation 278 

because of spectral bias and the fact that the variance at a given frequency does not decrease 279 

as the number of samples used in the computation increases. The variance problem can be 280 

reduced by smoothing the periodogram, i.e., the so-called method of averaged periodogram. 281 

The idea behind it is to divide the entire set with N samples into many sub sets with M 282 

samples, compute the FFT of each sub set, square it to get the power spectral density and 283 

compute the average of the ensemble. This approach implemented on the ASAR image 284 

spectral estimation is given in Appendix B.  285 

In the both models of CWAVE_ERS and CWAVE_ENV, 20 parameters are extracted from 286 

the estimated two-dimensional SAR image spectra. Together with oσ  and cvar, there are 22 287 

parameters that are collected into the ASAR image parameter vector S (s1,…,sn) as input to 288 

model (6).  289 

Although the exact physical meaning behind (6) is not easily to be interpreted, the 22 290 

parameters derived from the ASAR image include essential information relating the image 291 

itself to both long wave and short wave information therefore the parametric model is 292 

successful in estimating ocean wave integral parameters. 293 

 294 

3.2. Empirical Model Fitting Procedure  295 



A least square minimization approach is used to tune the CWAVE_ENV empirical model as 296 

given by (9), where W is the integral wave parameter (e.g., SWH or mean wave period) 297 

derived from model or other observation data sources collocated to ASAR image and treated 298 

as the “true” ,or at least very reliable sea state observations. It needs to be pointed out that 299 

different integrated wave parameter corresponds to respective parametric model coefficients.  300 

 301 

                                                ∑ ∑
= =

−=
N

j

k

i

j
ii

j
t SAWAJ

1

2

1

)(
cos )()(                                           (9) 302 

As stepwise regression procedure is used for the least square minimization approach. The 22 303 

parameters defined in the previous section are all included in the tuning approach; however 304 

there are possibilities that some parameters will not lead to a significant improvement of the 305 

empirical model. To diagnose the performance of every SAR image parameters collected in 306 

vector SA (s1,…,sn), couples of terms are used to quantify it. 307 

The sum of squares due to regression denoted SSR  308 
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The sum of squared errors εSS  is  310 
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The multiple-regression is performed on every ASAR image parameter. The parameter iS  for 312 

which 1SSR is largest is chosen as the initial parameter. In the next step, a new parameter 1+iS  313 

is selected, for which the incremental regression sum of squares incSSR  is again largest.  314 

                                                      iiinc SSRSSRSSR −= +1                                                  (12) 315 

In the third step, the testing of hypothesis that the inclusion of new ASAR parameter 1+iS  316 

significantly reduces the regression sum of squares are performed by computing the test 317 

variable of,  318 
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This is compared to the critical value of the distribution ),1( iNF − [von Storch and Zwiers, 320 

1999], if the testing variable )1( +iF  is below 0.99 or 99% quantiles the iteration to select 321 

ASAR parameters will be terminated and the coefficients in (6) are fitted. Otherwise the 322 

parameter 1+iS  will be excluded from the model and the steps are repeated till the testing 323 

variable satisfies the critical value.  324 

 325 

3.2. CWAVE_ENV Model Implementation 326 

In the CWAVE_ENV empirical model, 22 parameters as introduced in the previous sector 327 

extracted from ASAR wave mode image are used for parametric model tuning approach.  328 

In the present study, ASAR collocated ECMWF spectra from December 2006 are used as the 329 

tuning dataset.  330 

Histograms of SWH and Tm02 derived from these collocated reanalysis ECMWF model 331 

spectra are shown in Figure 3(a) and (b), respectively. It can be observed that the tuning 332 

dataset includes different sea state and the dominant SWH ranges between 1.5 m ~ 2.5 m 333 

contributing around 50% to the entire tuning dataset. The maximum SWH measured by the 334 

ECMWF model in the tuning dataset is 12.6 m.  The Tm02 distribution shows that the model 335 

measures numerous waves with period between 8 s ~ 9 s and long swell with periods larger 336 

than 12 s does exist in the tuning dataset, too. 337 

 338 



 339 
                                          (a)                                                                 (b) 340 

Figure 3. Histogram of SWH (a) and Tm02 (b)) used in tuning dataset of CWAVE_ENV 341 

model which are derived from ECMWF analyzed model in 2006 December 342 

 343 

The tuning dataset is used for the CWAVE_ENV model parameter fitting approach. Figure 4 344 

shows the comparison results for SWH (left panel) and Tm02 of the tuning dataset to the 345 

