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ABSTRACT

Second- and third-order upstream nonoscillatory (UNO) advection schemes are applied on a spherical

multiple-cell (SMC) grid for global transport. Similar to the reduced grid, the SMC grid relaxes the Courant–

Friedrichs–Lewy (CFL) restriction of the Eulerian advection time step on the conventional latitude–longitude

grid by zonally merging cells toward the poles. Round polar cells are introduced to remove the polar sin-

gularity of the spherical coordinate system. The unstructured feature of the SMC grid allows unused cells to be

removed out of memory and transport calculations. Solid-body rotation and deformation flow tests are used

for comparison with other transport schemes. Application on the global ocean surface is used to demonstrate

the flexibility of the SMC grid by removing all land points and making possible the extension of global ocean

surface wave models to cover the Arctic in response to the retreating sea ice in recent summers. Numerical

results suggest that UNO schemes on the SMC grid are suitable for global transport.

1. Introduction

Transport is a physical process essential to all geofluid

models, including atmospheric and oceanic models, as

well as environmental tracer models. For global models,

the standard latitude–longitude grid has historically

been preferred for its simplicity and traditional mapping

convention. However, the latitude–longitude grid is as-

sociated with a well-known ‘‘polar problem’’ or polar

singularity, which is caused by the diminishing zonal grid

size toward the poles. The polar problem of the latitude–

longitude grid manifests itself in two effects on global

transport. First, the diminishing grid length at high

latitude exerts a rigorous time-step limit on Eulerian

advection schemes as they are subject to the Courant–

Friedrichs–Lewy (CFL) stability criterion, which requires

the flow distance within one time step to be less than

one grid length. The other effect is the singularity at the

poles due to the collapse of the directional dimension.

As a result, the conventional geophysical velocity (with

u denoting the zonal velocity component and y the me-

ridional) is no longer defined at the poles. The polar sin-

gularity is a purely mathematical problem; that is, it

does not represent a physical singularity. Nevertheless,

it prevents direct application of differential equations

and definition of directional variables at the poles.

There are various approaches to tackling the polar

problem in conventional latitude–longitude grids. One

approach is to use semi-Lagrangian (SL) schemes to

avoid the CFL restriction, as in Robert et al. (1985), Nair

and Machenhauer (2002), and Zerroukat et al. (2004).

Another is to zonally merge cells to increase the effec-

tive grid length for Eulerian schemes (Williamson and

Browning 1973). Both the expanded polar zone (Prather

et al. 1987; Li and Chang 1996) and reduced grid (Rasch

1994) techniques fall in the latter category. The reduced

grid is similar to the adaptive mesh refinement (AMR)

technique (Berger and Oliger 1984) except that only the

zonal grid size is varied in the reduced grid. Hubbard

and Nikiforakis (2003) use an AMR grid on the sphere

with a weighted-average flux (WAF) finite-volume ad-

vection scheme. Jablonowski et al. (2006) introduce a

block-structured AMR grid, which uses the reduced

grid in the polar regions. Each block resembles a regular

AMR grid, and different blocks are linked up through

boundary (ghost) cells.

A common feature of these reduced and AMR latitude–

longitude grids is the use of triangular cells around the

poles. Finite-difference advection schemes on these

latitude–longitude grids have suppressed the meridional

fluxes through the polar vertices of these triangular cells

because the face areas of these vertices are zero (e.g.,
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Rasch 1994). As a result, cross-pole transport is partially

blocked due to the omission of these polar fluxes. Imag-

ining each cell as a floating vessel, the advective trans-

port may be viewed as displacement of the vessel in the

flow direction from its fixed mesh position. For a crossing-

pole flow, the upstream triangular cell is moved over the

pole and it overlaps with all the fixed triangular meshes

around the pole. Its flux into each fixed triangular mesh

should then be proportional to its overlapping area with

the fixed mesh. This implies that the flux from the up-

stream triangular cell into the downstream triangular cell

directly across the pole should not be zero. This nonzero

flux is, however, unachievable by the finite-difference

scheme because fluxes between the opposite triangular

cells are through the triangular vertices and are always

zero. As a result, the triangular vessels can only turn

around the pole by the zonal fluxes into neighboring cells

as if there is a pin nailed at the pole to prevent the vessels

from crossing it. Some transport schemes based on re-

mapping the displaced cell, such as SL schemes, can sim-

ulate this cross-pole transport correctly and hence avoid

the partial blocking on these latitude–longitude grids.

There are also various approaches for avoiding the

polar problem that use nonconventional grids. These

include the finite-element method with unstructured

triangular cells (Hanert et al. 2004), the quasi-uniform

spherical grid with quadrilaterals (Sadourny 1972), the

geodesic grid with pentagons and hexagons (Lipscomb

and Ringler 2005), and the conformal octagon approach

(Purser and Rancic 1997). These nonconventional grids

involve irregular cell shapes, and transport on these

grids requires nonuniform interpolations and is known

to be more expensive than finite-difference schemes on

regular grids. The spherical grid proposed by Kurihara

(1965) is quite similar to the reduced latitude–longitude

grid. It relaxes the zonal cell size by gradually reduc-

ing the number of cells with increasing latitude. The re-

sulting cells are no longer aligned along the meridians, so

the finite-differencing has to be modified with non-

uniform interpolations. This quasi-uniform grid is used in

one ocean surface wave model (Janssen 2004). Kageyama

and Sato (2004) combine the standard latitude–longitude

grid with a perpendicularly rotated grid to replace the

polar regions in one grid with the tropical regions in the

other, resulting in a so called yin–yang (YY) grid. Links

between the yin and yang grids are achieved through

boundary conditions in their overlapping zones. Li et al.

(2008) demonstrated global transport on the YY grid with

a constrained interpolation profile–multimoment (CIP–

MM) advection scheme, which is a mixture of SL and

finite-volume methods.

In addition to the problem of polar singularities pre-

venting the definition of vector variables at the poles,

other difficulties in treating vector variables arise in the

latitude–longitude grid due to the increased curvature

of the parallels at high latitudes. For instance, in SL

schemes, it becomes difficult to trace the starting point in

the polar region. McDonald and Bates (1989) applied

rotated grids in the polar region to avoid this problem.

In ocean surface wave models, the wave energy spec-

trum is discretized into directional components relative

to the local east (Tolman et al. 2002). Each directional

component is stored in one directional bin and is treated

as a scalar; that is, the spectral component is transported

into the corresponding bin at the downstream grid point.

This scalar assumption is a good approximation at low

latitudes and is refined by a great circle turning term

poleward as ocean waves travel along great circles. How-

ever, it becomes erroneous at high latitudes since the

change of bin direction grows too large to be ignored if

a reduced grid is used. For instance, if energy from one

directional bin is propagated across the pole, its di-

rection will be completely opposite to that of the same

directional bin at the arrival point. The scalar assumption

prevents the extension of ocean surface wave models to

those portions of the Arctic Ocean that have been ex-

posed due to retreating of the sea ice in recent summers.

Dynamical models on reduced latitude–longitude grids

suffer from the same scalar assumption problem at high

latitudes if their horizontal velocity components are

defined relative to the local east and north. For instance,

on a reduced grid corresponding to a 64 3 128 latitude–

longitude grid, there are only 4 triangular cells around

each pole. The local east changes 908 from one triangular

cell to the next. This means that the meridional com-

ponent y in one triangular cell corresponds to the zonal

component u in the next triangular cell. Finite-difference

equations, which involve velocity components of neigh-

boring cells in a scalar equation, no longer hold at high

latitudes on the reduced grid. This is partially the reason

why the reduced grid is not popular in dynamical

models. Jablonowski et al. (2009) have concluded that

the enhanced errors in their dynamical model on a re-

duced grid ‘‘are mainly generated in the velocity com-

ponents in the polar regions due to the extreme curvature

of curvilinear coordinates near the poles.’’ This scalar

assumption problem at high latitudes should be solved in

a dynamical model before the model is implemented on

a reduced grid.