ECMWF reanalysis model results. The differences between ASAR measurements iY and 346 

observations iX  (numerical model or buoy) are quantified in terms of bias, root-mean-347 

square-square (RMSE) and scatter index (SI), which are expressed in the form of (14), (15) 348 

and (16), respectively.    349 

 350 
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 356 

Figure 4. Evaluation for the tuning datasets of CWAVE_ENV model 357 

 358 

One can see that the tuning approach of the CWAVE_ENV empirical model is successful 359 

making the difference between ASAR measurements derived by the CWAVE_ENV 360 

algorithm and the ECMWF reanalysis model results in the tuning dataset quite small with 361 

zero bias as to be expected for the tuning, and low scatter indices of 15% and 7% for SWH 362 

and Tm02 respectively.   363 

 364 

4. Assessment of the CWAVE_ENV Empirical Algorithm Performance 365 

In this section, SWH, Tm02 and H12 derived from ASAR wave mode data are validated with in 366 

situ and numerical wave model comparisons.  367 

Wave height H12 (for waves with period larger than 12 seconds) as given by (17) is associated 368 

with wave components with wave length longer than 220 m. Such waves are directly 369 

detectable as patterns on the ASAR images. On the other hand, validation results show that 370 

SWH derived from numerical wave models, e.g., WAM operated in ECMWF there is a large 371 

positive bias (larger than 0.25 m) related to swell events (e.g., wave period in the range of 10-372 

15s) generated by storms in the Southern Hemisphere winter time  when compared to in situ 373 



buoy measurements [Janssen, 2008].  Therefore it is particularly interesting to compare wave 374 

height H12 derived by the CWAVE_ENV algorithm to model results and SAR measurements 375 

such as the Level 2 product introduced by ESA.  376 

 377 

                                             ( )∫ <
=

sf
dffSH

12/112 4                                                            (17) 378 

 379 

4.1 In situ Comparisons 380 

Here we present the validation of SWH derived by the CWAVE_ENV algorithm against in 381 

situ buoy measurements over the period in December 2006, January, February and May 2007. 382 

It should be pointed out that data pairs of ASAR measurements and collocated buoys in 383 

December 2006 were not included in the tuning dataset. Buoy positions are shown in Figure 1 384 

and listed in Table A1. 385 

The comparison shows a reasonable agreement as given in Figure 5, and the usual statistical 386 

parameters are computed and shown as well in the Figure. One can observe that generally the 387 

empirical algorithm can provide reliable retrieved significant wave height from ASAR wave 388 

mode data with nearly zero bias, RMSE of 0.72 m and a scatter index of 24%.  389 

To investigate the performance of CWAVE_ENV for different sea states i.e., from smooth to 390 

high sea state, a step comparison is carried out. In Table 2, the results of comparison are 391 

summarized. Besides the three statistical parameters defined in §3.2, the error percent (EP) is 392 

used as well, estimating the relative bias depending on the mean value of buoy observations: 393 

                                                 iii XXYEP )(%100 −∗=                                                     (18) 394 

 395 



 396 
Figure 5. Scatter Plot SWH derived by the CWAVE_ENV algorithm compared to buoy in-397 

situ measurements 398 

 399 

Considering the usual measurement for quality, namely the scatter index, it is found that in 400 

rough sea state, i.e., SWH > 4 m, the CWAVE_ENV algorithm has a better performance with 401 

scatter indices lower than 20%. In a sea state with SWH lower than 2.5 m and particular for 402 

SWH less than 1.25 m, there is a distinct difference between CWAVE_ENV results and in 403 

situ observations. The error percent and scatter index in this sea state are quite large with 404 

48.3% and 0.43 respectively. The reason might be that in the shallow water (i.e., lower than 405 

100 m) regions, the SAR ocean wave imaging process is affected significantly by the local 406 

bathymetry while this is not resolved in the CWAVE_ENV model tuning approach using 407 

numerical wave model results. 408 

In high sea state, namely when SWH is higher than 4m, SWH derived by CWAVE_ENV is 409 

underestimated compared to buoy measurements and the bias increases with the sea state 410 

becoming higher. However, it is interesting to note that the scatter index is lower than 15% 411 



showing the quite promising agreement with in situ measurements in sea states with SWH 412 

larger than 6 m. Further investigation of the CWAVE_ENV algorithm will be considered for 413 

cases of high sea state as compared to more collocations to in situ measurements and to radar 414 

altimeter.  415 

 416 

Table 2. Statistical results describing the performance of CWAVE_ENV for Hs in different 417 

sea state 418 

SWH (m) Data Pairs Bias (m) EP (100%) RMSE (m) SI 

(0,1.25] 170 0.45 47.6% 0.60 0.43 

(1.25, 2.5] 456 0.20 10.0% 0.63 0.31 

(2.5,4] 370 0.07 2.0% 0.69 0.21 

(4,6] 208 -0.34 7.0% 0.77 0.14 

>6 66 -0.91 12.6% 1.41 0.15 

  419 

 420 

4.2 Model Comparisons 421 

In this section, SWH, H12 wave height and Tm02 are compared to the ECMWF and DWD 422 

model results. More than 55, 000 data pairs are collected in January and February 2007 for the 423 

comparison.  The scatter plots of Figure 6 (a) and (b) show the SWH comparisons against the 424 

ECMWF and DWD model respectively.  425 

Both plots in Figure 6 show that SWH retrieved by the CWAVE_ENV empirical algorithm 426 

have good agreements compared to reanalysis and forecast model with zero bias, 0.43 m and 427 

0.51m of RMSE and scatter index of 16% and 18% respectively. While for all the statistical 428 

parameters, results derived from CWAVE_ENV algorithm compared to the ECMWF 429 

reanalysis model have a better agreement than compared to the DWD model, although the 430 

differences of both comparisons are quite indistinct. A plausible explanation is that the 431 

CWAVE_ENV algorithm is tuned by the ECMWF reanalysis model. In extreme sea state, e.g., 432 

when SWH is higher than 10 m, CWAVE_ENV results have a trend lower than the ECMWF 433 



model, but higher than the DWD model. As the ECMWF model has been assimilated with the 434 

ASAR wave mode cross spectra (ESA Level1b products) using the MPI scheme, the DWD 435 

model gives a more independent comparisons.  436 

 437 

 438 
                                     (a)                                                                      (b) 439 

Figure 6. Scatter Plot of SWH derived by CWAVE_ENV compared to the ECMWF 440 

reanalysis Model (a) and the DWD forecast model (b) 441 

 442 

Wave height H12 and Tm02 measurements are not available from the provided DWD model. 443 

Results derived from the CWAVE_ENV algorithm for these two parameters are only 444 

compared to the ECMWF reanalysis model, as shown in Figure 7 (a) and (b).  Scatter index of 445 

Wave height H12 comparison is somehow higher to 30% while the bias still remains very low 446 

to 3 mm. Tm02 comparison has the results for scatter index 8% and RMSE is 0.6 s.   447 

In Table 3, statistics of three parameters derived from ASAR wave mode data as compared to 448 

model results are summarized. It is found that integral wave parameters given by 449 

CWAVE_ENV have nearly zero bias as compared to models. Tm02 has the best scatter index 450 

of 8%, while it has the highest bias of -0.05 s and RMSE of 0.59 s in the triple comparisons. 451 

 452 



     453 
                                     (a)                                                                        (b) 454 

Figure 7. Scatter Plot of wave height H12 (a) and Tm02 (b) derived by CWAVE_ENV 455 

compared to the ECMWF reanalysis model 456 

 457 

Table 3. Statistics obtained by the CWAVE_ENV algorithm vs. ECMWF model and DWD 458 

model for SWH (m), H12 wave height (m) and Tm02 (s) in January and February 2007. Bias is 459 

with respect to observations and SI indicates scatter index. 460 

 CWAVE_ENV vs. ECMWF model CWAVE_ENV vs. DWD model

Statistical  Para. Cor. Bias RMSE SI Cor. Bias RMSE SI 

SWH 0.93 -0.02m 0.43m 0.16 0.90 -0.05m 0.51m 0.18 

H12 0.92 -0.03m 0.34m 0.30 N/A 

Tm02 0.92 -0.05s 0.59s 0.08 N/A 

 461 

 462 

4.2 Compared to ESA WVW Level2 Products 463 

In the ENVISAT mission, ESA delivers the ocean wave spectra of Level2 Products WVW to 464 

the users. The data are provided on a log-polar grid with 24 wavelengths and 36 directions. In 465 



this section, WVW products performance is compared to the result of the CWAVE_ENV 466 

algorithm for SWH and H12 wave height.  467 

 468 

 469 
                                       (a)                         (b) 470 

Figure 8. SWH (a) and H12 (b) derived from ESA Level2 WVW spectra compared to 471 

CWAVE_ENV algorithm results 472 

 473 

Figure 8 shows the two comparisons for the different wave height of SWH and H12 as derived 474 

from WVW products and CWAVE_ENV algorithm. One can observe that for the sea state 475 

lower than 3 m, the WVW products are generally available to provide sea state measurements, 476 

though in many cases it cannot yield the successful spectra retrieval (as shown by the original 477 

point [0,0]). When sea state is higher than 4 m, a systematic underestimation of wave height 478 

estimated from WVW products is quite obvious. It is no surprise that the algorithm is limited 479 

to retrieve long wave information contained in the SAR image. 480 

Even if it is argued that the WVW spectra results are only available for the longer wave 481 

information resolved by the ASAR sensor, it still cannot provide reliable sea state 482 

measurements in many cases as shown for the H12 wave height comparison, which are in fact 483 

results for wave already longer than 220 m. 484 



5. Global Wave Parameter Statistics  485 

Knowledge of the global behavior climate of ocean surface waves, in terms of seasonal 486 

patterns and natural variability is of central importance to climate studies. The information 487 

used to study wave climatology comes mainly from two sources, i.e., (a) wave measurements 488 

and observations, and (b) wave models hindcast results. In situ measurements using wave 489 

buoys and shipborne wave recorders and visual observations from vessels participating in the 490 