Apart from the polar problem, another drawback of

the conventional latitude–longitude grid for ocean sur-

face wave models is the waste of transport computation

on land points. Operational ocean surface wave models,

such as those used by Golding (1983), WAMDI Group

(1988), and Tolman et al. (2002), deal with hundreds of

wave energy spectral components at each grid point, and
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each component must be transported at a different speed

and direction. Although wave energy spectra are stored

only at sea points in order to reduce storage, on the lati-

tude–longitude grid they have to be expanded to the full

grid (both sea and land points) before the transport cal-

culation can be carried out with finite-difference advec-

tion schemes. At the end of the advection calculation,

spectra at land points are discarded from memory to re-

duce storage. These expansion–compression operations

and advection calculations at land points waste quite a

lot of computing time in ocean wave models. It is pos-

sible to suspend the calculation on land points by mask-

ing the land points (using an ‘‘if’’ statement, for instance),

but it will not help in parallelization as the processor load

is proportional to the number of grid points.

This paper presents global transport on a spherical

multiple-cell (SMC) grid adapted from the Cartesian

multiple-cell grid of Li (2003). The SMC grid relaxes the

CFL restriction at high latitudes in a fashion similar to

that of the reduced grid (Rasch 1994). Polar cells are

introduced to remove the polar singularity of the dif-

ferential transport equation by switching to an integral

equation. The SMC grid is an unstructured grid, but

finite-difference algorithms on a regular latitude–longitude

grid can be used directly on the SMC grid. Upstream

nonoscillatory (UNO) advection schemes (Li 2008) are

implemented on the SMC grid and tested with solid-

body rotation and deformation flows. Comparisons with

results from previous studies and on different grids are

attempted in these tests. Application of the SMC grid in

an ocean surface wave model is also included to dem-

onstrate its unstructured feature by removing all land

points. A remedy for the invalid scalar assumption of the

wave spectral bins at high latitudes is provided that en-

ables global wave models to be extended into the entire

Arctic Ocean.

2. Advection on SMC grid

In 2D spherical coordinates with latitude u and lon-

gitude l, the mass conservation equation, also called the

continuity equation, is given by

›c

›t
1

›(uc)

›x
1

›(yc cosu)

cosu ›y
5 0, (1)

where c is the concentration of the transported quantity,

t is the time, u and y are the zonal and meridional ve-

locity components, x and y are the local coordinates (x

eastward along the parallel, y northward along the merid-

ian), and dx 5 r cosu dl, dy 5 r du, where r is the radius

of the sphere. Since the length dimension is canceled out

in the final transport scheme on the sphere, the radius

can be set to any convenient value. For nondivergent

flows, Eq. (1) is equivalent to the advection equation.

For divergent flows, it differs from the advection equa-

tion by a divergence term. As velocity fields used for

advection tests are always assumed to be nondivergent,

Eq. (1) is frequently referred to as the advection equa-

tion. Also, note that Eq. (1) is equivalent to the Cartesian

mass conservation equation except that the meridional

differential term involves an extra cosine factor, which

renders the term undefined (singular) at the poles. Thus,

except for at the poles, the spherical continuity equation

can be approximated using finite-difference schemes sim-

ilar to ones used for the Cartesian continuity equation.

The only difference between the Cartesian and spherical

versions of these finite-difference schemes is that the

latter has an extra cosine factor.

Because the polar singularity is not a physical singu-

larity but rather is an artifact of the use of the spherical

coordinate system, it can be removed if the differential

Eq. (1) is replaced by its integral counterpart at the pole.

Here, this is achieved by first introducing a round polar

cell centered at the pole. Imagine the polar cell as a

round coin of unit thickness, and assume that there is no

flux crossing its top and bottom faces. Integrating Eq. (1)

over this polar cell yields

›

›t

ðð
A

P

c dA 5 �
þ

C
A

cv � ds, (2)

where AP and CA are the area and circumference of the

polar cell, respectively. The vector ds has a magnitude

equal to the side-length increment and a direction that

is outward and normal to the cell side. Assuming the

polar cell is surrounded by m cells in a discrete model,

Eq. (2) can be approximated as

cn11
P � cn

P 5 6
Dt

A
P

�
m

i51
c

i
*y

i
Ds

i
, (3)

where the superscript n is the time-step index, Dt is the

time step, c*i is the interpolated midflux value [see Li

(2008) for its definition], yi is the meridional velocity,

and Dsi is the side length for the ith cell side that borders

the polar cell. The sign in front of the r.h.s. of Eq. (3) is

chosen to be positive for the North Pole and negative for

the South Pole. Since finite-differencing assumes that

any flux entering one cell becomes uniform within the

cell in one time step, the polar cell will ensure instant

cross-pole transport regardless of the face through which

the flux enters the cell. So the polar cells have simulta-

neously removed the polar singularity in the continuity

equation and achieved full cross-pole transport. Equation

(3) is, in fact, a finite-volume formula, but it is broken
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down into individual fluxes in calculation with an equiv-

alent finite-difference code. For this reason, it is called

a finite-difference scheme.

This round polar cell approach is simpler than using

triangular cells in a reduced grid for cross-pole trans-

port. The fluxes entering the polar cells are calculated

with the same formulation as off-pole cell fluxes because

each polar cell is considered to be aligned along me-

ridians with its surrounding cells, and there is no need to

specify the velocity components at the poles for scalar

transport. If the polar cells are required to hold vector

variables such as the fluid velocity or the more compli-

cated 2D wave energy spectrum used in ocean surface

wave models, the directional vagueness at the poles has

to be removed. One approach for 2D wave spectral

transport across the Arctic will be discussed later.

The SMC grid is constructed in a similar way as the

reduced grid (Rasch 1994), that is, by zonally merging

cells above midlatitudes. The conventional latitude–

longitude grid is built with trapezium-shaped cells, which

share a constant meridional size Dy 5 rDu but have a

zonal size Dx 5 rDlcosu that varies with latitude. The

SMC grid is generated by zonally merging two cells into

one above the latitude where Dx becomes less than half

of the equatorial value Dx0 5 rDl. Thus, cosu1 5 ½ or,

equivalently, u1 5 608. Each merged cell above u1 5 608

latitude has a reduced zonal resolution of 2Dl (size 2).

Farther north, where the size-2 cell length 2Dx is less

than half of Dx0, the cells are zonally merged again to

4Dl (size 4), that is, above u2 5 arc cos(1/4) ; 75.58.

Generally, the kth size-changing parallel from size 2k21

to size 2k is located at uk 5 arc cos(½k) above the equa-

tor. For instance, the third size-changing parallel from

size 4 to size 8 is at u3 ; 82.88, and the fourth from size 8

to size 16 is at u4 ; 86.48. For a discrete model grid, each

size-changing parallel is rounded to the immediate grid

parallel above it.

Figure 1 illustrates the global SMC grid at Du 5 18 and

Dl 5 1.1258 resolution, which will be referred to as

the SMC 18 grid. The stereographic projection is from

(458N, 608W) so that both the polar and equatorial re-

gions are visible. Between 2608 and 608, there are 121

rows with 320 size-1 cells in each row (N1 5 121 3 320).

The size-2 cells range from 618 to 768 in the Northern

Hemisphere (16 rows), resulting in a total of N2 5 32 3

160 size-2 cells (including the Southern Hemisphere).

Notice that the cell centers are at integer latitudes, so

the first size-changing parallel is on the cell face at 60.58,

and the second size-changing parallel is at 76.58. The

size-4 cells range from 778 to 838, or a total of N4 5 14 3

80 cells. Farther north are three rows of size-8 cells (N8 5

6 3 40) and two rows of size-16 cells (N16 5 4 3 20),

delimited by the third size-changing parallel at 83.58, the

fourth at 86.58, and the fifth at 88.58. The last size-

changing parallel at 89.58 defines the polar cell, which

is a round cell of diameter equal to Dy centered at the

pole and surrounded by 10 size-32 cells (N32 5 2 3 10).

Note that the polar cells no longer obey the simple

doubling rule, as the zonal size decreases more than

twice within one latitude increment near the poles. In

fact, each polar cell merges 10 size-32 cells. The polar

cell area (0.25pDy2) is on the same order as the areas

of other cells (jDy2, where j varies from 0.5625 to

1.125). The total number of cells in the SMC 18 grid is

45 302, about 79% of that on the latitude–longitude grid

(180 3 320).

The apparent difference between the SMC grid and

the reduced grid (Rasch 1994) is the introduction of the

round polar cell in the SMC grid. The use of triangular

cells around the pole in the reduced grid could cause

partial ‘‘blocking’’ if the meridional fluxes at the pole are

suspended. The major difference between the SMC grid

and the reduced grid is the unstructured cell arrange-

ment of the SMC grid. Using the multiple-cell grid tech-

nique (Li 2003), the cells can be listed in any order, with

the freedom to add or to remove any cells as necessary.