Voluntary Observing Ship (VOS) scheme are the traditional data source for wave 491 

observations. Using the visual wave data along the major ship routes covering the period from 492 

1958 to 1997, the climatology of swell and windsea in global scale is derived [Gulev et al., 493 

2003]. 494 

Numerical wave models are playing an important role in wave climatology analyses. 495 

Numerous wave climatology studies, particularly regional climatology, are based on 496 

numerical wave model hindcast or reanalysis dataset, e.g., using the three wave model 497 

datasets spanning forty years, i.e., ERA-40 [Caires and Steal, 2003], WASA [WASA, 1993] 498 

and ODGP2 [Wang and Swail, 2001]. In general, all of these works show the similar wave 499 

climatology changes, e.g., compared to [Sterl and Caires, 2005] research, also the trend in 500 

SWH 99-percentiles of about 7 cm/year was found in North Atlantic in the study of  [Wang 501 

and Swail, 2001]. Another point of this 40-yr’s analysis of ODGP2 adds convincing support 502 

to the WASA group’s conclusion that “the northeast North Atlantic has indeed roughened in 503 

recent decades, but the present intensity of the wave climate seems to be comparable with that 504 

at the beginning of this century.” 505 

Satellite remote sensing, particularly like RA and SAR, as well contributes to global wave 506 

climate analysis, although the time span still only covers about 20 years. Concentrated on the 507 

combined monthly gridded data set from ERS-1, ERS-2 and TOPEX that provides continuous 508 

coverage of the period August 1991- February 2000, the pattern with the highest variability 509 

varying in time in a similar way to the NAO was found in [Woolf et al., 2002]. Using three 510 



years of reprocessed ERS-2 SAR wave mode data, global and zonal mean SWH variability is 511 

derived by [Koenig et al., 2007].  512 

In this section, global maps of mean SWH and Tm02 derived from ASAR wave mode data are 513 

used for global integral wave parameters statistics. A dataset from December 2006, January 514 

and February 2007 is used as demonstration for a compilation of a global wave statistical 515 

analysis. 516 

 517 

5.1 Significant Wave Height 518 

In Figure 9 a global map of SWH retrieved by the CWAVE_ENV algorithm from ENVISAT 519 

ASAR wave mode data is shown. In some coastal regions, where the antenna stations 520 

regularly acquire data in other modes (e.g., image mode with 100 km by 100 km), wave mode 521 

data are not available, and together with the wave mode acquired in both Polar Regions, they 522 

are indicated in black color in the map.  523 

It can be observed that in the North Atlantic and North Pacific, mean SWH is higher than in 524 

other oceanic basins. Particularly in the area between 40ºN and 60ºN and 0ºW to 50ºW region, 525 

due to seasonal storms in winter, the mean SWH is higher than 5 m. 526 

 527 

 528 



Figure 9. Mean Significant Wave Height in 1.5 by1.5 degrees boxes derived from ASAR 529 

Wave Mode Measurements 530 

 531 

5.2 Mean Wave Period 532 

Similar to the paragraph 5.1, a global map of mean energy wave period is compiled and 533 

shown in Figure 10. One can observe that the dominant wave period in the global ocean is 534 

around 9s. In the North Central Pacific, the distribution of wave period has approximately the 535 

same feature as the SWH shown in Figure 9. In the North Atlantic, one can observe that the 536 

high waves with average SWH higher than 5 m cover almost the entire region between 40°N 537 

to 60°N, while the wave period does not have the same feature but builds up continuousness 538 

towards the east. This shows that the North Atlantic as a fetch limited basin will steep waves 539 

towards west. High forward speed storm systems generate high waves which do not have 540 

enough space to become fully developed.  541 

 542 

 543 
Figure 10.  Mean Energy Wave Period in 1.5 by1.5 degrees boxes derived from ASAR Wave 544 

Mode Measurements 545 

 546 



The compiled two global maps are based on three months data, which is too short to derive 547 

global wave statistical properties. Further investigation using CWAVE_ENV empirical 548 

algorithm to derive the wave statistics will be spanned the entire era of ENVISAT mission.  549 

 550 

6. Case Studies 551 

Two case studies are investigated in this section, a severe storm that occurred in North 552 

Atlantic on Feb. 10th, 2007 and the La Reunion extreme swell generated by a distant storm in 553 

the south. Both cases are analyzed using measurements derived from model, double tracks of 554 

ASAR and RA-2 onboard ENVISAT satellite. With respect to the storm case, performances 555 

of different SAR retrieval algorithms in extreme wind sea state are validated by model results. 556 