A cell (index) array is created to hold information on

FIG. 1. The SMC 18 grid. There are 180 cells along a meridian and

320 cells along the equator. The cells are zonally merged in several

steps toward the poles, ending at each pole with a round polar cell.

Total number of cells is 45 302, about 79% of the standard grid

(180 3 320 cells). Cells centered on the equator are filled gray. The

dotted cells indicate the equatorial stripe of the initial spherical

step function used in the solid-body rotation test and the small

letter s on the equator marks the rotational south pole.
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the position and size of each cell in a given cell list. The

cell array is used to map a cell’s value onto the con-

ventional latitude–longitude grid or vice versa. It is also

used to guide cell-list-oriented loops. The rectangular

(or trapezoidal if the spherical curvature is taken into

account) cell shape is one major advantage of the SMC

grid over other unstructured grids such as the hexagon

cells used by the spherical geodesic grid (Lipscomb and

Ringler 2005) and the triangular cells used by finite-

element grids (Hanert et al. 2004). The rectangular cell

shape allows finite-difference schemes to be applied

directly to the SMC grid using the same stencil as on the

conventional latitude–longitude grid. It also allows for a

straightforward mapping onto the conventional latitude–

longitude grid. This straightforward mapping between

the two grids allows the two grids to be used together in

one model. For instance, in a climate model, the chem-

ical tracers may be transported on the SMC grid while

its wind field is solved by a dynamical core on the stan-

dard latitude–longitude grid.

In this study, two UNO advection schemes of second-

(UNO2) and third- (UNO3) order accuracy (Li 2008) are

implemented on the SMC grid. They are derived by

combining existing advection schemes in different mono-

tonic regions. UNO2 is an extension of the MINMOD

scheme (Roe 1985). In the UNO2, the interpolated value

at the midflux point for a given cell face is given by

cMF
j11/2 5 c

C
1 0.5 sgn(cD � c

C
)(Dx

C
� u

j11/2j jDt)

3 min( G
DC

�� ��, G
CU

�� ��), (4)

where j 1 ½ is the cell face index; the subscripts U, C,

and D indicate the upstream, central, and downstream

cells, respectively, relative to the given j 1 ½ cell face

velocity uj11/2; DxC is the grid length of the central cell;

and GDC (or GCU) is the gradient of the transported field

between the D and C (or C and U) cells [i.e., GAB [

(cA 2 cB)/(xA 2 xB)]. UNO3 follows the ULTIMATE

QUICKEST scheme (Leonard 1991) in using a third-

order scheme (Takacs 1985) as its central part but re-

places the flux limiters in ULTIMATE QUICKEST with

a doubled MINMOD scheme. UNO3 switches to UNO2

outside the monotonic region. An advective-conservative

hybrid operator (Leonard et al. 1996) that reduces the

time-splitting error is used to extend the UNO schemes

to multidimensions. Details of the UNO schemes are

given in Li (2008) alongside standard numerical tests,

which demonstrate that the UNO schemes on Cartesian

multiple-cell grids are nonoscillatory, conservative, shape

preserving, and faster than their classical counterparts.

As the UNO schemes are given in upstream-center-

downstream (UCD) notation, their implementation on

the SMC grid requires information from two cells on

each side of a given cell face for evaluation of the

face flux. The neighboring cell information can be pre-

processed with the aid of the cell array and stored in a

face array, which serves as a set of pointers to link the

face flux to its UCD cells. The advection flux is then

evaluated in a loop controlled by the face array. Cell-

face widths are included in the flux evaluation to ac-

commodate the variations in cell size with latitude.

No interpolation for meridian alignment is required

on the SMC grid even for fluxes across size-changing

parallels. Each merged cell is considered to be two iden-

tical subcells of the premerging size, and its value is used

directly in the flux calculation as if its cell center is still

aligned along the meridian with the cells on the other

side of the size-changing parallel. This is also true for the

calculation of fluxes into (or out of) the polar cells as

each polar cell is aligned along meridians with its sur-

rounding cells. A temporary variable is used to hold all

fluxes (or net flux) into a given cell before all flux eval-

uations are completed. Cell values are updated in a sep-

arate cell loop with the net flux variables. As a result,

the two fluxes into the same merged cell above a size-

changing parallel are automatically added up when the

cell value is updated. This also makes the update of each

polar cell blend in smoothly with the updates of off-pole

cells except for its unique cell area and the net sum of y

fluxes given in Eq. (3). So the finite-volume fluxes entering

the polar cells or crossing the size-changing parallels have

been converted into equivalent finite-difference codes.

The zonal cyclic boundary conditions used in the global

latitude–longitude grid are naturally incorporated into

the face array. The southern and northern boundaries

disappear in the SMC grid because they have been in-

corporated into the polar cells. So the global transport

of a scalar variable on the full global SMC grid does not

need any boundary conditions. This is an advantage for

optimization.

3. Solid-body rotation tests

A solid-body rotation velocity field is used to dem-

onstrate advection on the SMC 18 grid. Assuming the

rotational pole is at longitude lP and latitude uP and the

constant angular speed is v, the zonal and meridional

velocity components (u and y) of this solid-body rotation

flow are given by

u 5 vr[cosa cosu� sina sinu cos(l� l
P

)],

y 5 vr sina sin(l� l
P

), a [ p/2� u
P

. (5)

The angular velocity v is set to 108 h21, equivalent to a

rotation period of 36 h. The time step is set to 150 s and
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the maximum Courant number is about 0.754. A full

cycle around the sphere then takes 864 time steps.

The initial condition is a spherical step function (SSF),

which is constructed by setting all cell values to 1.0 unit

except for cells within a 208-wide stripe along the equa-

tor. Cells within this stripe are initially set to 5 units and

are marked by dots in Fig. 1. The rotational pole is chosen

on the equator (uP 5 0 or a 5 p/2) at lP 5 p, and the

small letter s in Fig. 1 marks the rotational south pole.

The initial SSF field is shown in Fig. 2a (t 5 0 h) with

exactly the same stereographic projection as in Fig. 1.

The SSF range is indicated by the maximum (Cmx 5 5.0)

and minimum (Cmn 5 1.0) cell values printed in the

panel’s lower-left corner. The color keys have 40 levels

per unit (total 256 levels) or a resolution of 0.025 units.

Each cell value is displayed by rounding it to the nearest

color level. Because the initial SSF consists of only two

values (the 1-unit background and the 5-unit stripe), it is

displayed in two colors in Fig. 2a. The SSF is used as part

of the initial conditions because its sharp edges are very

sensitive to numerical oscillations. In this spherical solid-

body rotation test, the circular stripe sweeps over the full

FIG. 2. Solid-body rotation of an SSF using the UNO3 scheme on the SMC 18 grid. The same viewpoint as in Fig. 1 is

used in all panels. The rotational pole is on the equator and the rotation angular speed is 108 h21.
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sphere. Thus, any oscillations generated by the UNO

schemes and/or the presence of the size-changing par-

allels will become immediately apparent.

Figure 2b shows the solid-body rotation result with the

UNO3 scheme after t 5 3 h or 308 rotation. The obvious

differences from the initial conditions (Fig. 2a) are the

rounded edges of the stripe. The initial sharp edges have

been smoothed by the numerical diffusion, resulting in

a continuous transition zone from the stripe top (5 units)

to the background (1 unit). This transition zone is illus-

trated by the intermediate colors between 1 and 5. Note

that the maximum and minimum values are now 5.007

and 0.9962 units, indicating a very small oscillation gen-

erated by the UNO3 scheme on the SMC grid. This is

likely the result of the distortion of the cell shapes from

rectangular due to the spherical curvature. In fact, close

examination reveals that the oscillations are associated

with the stripe edges and reach a local maximum when

the edges are rotated to high latitudes. This can be fur-

ther illustrated by the t 5 9 h result (Fig. 2c) when the

initial stripe has been rotated 908 to cover the poles. The

maximum value is 5.014 units at this time, the largest

value in the whole test. The polar cells are in the middle

of the stripe after the 908 rotation, and their values are

very close to those of the 20 cells surrounding them. This

indicates that the SSF passes through the size-changing

parallels and the polar cells smoothly.

Figure 2d shows the solid-body rotation result after

one full cycle at t 5 36 h or N 5 864 steps. The maximum

and minimum values (5.005 and 0.9969) indicate that the

small oscillation at the stripe edges persists but is smaller

than when the stripe crosses the pole (Fig. 2c). By this

time, the stripe has returned back to its initial position,

and it is apparently identical to the initial conditions

(Fig. 2a) except for its rounded edges. Direct compari-

son of this result with the initial SSF can reveal the

quality of the UNO3 advection on the SMC grid. Fol-

lowing Williamson et al. (1992), a normalized root-mean-

square (NRMS) error is defined as

NRMS 5 �(cn
i � c ref

i )2A
i

�(c ref
i )2A

i

. i
1/2

,

h
(6)

where the summation is over all cells, Ai is the area of

the ith cell, and cref is a reference field. For this SSF

rotation test, the reference field is simply chosen to be

the initial SSF or c0. The SSF one-cycle NRMS error on

the SMC 18 grid with the UNO3 scheme is 0.1610 (Fig. 2d).

Using the UNO2 scheme on the SMC 18 grid for ro-

tation of the same SSF shows a very similar result except

that the smoothing is slightly stronger than for the UNO3

scheme. Table 1 compares the NRMS errors generated

by the UNO2 and UNO3 schemes on the SMC 18 grid for

up to 3 cycles and their total CPU times. The SSF 1-cycle

NRMS error for UNO2 is 0.2127, larger than that for

UNO3 (0.1610). Both schemes have their largest error

increments in the first cycle and slightly increased ones

in the subsequent 2 cycles. The slowing down of the

smoothing by the advection scheme is described as self-

limiting (Allen et al. 1991) because the implicit numer-

ical diffusion is less effective on a smoothed field than

on the initial step discontinuity. In fact, the NRMS for

the UNO3 scheme remains as little as 0.1763 and 0.1857

for the last 2 cycles (Table 1), corresponding to about

a 10% and a 5% increase, respectively. The NRMS for

the UNO2 scheme increases by about 15% and 5% for

the last two cycles. The CPU times listed in Table 1 are

for 3 cycles (2592 time steps) on a desktop machine (Dell

Precision T3500) without any output writing. So they

reveal the net calculation time using the two schemes,

respectively. The UNO2 scheme is about 30% faster

than UNO3. Considering this 30% CPU time reduction,

the small loss of accuracy by UNO2 is worthwhile, es-

pecially if smoothing is required, as for example the

horizontal diffusion in ocean models (Killworth et al.

2003) and the smoothing term in ocean wave models

(Tolman et al. 2002).

The SSF rotation test is also used to compare trans-

port on the SMC grid with transport on the standard

latitude–longitude and reduced grids. The standard

latitude–longitude 18 grid has 180 3 320 (557 600) cells

with 320 triangular cells around each pole. The reduced

18 grid is identical to the standard 18 grid below 608 lat-

itude and, like the SMC grid, merges cells zonally to-

ward the poles except for the last row of cells around

each pole. The reduced 18 grid uses 5 triangular cells

around each pole and has 44 990 cells in total. For com-

parison purposes, a new SMC grid is used and is made

identical to the reduced 18 grid except that it merges the

five triangular cells into a single round polar cell at each

pole. Thus, its total cell number (44 982) is 8 cells less

than that of the reduced 18 grid. Note that this new SMC

grid differs slightly from the SMC 18 grid shown in Fig. 1

and will be referred to as the SMC 18 b grid. Each polar

cell on the SMC 18 grid occupies only a half row. This half-

row shift makes each polar cell approximately as large as

its surrounding cells in area. Each polar cell on the SMC

TABLE 1. NRMS errors and CPU time for the solid-body rota-

tion test of the SSF using the UNO2 and UNO3 schemes on the

SMC 18 grid. Errors are given after each of 3 full cycles. CPU time is

for 3 full cycles. Maximum Courant number is 0.754.

N 5 864 N 5 1728 N 5 2592 CPU time (s)

UNO2 0.21267 0.24429 0.26980 6.212

UNO3 0.16096 0.17625 0.18574 8.847
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18 b grid, however, is 4 times as large as the SMC 18 grid

polar cell. The SMC 18 b grid shares exactly the same grid

mesh as the reduced and the standard 18 grids below 608

latitude so that exactly the same initial SSF stripe can be

used on all three grids. The rotation speed is kept at

108 h21, and the UNO3 scheme is used with all three

grids.

Results from the SSF rotation tests on the three grids

are listed in Table 2. Due to the CFL restriction, the time

step for the standard 18 grid has to be reduced to 3 s,

leading to a maximum Courant number of 0.849. The

number of time steps (NTS) required to complete one

cycle is increased to 43 200. A 2D-structured regular

grid code is used for the SSF rotation on the standard

18 grid. The structured code is verified by checking its

output every hour for 3 cycles. Then, all output is sup-

pressed for a one-cycle (43 200 step) CPU timing run.

This takes 228 s on a desktop machine (Dell Precision

T3500) and generates a one-cycle NRMS error of 0.169 05.

This corresponds to an average CPU time of 5.28 ms per

time step. The unstructured irregular-grid SMC code can

be applied on the standard grid by setting all cells to be

size 1. But it costs 289 s of CPU time, 26% more than the

regular grid version, due to the extra size factors and

grid-length divisions in the flux calculations.

The time step for the reduced 18 grid and the SMC 18 b

grid is set to 150 s, the same as that for the SMC 18 grid

(but 50 times longer than for the standard 18 grid),

leading to a maximum Courant number of 0.716 for the

same rotation speed of 108 h21. It then takes only 864

steps to finish 1 cycle. With the reduced 18 grid, this re-

quires only 3.215 s of CPU time. The 1-cycle rotation on

the SMC 18 b grid takes 3.169 s, even less time than that

for the reduced 18 grid. This is not a surprise because the

reduced 18 grid has eight more cells than the SMC 18 b

grid and uses the same unstructured SMC model code.

The one-cycle NRMS error of the rotated SSF on the

SMC 18 b grid is 0.164 57, slightly larger than that of the

reduced 18 grid (0.164 43). Despite the reduced spatial

resolution in the polar regions and the use of only a

fraction (;1.4%) of the CPU time, the SSF 1-cycle NRMS

errors on both the reduced 18 grid and the SMC 18 b grid

are still smaller than that on the standard 18 grid (0.169 05).

The average CPU time per step (3.721 ms for the reduced

grid and 3.668 ms for the SMC grid) is also smaller than

that for the standard grid (5.28 ms) because of the sub-

stantial reduction (;22%) in cell count. So both grids are

significantly more efficient than the standard grid without

sacrificing the accuracy of the scalar global transport.

Subtle differences among the three grids may be re-

vealed by close examination of the SSF at 908 rotation in

Fig. 3. The suppressing of meridional fluxes at the polar

vertices of the triangular cells on both the standard and

the reduced grids causes partial blocking of transport

across the Pole. This blocking effect is visible in Fig. 3a,

which shows the SSF field in the polar region at t 5 9 h

on the standard 18 grid. The blocking effect is revealed

by the dent in the SSF field downstream of the North

Pole. Some cell values (every 16th) from the top three

rows are presented in Fig. 3a to aid in the analysis. The

zonal index i runs from 0 to 319, and cells with i 5 80 are

located directly downstream of the North Pole. The i 5

80 cell values on the three rows immediately south of the

North Pole (4.997, 4.996, and 4.992) are smaller than

other cell values along these three rows.

The blocking effect is less obvious on the reduced

18 grid (Fig. 3b) than on the standard 18 grid due to the

former’s reduced resolution and hence increased im-

plicit diffusion. However, it is still evident in the printed

cell values. The second triangular cell (corresponding to

i 5 64–127 on the standard grid) has the smallest value

(4.911) among the five triangular cells on the top row.

The downstream cell values on the other two rows be-

have in a more ambiguous way, most likely because the

diffusion and oscillation have muffled the signal. This

implies that the blocking effect is of the same order as

the numerical diffusion.

The SMC 18 b grid results (Fig. 3c) have removed the

blocking. In fact, the third cell (corresponding to i 5 64

to 95 on the standard grid) of the 10 cells surrounding

the polar cell contains the maximum value (5.013) on the

full field. The third-row values behave ambiguously as in

the reduced grid case, although the field is smoother

than that of the reduced grid. However, the gain in ac-

curacy achieved on the SMC 18 b grid by replacing the

five triangular cells with the polar cell is almost canceled

out by the extra diffusion error due to the increased size

of the polar cell. If the polar cells are of a size similar to

other cells as on the SMC 18 grid, the NRMS error de-

creases to 0.160 96 (see Fig. 2d), smaller than for any of

TABLE 2. Comparison of the standard latitude–longitude, reduced, and SMC 18 grids for the SSF rotation tests with UNO3.