In the La Reunion case study, we investigate ASAR measurements over a storm which 557 

generated the high swell through the entire Indian Ocean. Based on the empirical swell 558 

propagation law, the capability of ASAR wave mode measurements used an early alarm 559 

system is analyzed as well.  560 

 561 

6.1 North Atlantic storm event 562 

In the section, a North Atlantic storm event is investigated in detail by satellite measurements 563 

and DWD forecast model results. In Figure 11 (a) and (c) DWD forecast model results at 0:00 564 

and 12:00 UTC are shown in the background, on which double tracks of ASAR and RA-2 565 

onboard ENVISAT are superimposed. ASAR provides sea surface measurements in right 566 

looking way which is around 300 km away from nadir measurements of RA-2. At 0:00 UTC, 567 

the eastern track is the ASAR and it switches to westerly at 12:00 UTC.  568 

One can observe that there are two high wave systems moving northeasterly on Feb.10th, 2007. 569 

The eastern field showed SWH higher than 15 m given by the DWD forecast model at 0:00 570 

UTC and made its landfall on the western coast of North Europe at  about 12:00 UTC with 6 571 

m wave height. ENVISAT acquired data are over the western high wave system twice during 572 



around 12 hours, respectively between 00:14 to 00:30 UTC acquired in the ascending pass 573 

and 12:33~12:48 UTC in the descending one.  574 

SWH derived from satellite measurements and model forecast results through the western 575 

high wave system is further analyzed. SWH derived from ASAR using different algorithms 576 

and RA-2 along the ENVISAT tracks is represented with different colorful curves in Figure 577 

11 (b) and (d) for 0:00 UTC and 12: 00 UTC. With respective to ASAR algorithms used for 578 

SWH measurements, CWAVE_ENV empirical algorithm is shown in blue lines, nonlinear 579 

retrieval algorithm PARSA and WVW level2 products are shown in brown and yellow one 580 

respectively. The collocated DWD forecast results with ASAR track is plotted as well with 581 

pink line. 582 

Estimation of SWH derived from RA-2 Ku-band is used for comparison. It is represented by 583 

green lines in the plot and pink dashed lines used to denote its collocated DWD model. As 584 

RA-2 has the nadir footprints which are 300 km away with ASAR measurements, therefore 585 

the collocation measurements from is different with the ones collocated to ASAR track.  586 

One can observe that generally the both curve plots show that SWH derived from ASAR 587 

wave mode data and RA-2 has quite well agreement with forecast model when sea state is 588 

lower than 6 m. While in the high sea state, the differences are quite distinct. At 0:00 UTC, 589 

the ASAR track is near to the high wave system yielding the higher SWH, in which PARSA 590 

algorithm provides the highest value of 11.4 m while WVW has a large underestimation only 591 

with 5.7 m. The differences of ASAR algorithms to estimate SWH in high sea state is 592 

investigated in detail.  593 

ASAR wave mode data is acquired along the orbit every hundred kilometer as provides the 594 

sample measurements over sea surface. To avoid the high variations for SWH estimation 595 

using ASAR wave mode data in the high sea state, the averaging method is used. In the 596 

ascending pass of ENVISAT at around 0: 15 UTC, five data pairs of ASAR measurements 597 

and collocated DWD model located  in the region between 42.32°N  and 45.85°N which is 598 



near to the high wave system are linear averaged avoiding the effect of sampling of ASAR 599 

measurements. In the descending pass at around 12:40 UTC the area is chose as between 600 

43.47°N to 49.63°N where eight data pairs are located with all wave heights higher than 7.0 m. 601 

The averaged SWH measurements derived from different algorithms and collocated DWD 602 

model results for both tracks are given in Table 4. 603 

Table 4.  The averaged SWH estimated from different SAR algorithms and DWD model 604 

results in higher wave field for ascending and descending pass 605 

 CWAVE_ENV PARSA WVW DWD model 

Ascending Pass 

(at about 0:20 UTC) 8.5 m 9.6 m 5.7 m 8.4 m 

Descending Pass 

(at about 0:20 UTC) 10.9 m 11.4 m 5.1 m 10.2 m 

 606 

For the both tracks, one can observe that the CWAVE_ENV algorithm has capability to 607 

derive reliable sea state measurements even in the extreme sea state. However, the WVW 608 

products are not available to measure the high sea state. Even when the SWH is lower than 609 

5m, it has a positive bias than other algorithms and model results, particularly obvious in the 610 

descending pass as shown with the yield line in Figure 11 (d). Therefore, from this case study, 611 

one can conclude that the WVW has a substantial under estimation in high sea state and rather 612 

high estimation in low and moderate sea state. 613 

The PASAR algorithm in both tracks yields higher estimation than DWD model and 614 

CWAVE_ENV and moreover the positive bias increases significantly with sea state. The 615 

PARSA algorithm is implemented using the prior information from the ECMWF reanalysis 616 

model, in which the ASAR wave mode cross spectra information and RA measurements have 617 

been assimilated. Therefore, the PARSA algorithm might have an overestimation, which 618 

needs to be further validated. 619 



At around 12:35 UTC, the RA-2 track was very near to the high wave system and yields the 620 

highest SWH estimation to be 8.9 m, which is 2.9 m higher than DWD model forecast result.  621 

In this case, performance of different SAR algorithm to derive SWH in high sea state is 622 

investigated in detail, particularly to compare the CWAVE_ENV algorithm and the existing 623 

WVW Level2 products. It is observed that the CWAVE_ENV algorithm results in both passes 624 

match the DWD model well and show reliable measurements of SWH in different sea state.   625 

 626 

This case study gives the information that the CWAVE_ENV retrieved results are comparable 627 

to RA measurements quality and nonlinear retrieval approach while without using any prior 628 

information. Double tracks of ASAR and RA can be used jointly to validate the model 629 

performance as well for data assimilation under the condition that a suitable algorithm for 630 

SAR is adopted. In respect to the CWAVE_ENV algorithm, one issue needs to be further 631 

investigated is the performance in extreme sea state with extended dataset. 632 

 633 

      634 
                                (a)                    (b) 635 



            636 
                               (c)        (d) 637 

Figure 11. Comparison of significant wave height derived from DWD forecast model, ASAR 638 

wave mode data and RA-2 Altimeter data for North Atlantic Storm on 10 Feb. 2007. 639 

(a): DWD forecast model at 0:00 UTC superimposed with ASAR (eastern) and RA-2 tracks 640 

(b) SWH derived from ASAR track using different algorithms, RA-2 and collocated DWD 641 

model results at 0: 00 UTC 642 

(c) The same with (a) while at 12:00 UTC 643 

(d) The same with (b) while corresponding to the tracks acquired at 12:00 UTC 644 

 645 

6.2 Indian Ocean swells case 646 

On the evening of May 12th, 2007, a series of very high waves broke over La Reunion Island 647 

(21°S, 55°20’E) in the Indian Ocean. The waves did numerous damages, on La Reunion and 648 

neighboring islands; several people disappeared. Those waves (i.e., extreme swell with peak 649 

period up to 19.5 s) reached on May 12 maximum heights of 11.3 m and 6.4 m of significant 650 

wave height [Lefèvre and Aouf, 2008].  651 



The extreme swell is generated  by a heavy storm around 40°S, South of Africa as shown in 652 

Figure12 with wind (left panel) and wave field (right panel) derived from the DWD forecast 653 

model on May 10th, 2007 at 06:00 UTC. The storm engendered swell, which propagated 654 

through the Indian Ocean covering about 1000 km/day, going over the La Reunion. 655 

 656 

   657 
 658 

Figure 12.  Wind field and SWH of DWD forecast model on 10 May, 2007 at 06:00 UTC 659 

 660 

 661 

6.2.1 Extreme wave warning using ASAR Wave Mode data 662 

In Figure 13, SWH measurements derived from both tracks of ASAR wave mode data using 663 

CWAVE_ENV algorithm and RA-2 data are superimposed on collocated DWD forecast 664 

model results. Time difference between the ENVISAT track and the DWD model is around 665 

1.5 hour.  666 

Compared to Figure12, one can observe that the storm was moving toward northeast and 667 

spanned a quite large region. At around 19:45 UTC on May 11th, the highest waves measured 668 

by ASAR wave mode track is 9.2 m located at 32.2°S, 4.7°E. It can be identified that higher 669 

wave trains traveled to the northeast and arrived at La Reunion Island on May 12th at around 670 

16 UTC after traveling 1700~2000 km. With straightforward wave propagation relationships 671 

against traveling distance introduced in [Dietrich et al., 1975], about 5 m waves can be 672 



forecasted in Reunion Island at around 12:00~16:00 UTC on May 12th. This shows good 673 

agreement with in situ and reanalysis model, which yields 6 m [Lefèvre and Aouf, 2008].   674 

 675 

 676 
Figure 13. Significant wave height and swell direction of DWD model on May 11th, 2007 at 677 

21:00 UTC. Double tracks of ASAR wave mode (squares) and RA-2 (circles) at around 19:45 678 

UTC are superimposed. 679 

 680 

In this case, around 20 hours earlier the extreme swell arriving at Reunion Island can be 681 

forecasted by ASAR wave mode measurements derived from the CWAVE_ENV algorithm. 682 