No. cells

in total Time step (s)

Max Courant

No.

NTS

per cycle

CPU time

per cycle (s)

CPU time

per step (ms)

NRMS after

one cycle

Standard 57 600 3 0.849 43 200 228.158 5.281 0.169 05

Reduced 44 990 150 0.716 864 3.215 3.721 0.164 43

SMC18b 44 982 150 0.716 864 3.169 3.668 0.164 57
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FIG. 3. (a)–(c) Comparison of the standard latitude–longitude, reduced, and SMC 18 b grids after 908 rotation of the

SSF with the UNO3 scheme.
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the three grids (see Table 2). Note that the white gaps

at size-changing parallels in Figs. 3b and 3c are plotting

artifacts (not the solution) due to projecting cells as

quadrilaterals, except for the polar cell in Fig. 3c, which

is mapped as a pentagon.

4. Classical spherical transport tests

A double-vortex deformation test and a cosine bell

solid-body rotation test are used here for comparison

with other spherical grid and advection scheme combi-

nations.

a. Deformation test

The nondivergent spherical deformation flow with two

symmetric vortices around rotated poles is adapted from

Nair and Machenhauer (2002). It is defined by the an-

gular speed v as a function of the rotated latitude, u9,

relative to its rotational pole as follows:

v(u9) 5 v
0

sinh b

b cosh3 b
, b [ 3 cosu9. (7)

Here, v0 is the maximum angular speed when b be-

comes 0 or at the rotational poles. To avoid division by

zero in the computer code, v is set to v0 if b 5 0. The

angular speed v has a minimum value of about 0.0085v0

on the rotated equator (u9 5 0). The deformation flow

is similar to the solid-body rotational flow except that

the angular speed varies with the rotated latitude. Note

that the simplified angular speed definition Eq. (7) is

independent of the sphere radius and is equivalent to the

original definition [combined Eqs. (35) and (36) in Nair

and Machenhauer (2002)]. The rotation speed peaks

at u9 5 6cos�1[sinh�1(
ffiffiffi
2
p

/2)/3] ; 677.328, or about 138

from the rotational poles.

For a given initial distribution c0(l9, u9) as a function

of the rotated coordinates, the exact solution at time t

generated by this deformation field is given by c0(l9 2

vt, u9). The following analytical solution has been rec-

ommended by Nair and Machenhauer (2002):

c(l9, u9, t) 5 1� tanh[0.6 cosu9 sin(l9� vt)]. (8)

The rotational pole is usually set apart from the grid pole

by using a rotated coordinate system. The deformation

velocity field [Eq. (7)] and the exact solution [Eq. (8)] can

be expressed in terms of l and u using the mapping from

the rotated to the original coordinate systems. Details of

this mapping are available in Ritchie (1987) or Nair et al.

(1999). For comparison purposes, this test will use the

recommended angular speed parameter v0 5 1.5
ffiffiffi
3
p

and

the rotational north pole at (lP, uP) 5 (p 1 0.025, p/2.2).

One difficulty in comparing results on the SMC grid to

previous studies that use the standard 64 3 128 latitude–

longitude grid (Nair and Machenhauer 2002; Zerroukat

et al. 2004) is the difference between the two grids in the

spatial distribution of the grid resolution. The standard

latitude–longitude grid has a much higher resolution in

the polar region than near the equator, while the SMC

grid has a balanced spatial resolution over the globe.

Thus, the polar resolution of the SMC grid would be too

coarse if it were to use the same equatorial resolution as

the standard 64 3 128 grid. Here, the comparison will be

based on grids with similar average resolution. For this

purpose, an SMC 28 grid is constructed by doubling the

grid length of the SMC 18 grid so that its total cell count

is close to that of the standard grid. The effects of spatial

resolution in the SMC grid can be studied by comparing

the two SMC grids. The SMC 28 grid is shown in Fig. 4b.

It has 160 cells along the equator (Dl 5 2.258) and 90

cells along a meridian stretching from the South to the

North Pole (Du 5 28). The SMC 28 grid merges cells

zonally in a similar way as the SMC 18 grid and also ends

with 10 cells around each polar cell. The cell count of the

SMC 28 grid is 11 142, about a quarter of the SMC 18 grid

(45 302). The cell count of the standard 64 3 128 grid is

8192, roughly 74% of that of the SMC 28 grid.

Figure 4a shows the analytic solution at t 5 0. This is

also used as part of the initial conditions for the simu-

lations. The range of the initial field is from 0.462 99 to

1.5370. All panels in Fig. 4 are viewed from (75.08N,

1.58E) in order to clearly show the polar vortex. The

rotational north pole at (81.8188N, 178.578W) is indi-

cated by the letter N. For the SMC 28 grid, the time step

is set to 0.04, and the maximum Courant number is 0.606.

The analytic solution at t 5 6 is shown in Fig. 4c, and the

simulated one with the UNO3 scheme on the SMC 28 grid

is shown in Fig. 4d. The two fields are in good agreement,

and this is confirmed by the small NRMS error (0.012 14),

evaluated with Eq. (6). This indicates that the UNO3

scheme on the SMC grid performs well for scalar transport

in this deformation flow. The transport across the size-

changing parallels (including the polar cells) is smooth, as

there are no visible oscillations along these parallels.

Figures 4e and 4f show the analytic and simulated

solutions to the deformation flow at t 5 6 with UNO3 on

the SMC 18 grid. In this case, the time step is set to 0.02,

and the maximum Courant number is 0.676. The in-

creased spatial resolution has led to improved accuracy,

as is evident by the reduced NRMS error (0.003 45). With

time, the analytic solution develops an increasingly fi-

nescale spiral structure that eventually passes beyond

the resolution of any discrete grid. The finescale struc-

ture will be smoothed out by the implicit diffusion of

the advection scheme, resulting in a simulated solution
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FIG. 4. (left) Analytic and (right) simulated solutions to the spherical deformation flow at t 5 6 with the UNO3

scheme on the (c),(d) SMC 28 and (e),(f) SMC 18 grids. (a) The initial conditions and (b) the SMC 28 grid. Note that

the rotational north pole (denoted by N) is offset from the grid North Pole by about 8.28.
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equivalent to the grid average of the analytic solution.

This kind of smoothing of the fine vortex structure is not

unique to the UNO3 scheme but is a limitation common

to all finite-difference schemes.

Using the UNO2 scheme on the SMC grids for this

deformation flow produces results that are very similar

to the ones using UNO3, the only difference being slightly

enhanced smoothing of the UNO2 solution. Table 3 lists

the NRMS errors with these two schemes. The NRMS

error with the UNO2 scheme on the SMC 18 grid at t 5 3

is 0.001 64, about twice that of the UNO3 value (0.000 79).

The NRMS error ratio of the two schemes is about the

same on the SMC 28 grid, though both errors increase as

resolution is decreased. The difference between the two

schemes becomes smaller with time because both solutions

eventually approach the same uniform field.

Also listed in Table 3 are some published results on

the standard 64 3 128 latitude–longitude grid using SL

schemes. These are the Semi-Lagrangian Inherently Con-

serving and Efficient scheme for transport on a Sphere

(SLICE-S) and BiCubic-SL schemes of Zerroukat et al.

(2004, hereafter ZWS04) and the mass-conservative Cell-

Integrated Semi-Lagrangian scheme without any filter

(CISL-N) of Nair and Machenhauer (2002, hereafter

NM02). The UNO3 scheme on the SMC 28 grid can

match the SL schemes in this test and can produce a

more accurate result on the SMC 18 grid. In fact, the

UNO2 scheme on the SMC 18 grid also outperforms the

SL schemes on the standard 64 3 128 grid. It should be

emphasized that the average spatial resolution of the

SMC 28 grid is slightly higher than that of the standard

64 3 128 grid, so the results are not fully comparable.

They should not be interpreted as a claim that the

UNO3 scheme is more accurate than the SL schemes.

On the contrary, these SL schemes are more accurate

than the UNO3 scheme, as will be demonstrated in the

cosine bell test below. The advantage of using the UNO

scheme on the SMC grid is its simplicity.

b. Cosine bell rotation

The solid-body rotation of a cosine bell recommended

by Williamson et al. (1992) is widely used by modelers

for global transport scheme assessments. The cosine bell

definition is rewritten to be independent of the sphere

radius as

c(l, u) 5 h
0
[1 1 cos(3pg)], if g , 1/3

cosg 5 sinu
C

sinu 1 cosu
C

cosu cos(l� l
C

) , (9)

where h0 is half the bell height and uC and lC are the

latitude and longitude of the bell center, respectively.

Outside the bell edges defined by g 5 1/3, the bell func-

tion c(l, u) is set to 0. By tracing the bell center with

time, Eq. (9) yields the exact solution to the rotated

cosine bell at any given time. The three velocity fields

recommended by Williamson et al. (1992) are given by

Eq. (5) with the rotational pole at lP 5 p and a 5 p/2,

p/2–0.05, and 0.0, respectively. The initial bell center is

positioned on the equator at 908W or (l0, u0) 5 (3p/2, 0).

The original recommended rotation period is 12 days,

but 36 h is used here (v 5 108 h21). As time is a relative

quantity in an advection test because it is canceled out

by the time in the rotation speed during the evaluation

of the Courant number, a large rotation speed can be

compensated by a reduced time step. This will not affect

the simulation results as long as the same Courant num-

ber is used. The time step is maximized for each test with

the restrictions that 1 h is a multiple of the time step (for

output at every hour) and the maximum Courant number

is less than 0.9, which is used by Hubbard and Nikiforakis

(2003, hereafter HN03). The maximum Courant number

and time step for each test are listed in Table 4.

Figure 5a shows the exact cosine bells at three times

(t 5 5, 9, and 36 h) mapped onto the SMC 28 grid for the

a 5 p/2 case. Since the cosine bell returns to its initial

TABLE 3. NRMS errors for the spherical deformation flow using the UNO2 and UNO3 schemes on the SMC 18 and 28 grids. NRMS

errors by other authors (NM02 and ZWS04) are also listed here but only as an approximate guide; the tests are not directly comparable due

to differences in grid resolutions and between the Eulerian and semi-Lagrangian schemes.

T 5 3 T 5 6 T 5 9 T 5 12

SMC 18 UNO2/UNO3 0.001 64/0.000 79 0.009 26/0.003 45 0.021 23/0.012 13 0.029 74/0.021 93

SMC 28 UNO2/UNO3 0.004 40/0.002 23 0.018 88/0.012 14 0.030 88/0.025 05 0.039 14/0.033 37

SLICE-S (ZWS04) 0.002 56 0.011 47

BiCubic-SL (ZWS04) 0.001 83 0.014 23

CISL-N/P (NM02) 0.0025

TABLE 4. Maximum Courant number Comax and time step Dt (s)

used in each cosine bell test on the SMC 18 or SMC 28 grid. The

angular speed v 5 p/18 h21 is fixed for all tests.

a 5 p/2 a 5 p/2–0.05 a 5 0

SMC 18Comax (Dt) 0.754 (150) 0.758 (150) 0.889 (360)

SMC 28Comax (Dt) 0.789 (360) 0.794 (360) 0.889 (720)
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FIG. 5. (left) Exact and (right) simulated solid-body rotation (a 5 p/2) of a cosine bell on the (top) SMC 28 and

(middle) SMC 18 grids with the UNO3 scheme and (bottom) error norms.
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location after a full cycle, the bell at t 5 36 h is identical

to the initial one (bottom bell in Fig. 5a). The bell height

is scaled by the constant, h0, which is canceled out in the

NRMS expression Eq. (6). So the absolute value of h0

does not affect the normalized errors. For comparison

purposes, the value of h0 5 500 units is chosen to be the

same as in the standard test of Williamson et al. (1992).

There are 250 color levels from the bell base (0) to its

peak (1000 units) at 4-unit intervals. There are also

3 color levels below the 0 background and 2 levels above

the maximum bell height to accommodate numerical

oscillations, if any. Each cell value is rounded to the

nearest color except for the 0 background (between 62

units). Cells with values in this 0-background range are

not colored in, allowing the grid underneath to be seen.

This is done to make it easier to pinpoint the location of

the bell with time.

The number of colored cells (Ncl) within an angular

radius of g 5 1/3 for each of the three exact bells is shown

in the top-right corner of Fig. 5a. The initial bell (or t 5

36 h) has 247 colored cells. The cosine bell after a 508

rotation (t 5 5 h) strides two cell-size zones and dem-

onstrates the crossing of a size-changing parallel. Be-

cause of the decreasing zonal grid length, the bell covers

more cells (337) here than at its initial position. After

a 908 rotation (t 5 9 h), the center of the bell arrives at

the North Pole. The number of colored cells increases

to 371, about 50% more than the initial value (247). This

increase reflects the fact that, despite the cell merging

at high latitudes, the resolution of the SMC grid is still

higher in the polar region than on the equator. This is

not a surprise because the actual size of any merged cell

does not exceed that of one equatorial cell on the SMC

grid.

Figure 5b shows the simulated cosine bells after 508,

908, and 3608 rotations (a 5 p/2) with the UNO3 scheme

on the SMC 28 grid. Comparing these to the exact so-

lutions on the left, it can be seen that the simulated bells

are similar to the exact solutions except for their re-

duced peaks and enlarged bell edges due to the implicit

numerical diffusion in the advection scheme. The min-

imum and maximum (bell peak) values of the simulated

bell are listed in the bottom-left corner of Fig. 5b. The

peak is reduced by about 17% (Cmx 5 835 unit) from

the initial 1000 units after one cycle. There are also very

small oscillations as the minimum values (Cmn , 10236

unit) indicate. The NRMS errors for UNO3 on the SMC

28 grid are listed in the bottom-right corner of Fig. 5b.

The full cycle NRMS for this case is 0.1122.

The enlarged area of the simulated bell is indicated by

the total number of colored cells, as shown at the top-

right corner of Fig. 5b. After a full rotation, the number

of colored cells increases to 312, equal to a 26% increase

from the initial value (247). The 508 rotation result

(middle bell) shows that the transport across the size-

changing parallel occurs smoothly. The 908 rotated cosine

bell on the North Pole illustrates well the asymmetry of

the numerical diffusion. The simulated bell has 32 ex-

tra colored cells along the front and rear edges, indi-

cating that the numerical diffusion is stronger in the

direction of the flow than in the cross-flow direction. This

is in agreement with the implicit diffusivity analysis of

Li (2008). In addition, the spatial resolution change also

contributes to the asymmetry. The bell center is initially

chosen to coincide with a size-1 cell on the equator so

that the bell is symmetrical. As it is moved to high lati-

tudes, the bell center no longer coincides with the

merged cells except when it is at the pole. This also re-

veals the fact that the ‘‘exact’’ solution is not exactly the

same at different positions due to the resolution change.

Figures 5c and 5d show the exact and simulated cosine

bells for the same test (a 5 p/2) with the UNO3 scheme

but on the SMC 18 grid. The increased accuracy is ob-

vious by visual comparison of the two panels and by the

extreme (min and max) and NRMS values. The 908 ro-

tated bell is nearly as round as the exact solution except

for 21 extra colored cells in the front. After a full rota-

tion, the total number of colored cells increases a mere

8%, from 961 to 1033. The initial peak value (1000 unit)

is reduced by about 5% (Cmx 5 946 unit) after one cycle

and the full-cycle NRMS error for the UNO3 scheme on

the SMC 18 grid is 0.0228. Note that the NRMS error

at 908 rotation (0.0358) is even larger than the full cycle

value. This reflects an extra error introduced by the

resolution disparity. Because the number of cells rep-

resenting the cosine bell varies with position on the

sphere (961 on the equator and 1531 at the pole), the

simulated bell is, in effect, being compared to different

‘‘exact’’ solutions at different positions due to the chang-

ing resolution.

The impacts of the spatial resolution on the NRMS

error are clearly revealed by the time series of the error

norms shown in Fig. 5e. The NRMS defined by Eq. (6) is

identical to the l2, one of three error norms used by

Williamson et al. (1992) and other authors. The other

two error norms are the normalized mean absolute error

(l1) and the normalized maximum absolute error (l‘).