The ASAR wave mode data also might be used as an extreme wave forecast tool. Together 683 

with the numerical forecast model, both can be used to validate each other and thus an 684 

extreme wave early warning system is possible.  685 

 686 

7 Conclusions 687 

An empirical approach referred to as CWAVE_ENV to estimate integral wave parameters 688 

from ASAR wave mode data without first guess information is presented in this paper. The 689 



empirical model function is tuned using globally distributed ASAR wave mode data and 690 

collocated ECMWF reanalysis model spectra. The tuning approach is implemented with 691 

stepwise regression method to select ASAR image parameters and the model parametric 692 

coefficients are derived by cost function minimization. 693 

Validation of the CWAVE_ENV algorithm is carried out by comparison against in situ buoys 694 

measurements, numerical wave model and ENVSIAT/ASAR WVW Level 2 products. Brief 695 

summary of the algorithm validation are given in following.  696 

(1) SWH retrieved from ASAR data compared to buoy in situ measurements show good 697 

correlation of 0.9, reasonable RMSE of 0.73 m and 0.25 for SI. Investigating the comparison 698 

of CWAVE_ENV algorithm in different sea state demonstrates that the algorithm has better 699 

performance in rough sea state (with SWH higher than 4.0 m)  than for SWH less than 2.5 m. 700 

(2) The performance for SWH, H12 wave height and Tm02 compared to the ECMWF reanalysis 701 

models is presented.  In respect to the wave height (SWH and H12) comparisons, 702 

CWAVE_ENV results have a low bias of -0.02 m and -0.03 m and RMSE of 0.43 m and 0.34 703 

respectively, while the wave period comparison shows the lowest SI of 8%. 704 

As the SAR independent dataset when compared to ECMWF reanalysis model, the DWD 705 

model compared to the CWAVE_ENV algorithm results therefore show more realistic results.  706 

Comparison results show that SWH derived by the CWAVE_ENV algorithm has a small 707 

negative bias of 0.05 m and SI of 18%. 708 

(3) CWAVE_ENV retrieved results of SWH and H12 are also compared to the ENVISAT 709 

ASAR wave mode Level2 products. The comparison results reveal that the existing Level2 710 

products strongly underestimate SWH and the measurements vary with the change of ASAR 711 

cut-off wavelength.  712 

Case studies:  713 

The results of the two case studies show that the CWAVE_ENV algorithm performs well, 714 

even in extreme sea state.  715 



In the North Atlantic storm event case study, SWH given by the double tracks of ASAR and 716 

RA-2 are compared to the DWD forecast model. All measurements derived from radar and 717 

models agree each other well along the orbit, but in the extreme high sea state in the storm 718 

there are distinct differences. CWAVE_ENV results agree well with DWD being around a 719 

half meter higher for sea state higher than 7 m. Both RA-2 and ASAR PARSA results are 720 

higher than SWH given by the model with bias more than 1 m in this extreme sea state. The 721 

ASAR level 2 products WVW show significant underestimation of wave height in the area of 722 

high wave systems.  723 

The analysis of the La Reunion case demonstrated that ASAR wave mode data can be used as 724 

forecasting tool for extreme waves when using the wave retrieval algorithm CWAVE_ENV. 725 

It might alternate another approach to construct a global extreme warning system. 726 

  727 

In spite of the overall good quality of integral wave parameters derived by CWAVE_ENV 728 

algorithm, the assessment is based on the dataset in three months period.  Therefore more 729 

investigations are needed by collecting in situ buoy measurements, cross over RA 730 

measurements to confirm its performance in high extreme sea state for further improvements. 731 

The algorithm will be implemented into the whole ENVISAT era since 2002 in the near 732 

future for validation and global sea state statistics.  733 

 734 

 735 

Appendix A: List of Buoys Used for CWAVE_ENV Algorithm Validation 736 

Name, latitude and longitude of buoys used for CWAVE_ENV empirical algorithm validation 737 

is given in Tab. A1. The positions of the buoys are shown in Fig. 2 in §2.3. 738 

 739 

 740 

 741 

 742 



Table A1. Name, Latitude and Longitude of buoys used for validation, corresponding to the 743 