For the cosine bell test, l‘ is the relative error of the bell

peak or within a grid box of the bell peak. Also, for

nonoscillatory schemes, the l1 error does not differ much

from the NRMS error. The NRMS error increases in the

first quarter cycle and reaches a local maximum at 908

rotation. The 908 NRMS value shown in Fig. 5d (0.0358)

is the local maximum NRMS value. After its 908 maxi-

mum, the NRMS error decreases to a local minimum

at about 1408 rotation. The error peaks again at 2708 and

MAY 2011 L I 1549



4508 as shown in Fig. 5e, indicating a period of 1808 ro-

tation. These periodic peaks of the NRMS error imply

that they are caused by the spatial resolution disparity

between the polar and equatorial regions. The resolu-

tion error disappears once the bell reaches a location

of the same resolution as its initial location (of 1808 ro-

tation period), resulting in a reduction of the NRMS

error.

Note that errors incurred by numerical diffusion never

decrease with time because diffusion is an irreversible

process. The NRMS error curve shown in Fig. 5e may be

interpreted as a superposition of the periodic resolu-

tion error and the steadily increasing diffusion error. In

subsequent cycles, the resolution error becomes less

prominent as the diffusion error accumulates and even-

tually exceeds the resolution error. The error time series

for the SMC 28 case (not shown) also has a peak at 908

rotation and decreases by a small amount after 908. But

the numerical diffusion on the SMC 28 grid is so large

that it exceeds the resolution error within one cycle. The

resolution disparity error is confirmed by another test

with the initial bell at the South Pole (SP test), again

with a 5 p/2. As in the previous test, the NRMS error

for the SP test peaks at 908 rotation (i.e., when the bell

is on the equator), and it reaches a local minimum when

the bell is near the North Pole. Subsequent rotations in

the SP test show 1808 periodic error peaks similar to

those in Fig. 5e except that the peaks correspond to bell

positions on the equator.

The error peaks caused by the ‘‘exact solution’’ dis-

cretized at different spatial resolutions should be avoi-

ded for the assessment of the simulation because they

are not real errors caused by the simulation. Error norms

are better evaluated at a resolution that is the same as

the initial one. So the 1-cycle error norms are good in-

dicators of the simulation errors. The 1-cycle (3608) er-

ror norms for the cosine bell tests are given in Table 5.

Since the UNO2 scheme is more diffusive than the UNO3

scheme, the errors for UNO2 are expected to be larger

than those for UNO3. This is confirmed by the error

norms for the two schemes on the SMC 18 grid (second

and third rows in Table 5). The error norms for the

UNO3 scheme on the two SMC grids can be used to

assess the effects of spatial resolution. The errors on

the SMC 28 grid (fourth row) are obviously larger than

those on the SMC 18 grid (third row). Note that the

errors for the UNO3 scheme on the SMC 28 grid are

comparable to those for the UNO2 scheme on the SMC

18 grid, indicating that halving the grid length is nearly

equivalent to replacing the UNO2 with the UNO3 scheme.

Also listed in Table 5 are some published results: the

SLICE-S scheme (ZWS04), the weighted average flux

(WAF) scheme (HN03), and the positive-definite version

of the conservative cascade scheme (CCS-P) by Nair et al.

(2002, hereafter NSS02). Like the UNO schemes, the

WAF scheme (HN03) is a finite-volume scheme, while

SLICE-S (ZWS04) and CCS-P (NSS02) are SL schemes.

It has to be emphasized that the results from these three

schemes are not directly comparable to the SMC grid

results due to differences in grid resolutions and be-

tween the Eulerian and SL schemes. These results are

provided here only as an approximate guideline on the

quality of the Eulerian and SL schemes for the same

polar transport task.

Note that all three cited results are on the standard

64 3 128 latitude–longitude grid. Although this grid is

on average coarser than the SMC 28 grid, it has a much

higher polar resolution (over 2 times) than the SMC

28 grid. For instance, if the same cosine bell [Eq. (9)] is

mapped onto the standard 64 3 128 grid, its non-0 cell

number will be about 145 on the equator and 896 at the

pole (over 6 times). The SMC 28 grid has a much smaller

polar-to-equatorial ratio, 371/247 ; 1.5. Based on av-

erage resolution, the SMC 28 grid is quite close to the

standard 64 3 128 grid for comparison. As shown in

Table 5, all error norms of the UNO3 scheme on the

SMC 28 grid are smaller than the WAF ones except for

the l‘ in the a 5 0 case, where the UNO3 l‘ norm (0.0697)

is slightly larger than the WAF value (0.0572). The SL

schemes (SLICE-S and CCS-P) on the standard 64 3

128 grid perform better than the UNO3 scheme on the

SMC 28 grid, implying that they are more accurate than

the UNO3 scheme. However, higher accuracy may be

achieved by increasing spatial resolution. For instance,

TABLE 5. Error norms after 1 full cycle for the cosine bell rotation tests using the UNO2 scheme on the SMC 18 grid and the UNO3 scheme

on the SMC 18 and 28 grids. Error norms by other authors are also listed here but only as an approximate guide.

a 5 p/2 (l1, l2, l‘) a 5 p/2–0.05 (l1, l2, l‘) a 5 0 (l1, l2, l‘)

SMC 18 UNO2 0.1777, 0.1443, 0.1949 0.1777, 0.1451, 0.2055 0.0576, 0.0501, 0.0658

SMC 18 UNO3 0.0196, 0.0228, 0.0531 0.0201, 0.0233, 0.0600 0.0090, 0.0116, 0.0235

SMC 28 UNO3 0.1220, 0.1122, 0.1650 0.1211, 0.1124, 0.1777 0.0457, 0.0449, 0.0697

WAF-AMR (HN03) 0.1296, 0.1320, 0.1794 0.1298, 0.1308, 0.1792 0.0572, 0.0523, 0.0572

SLICE-S (ZWS04) 0.079, 0.049, 0.042 0.079, 0.048, 0.039 0.046, 0.029, 0.022

CCS-P (NSS02) 0.051, 0.041, 0.065 0.055, 0.043, 0.064 0.036, 0.034, 0.042
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the UNO3 scheme on the SMC 18 grid outperforms any

of the three published schemes on the standard grid as

measured by the NRMS error.

5. SMC grid for the ocean surface

The advantage of the unstructured SMC grid mani-

fests itself most clearly when some cells are removed

from the full global grid. A global ocean surface wave

model SMC grid is designed so that the size-1 cells are

exactly the same as the 40-km global latitude–longitude

grid (Du 5 0.3758 and Dl 5 0.56258) of one Met Office

ex-operational atmospheric model, which provided sur-

face wind forcing for the global wave model. As with the

previous SMC grids, the polar regions have been replaced

by merged cells, including a polar cell centered at the

North Pole. All cells on land have been removed as they

are not needed in the ocean surface wave model. Al-

though areas of ice-covered ocean surface are usually

treated as land in the wave model, here cells in the Arctic

region are retained for illustration. There are 167 944 sea

cells in total, which is about 55% of the cell count of the

conventional grid (480 3 640). This massive reduction in

cell count implies that, per time step, transport on the

SMC grid will cost much less than on the full latitude–

longitude grid. If the fact that a larger time step can be

used with the SMC grid is also taken into account, then

transport on the SMC grid will be even faster than on

the conventional grid.

Another feature of the SMC grid is the unification of

the boundary conditions with the internal flux evaluation.

Cell faces at the coastline are assumed to be bounded by

two consecutive empty (zero) cells. Thus, any wave en-

ergy transported into these zero cells will disappear, and

no wave energy will be injected out of these zero cells

into any sea cells. This convenient setup conforms to the

zero wave energy boundary condition at land points used

by ocean surface wave models (e.g., Tolman et al. 2002)

and allows all the boundary cell faces to be treated in the

same way as internal faces. If other boundary conditions

are to be used, the pointers to the cells just outside the

boundary cell faces must be changed accordingly. For

instance, the zero-gradient boundary condition can be

implemented by setting the pointer to the cell just out-

side the boundary face equal to the pointer to the cell

just inside the face. Predetermined boundary conditions

can be implemented by adding extra cells outside the

boundaries.

An additional benefit of using two consecutive zero-

boundary cells is the complete blocking of wave energy

by single-point islands. On a conventional grid, wave

energy can ‘‘leak’’ through a single-point island due to

the interpolation with neighboring sea points in transport

schemes that use a five-point stencil like the UNO

schemes. At SMC grid boundary faces, any single-point

island is extended into two zero cells beyond its bound-

ary face. As a result, wave energy cannot pass through

such islands with the UNO schemes, which use the UCD

cells for interpolation. Some small islands in the Medi-

terranean and eastern Pacific are visible as single-point

islands in the SMC 40-km grid shown in Fig. 6. Their

blocking effect is demonstrated in the following SSF ro-

tation test.