red cross marks shown in Fig. 2  744 

Station Latitude Longitude Station Latitude Longitude
NODC_41001 34°44'N 72°41'W NODC_51001 23°26'N 162°13'W 
NODC_41002 32°19'N 75°22'W NODC_51002 17°11'N 157°47'W 
NODC_41009 28°30'N 80°10'W NODC_51003 19°13'N 160°49'W 
NODC_41010 28°57'N 78°29'W NODC_51004 17°31'N 152°29'W 
NODC_42001 25°54'N 89°40'W NODC_51028 0°01'S 153°52'W 
NODC_42002 25°10'N 94°25'W NODC_fpsn7 33°29'N 77°35'W 
NODC_42003 26°04'N 85°56'W NODC_46063 34°16'N 120°42'W 
NODC_42019 27°55'N 95°22'W NODC_46066 52°42'N 154°59'W 
NODC_42020 26°56'N 96°42'W NODC_46084 56°35'N 136°10'W 
NODC_42035 29°14'N 94°25'W MEDS_C44137 42°17'N 62°00'W 
NODC_42036 28°30'N 84°31'W MEDS_C44140 43°45'N 51°45'W 
NODC_42039 28°47'N 86°01'W MEDS_C44141 43°00'N 58°00'W 
NODC_42040 29°11'N 88°13'W MEDS_C44251 46°26'N 53°23'W 
NODC_44004 38°29'N 70°26'W MEDS_C44255 47°17'N 57°21'W 
NODC_44008 40°30'N 69°26'W MEDS_C44258 44°30'N 63°24'W 
NODC_44011 41°07'N 66°35'W MEDS_C46004 50°56'N 136°05'W 
NODC_44014 36°37'N 74°50'W MEDS_C46036 48°21'N 133°56'W 
NODC_44025 40°15'N 73°10'W MEDS_C46131 49°55'N 124°59'W 
NODC_46002 42°36'N 130°16'W MEDS_C46132 49°44'N 127°56'W 
NODC_46005 46°01'N 130°58'W MEDS_C46134 48°40'N 123°29'W 
NODC_46011 34°53'N 120°52'W MEDS_C46145 54°22'N 132°25'W 
NODC_46012 37°22'N 122°53'W MEDS_C46146 49°20'N 123°44'W 
NODC_46013 38°14'N 123°19'W MEDS_C46183 53°37'N 131°06'W 
NODC_46014 39°12'N 123°58'W MEDS_C46184 53°55'N 138°51'W 
NODC_46015 42°45'N 124°51'W MEDS_C46185 52°25'N 129°49'W 
NODC_46022 40°47'N 124°32'W MEDS_C46204 51°22'N 128°45'W 
NODC_46023 34°42'N 120°58'W MEDS_C46205 54°10'N 134°17'W 
NODC_46025 33°45'N 119°05'W MEDS_C46206 48°50' 126°00'W 
NODC_46027 41°51'N 124°23'W MEDS_C46207 50°53'N 129°55'W 
NODC_46028 35°44'N 121°53'W MEDS_C46208 52°31'N 132°41'W 
NODC_46029 46°08'N 124°31'W EUROP_41100 15°54'N 57°54'W 
NODC_46035 57°03'N 177°35'W EUROP_41101 14°36'N 56°12'W 
NODC_46042 36°45'N 122°25'W EUROP_62001 45°12'N 5°00'W 
NODC_46047 32°26'N 119°32'W EUROP_62029 48°42'N 12°30'W 
NODC_46050 44°38'N 124°30'W EUROP_62081 51°00'N 13°24'W 
NODC_46053 34°14'N 119°52'W EUROP_62105 55°24'N 12°24'W 
NODC_46059 38°02'N 130°00'W EUROP_62108 53°30'N 19°24'W 
NODC_46061 60°14'N 146°50'W EUROP_62163 47°30'N 8°24'W 

   EUROP_64045 59°06'N 11°42'W 
 745 

 746 

 747 

 748 

 749 



Appendix B: SAR Image Spectrum Estimation Using Periodogram Method 750 

A two-dimensional ASAR image with the size of xB  and yB  size in range and azimuth 751 

direction are divided into xnb and ynb subscenes respectively. The relation is given by,  752 

                                                   xxx nBnb = , yyy nBnb =                                               (B1) 753 

Where xn =256 and yn =512 are taken to be the subscene size used to divide the entire 754 

samples of xB  and yB  in range and azimuth direction. The two-dimensional FFT is 755 

performed on every subscene, i.e., normalized subscene G  (computed via (8)) with pixel size 756 

xn  and yn . 757 

                                                     ( )GfftF nynxG *=                                                                (B2) 758 

The power density spectrum for every subscene denoted by SP ,  759 

                                                            ( )2
GS FP =                                                                  (B3) 760 

Summing the subscenes power density spectrum and averaging to reduce the variance, the 761 

entire ASAR image spectrum P  is given by (12),  762 

                                                       ∑∗
= S

yx

P
nbnb

P 1                                                        (B4) 763 

The Fourier transform theory states that the integral of the image in the frequency domain 764 

equals to the image variance in the spatial domain. The Cartesian spectrum computed in step 765 

(12) needs to be normalized to ensure this case. The normalized ASAR image spectrum is 766 

denoted as P ,   767 

                                                ( ) 1* −∑ ∗∗= yx dkdkPPP                                                   (B5) 768 

In (13) xdk , ydk is the wave number spacing in ASAR image range and azimuth direction, 769 

given by, 770 

                                       )*(2 xxx dBdk π= , )*(2 yyy dBdk π=                                    (B6) 771 



xd , yd  is the pixel spacing in meters of ASAR image. 772 

The ASAR parameters to be used for the CWAVE_ENV model are then computed from the 773 

SAR image spectrum P  by projection onto the subspace spanned by the orthonormal 774 

functions, i.e., by computing the respective scalar products.                                            775 

                                          ( ) yxyxiyx dkdkkkhkkPS ∑= ),(,                                              (B7) 776 

where knni ϕ≤≤1  and ih  is the orthonormal functions and their exact forms are proposed in 777 

the CWAVE_ENV model.  778 
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