Here, the test is restricted to a single wave energy

spectral component, or a scalar variable. Each ocean wave

spectral component travels in a fixed direction (i.e., along

great circles) at a constant speed in deep water (over

;200 m). For demonstration purposes, the solid-body

rotation field defined in Eq. (5) with uP 5 0 and lP 5 p

will be used in the following ocean surface SMC grid

test. The rotational pole is on the equator in the middle

of the Pacific. The angular speed v is set to 108 h21 as in

the previous SSF rotation tests, but a smaller time step of

90 s is used. The maximum Courant number is 0.840.

A full cycle around the globe then takes 1440 time steps.

The SSF is applied with the initial conditions by setting

those sea points within a stripe 128 wide along the equator

to 5 units and the rest sea points to 1 unit. The initial SSF

conditions are shown in Fig. 6a, and the cell value range is

indicated by the minimum (Cmin 5 1.0) and maximum

(Cmax 5 5.0) values. The white regions represent land,

and small islands are clearly visible by contrast to the SSF

colors. The rotational poles are marked by the small N in

the Pacific and S in the South Atlantic on the initial

equatorial stripe. The N or S letter represents exactly one

cell size and is almost illegible on this scale. The same

color keys as in the previous SSF rotation tests are used.

Figure 6b shows the transported field after a 108 ro-

tation (t 5 1 h) with the UNO3 scheme. The dark

shadow (unfilled cells to show the grid mesh) down-

stream of coastlines indicate zero wave energy values as

no wave energy comes out of the coastlines. The com-

plete blocking of wave energy by islands is clearly visible

by the dark shadows downstream of them, including

those single-point islands. The edges of the raised stripe

are rounded down by the implicit numerical diffusion,

resulting in a transition zone in intermediate colors. Cell

values upstream of coastlines remain at their initial values

as wave energy transported into the coastlines simply

disappears (no reflection). The unclipped background

and the stripe’s top remain uniformly flat everywhere,

including in the Arctic. This result indicates that ad-

vection on the ocean surface SMC grid with the UNO3

scheme is smooth, including through the polar cell, across

the size-changing parallels, and into coastlines. Note that

the maximum value at t 5 1 h is slightly increased to
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FIG. 6. Solid-body rotation of the spherical step function with the UNO3 scheme on a global ocean surface SMC

40-km grid, including the whole Arctic Ocean. The rotational north pole is at 1808 on the equator (denoted by the

small N), and the rotation angular speed is 108 h21.
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5.002 and the minimum value is a small negative value of

24.248 3 1026. This is in agreement with the previous

results for the SMC 18 grid and confirms that the UNO3

scheme generates very small oscillations on the spherical

grid. These small negative values could be removed by

applying a simple positive filter. Such filters are used in

ocean wave models (Golding 1983; Tolman et al. 2002)

to ensure that wave energy remains nonnegative. These

filters can also be used for nonnegative fields in other

models.

Figure 6c shows the remaining SSF after a full cycle or

3608 rotation (t 5 36 h) with the UNO3 scheme on the

ocean surface SMC 40-km grid. By this time, most of the

initial SSF field has been clipped out by the coastlines,

leaving only one round disk on each hemisphere. For

this reason, it is no longer meaningful to evaluate the

NRMS error with reference to the initial conditions. The

surviving section of the stripe retains its initial value of

5 units except for the rounded edges. The eastern disk

(in the right panel of Fig. 6c) has passed through several

islands, incurring some grooves downstream of the is-

lands. As they rotate away from the islands, these grooves

are gradually filled up by numerical diffusion. The max-

imum value becomes 5.004 and the minimum value is now

0 at double precision (64 bits). So the small oscillation is

only about 0.1%. These results are satisfactory for ocean

surface wave energy transport.

A similar SSF rotation test has been performed with

the UNO2 scheme. The result is quite similar to the one

with UNO3 except that the numerical smoothing in the

UNO2 case is more prominent. This is manifested by

an enlarged transition zone at the unclipped stripe edges

and around the margin of the remaining disks. The

shadow grooves downstream of small islands are shorter

in the UNO2 case because of the enhanced numerical

diffusion. Nevertheless, the UNO2 scheme is accurate

enough for ocean surface wave models because a strong

explicit smoothing term, larger than the Dif2 implicit

numerical diffusion term described in Li (2008), is re-

quired in ocean wave models to control the so-called

garden sprinkler effect due to the discrete spectral di-

rections (Tolman 2002). The strong smoothing term

makes the final wave energy fields generated by the

UNO2 and UNO3 schemes almost indistinguishable.

Experience at the Met Office has shown that switching

to the UNO2 scheme from the ULTIMATE QUICKEST

third-order advection scheme (Leonard 1991) in the

WAVEWATCH III model (Tolman et al. 2002) has

saved about 30% in advection computing time without

any loss of accuracy in ocean wave energy transport.

If the SMC grid is implemented in this wave model,

further savings on advection are expected. So the UNO2

scheme on this SMC grid should be ideal for global

ocean surface wave models. The UNO3 scheme can be

used in models in which large numerical diffusion is not

required.

To extend ocean surface wave models to high latitudes,

one remaining difficulty is the local eastern reference

direction used to define the directional components of

wave spectra. The increased curvature of the parallels at

high latitudes renders the scalar assumption of the di-

rectional components invalid near the North Pole. The

zonal direction change of a given spectral bin becomes

too large to be ignored within one time step. The diffi-

culty stems from the choice of the local eastern direction

as the spectral reference direction. This is, however, not

necessary in the Arctic, and the problem can be solved

by simply introducing a fixed reference direction for the

Arctic region. The unstructured feature of the SMC grid

allows this to be done conveniently by using a different

reference direction in the Arctic region from the rest of

the model domain and linking the two regions with some

extra boundary cells. Numerical results confirm that the

SMC grid with a fixed reference direction in the Arctic

can be used to extend a global wave model to high lat-

itudes and can even include the North Pole (Li 2009).

The approach of using a fixed reference direction to de-

fine vector components in polar regions may also be ap-

plicable in dynamical models that use reduced grids.

This is, however, beyond the scope of this paper.

6. Summary and conclusions

Second- and third-order upstream nonoscillatory (UNO)

advection schemes are applied on a spherical multiple-

cell (SMC) grid for global transport. As with the reduced

grid, the SMC grid relaxes the CFL restriction on the

Eulerian advection time step on the conventional latitude–

longitude grid by zonally merging cells toward the poles.

Round polar cells are introduced to remove the sin-

gularity of the standard latitude–longitude grid at the

poles. The mapping between the conventional latitude–

longitude grid and the SMC grid is straightforward.

Spherical step function (SSF) rotation tests are used to

demonstrate global transport on the SMC grid and to

compare this with transport on the standard latitude–

longitude and reduced grids. Cosine bell solid-body ro-

tation and deformation flow tests are used to compare

the UNO schemes on the SMC grid with other transport

schemes. The unstructured feature of the SMC grid al-

lows unused (i.e., land) cells to be removed from the

advection calculation and from memory. Application of

the SMC grid on the global ocean surface is used to

demonstrate the flexibility of the SMC grid by removing

all land points, significantly reducing both memory and

computing cost in global ocean surface wave models. In
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response to retreating Arctic sea ice, a fixed reference

direction for definition of wave spectra at high latitudes

is recommended to extend ocean surface wave models

into the whole Arctic on the SMC grid.

Numerical results indicate that the UNO3 scheme on

the SMC grid is efficient for global transport. Although

it generates errors slightly larger than some advanced

semi-Lagrangian schemes at roughly the same spatial

resolution, its accuracy can be improved by increasing

the resolution. The SMC 18 and 28 grids are used to il-

lustrate the spatial resolution effect. The UNO2 scheme

is fast and accurate enough for models in which large

numerical diffusion is required, such as in ocean surface

wave models. The UNO schemes are easy to implement

on the SMC grid because this grid uses the same rect-

angular stencil as the conventional latitude–longitude grid,

allowing finite-difference schemes to be used directly. The

UNO schemes on the SMC grid are recommended for

global atmospheric and oceanic tracer transport.
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