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Cell merging and the jet/downwelling ratio 
in Langmuir circulation 

by Ming Lil and Chris Garrett1 

ABSTRACT 
The Craik-Leibovich equations for Langmuir circulation have been integrated numerically 

to investigate the cell merging process as well as the strength and structure of the cells. 
We find that pairs of counterrotating vortices cancel each other, leading to a growth in scale 

of the dominant vortices. However, when there is no external forcing, vortices of opposite sign 
do not merge irrespective of the vortex size and circulation strength. The merging of Langmuir 
cells, or rather the cancellation of counterrotating vortices, is thus different from the 
amalgamation of like-signed vortices in two-dimensional turbulence. The forcing due to the 
Stokes drift plays an important role in the cell-merging process. 

As the Langmuir number La decreases, the maximum downwelling velocity increases while 
the pitch (the ratio of surface downwind jet strength to the maximum downwelling velocity) 
decreases. When La is about 0.01, as for an eddy viscosity in the range of values commonly 
used for the ocean surface layer, the model predicts a maximum downwelling velocity of 0.006 
to O.OlU, (the wind speed), comparable with the observed magnitude. However, the surface 
downwind jet is significantly weaker than the observed strength. 

At small La a simple scale analysis, which couples a surface boundary layer with a narrow 
downwelling region, suggests that the thickness of these regions should vary as La112, the 
downwelling velocity as La-1/3 and the pitch as La1j6. These predictions are supported by 
numerical results. 

1. Introduction 

Langmuir circulation consists of a pattern of parallel vortices oriented downwind, 
of alternating sense of circulation or vorticity, and with maximum downwind surface 
current at the surface convergences. It may promote vertical mixing in the upper 
ocean (Langmuir, 1938; Pollard, 1977; Leibovich, 1983) and contribute to horizontal 
dispersion (Faller and Auer, 1988; Thorpe, 1992a,b), but its precise effects are still 
poorly understood (see Thorpe 1992a, b). 

Much effort has been devoted to explaining the generation of the Langmuir cells. 
In a series of papers Craik and Leibovich developed a model that now bears their 
name, the CL2 model (e.g. Craik and Leibovich, 1976; Craik, 1977; Leibovich, 1977b; 
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Leibovich and Paolucci, 1980, 1981). They argued that Langmuir cells are an 
instability associated with the interaction between the Stokes drift current and the 
wind-driven shear current. The CL2 instability mechanism consists of two indispens- 
able parts: the generation of streamwise vorticity and the reinforcement of the 
downwind jet. 

Leibovich (1977b, 1983) used the concept of vortex force to explain how a spanwise 
anomaly of downwind current creates streamwise vorticity. Suppose an infinitesimal 
spanwise irregularity u’(y, z, t) is present in an otherwise horizontally uniform 
current U(z, t). This produces vertical vorticity In, = -adlay and a horizontal 
vortex-force component -u,f2zj (u, is the Stokes drift) that is directed toward the 
plane of maximum u’. This causes an acceleration toward these planes, where, by 
continuity, the fluid must sink. The kinematic interpretation is that the vertical 
gradient of the Stokes drift tilts the vertical vortex line associated with the spanwise 
variation of the downwind current, thereby creating streamwise vorticity. 

The instability also requires a mechanism to reinforce the downwind jet. Leibovich 
and Paolucci (1980) argued that a water particle brought to the surface away from 
the surface convergence is accelerated by the wind stress as it is swept toward the 
convergence line (or the downwelling site), driving the jet there. This argument is 
physically plausible but ignores the friction exerted by neighboring water particles 
and cannot be applied at the center of the convergence zones where the cross-jet flow 
is zero. We shall demonstrate that on this line the water particle is accelerated by the 
wind because the viscous friction is greatly reduced. To summarize, the downwind jet 
at the water surface is reinforced because the water particle is accelerated by the 
wind stress as it is swept toward the convergence line and feels less viscous friction at 
the downwelling site. 

The merging of Langmuir cells has been observed frequently (Langmuir, 1938; see 
Leibovich (1983) for a review), and plays an important role in the horizontal 
dispersion of floating material or bubbles (Thorpe, 1992b). In recent experiments 
Weller and Price (1988) found that computer cards used as surface drifters are 
continuously drawn into longer lines separated by greater distances. Using sidescan 
sonar, Thorpe (1992b) observed that bubble bands with a relatively small separation 
have an apparent motion toward larger-scale, more persistent neighboring bands. 

It has been speculated (Faller and Auer, 1988) that the evolution of large 
Langmuir cells from small ones is analogous to the “inverse energy cascade” in 
two-dimensional turbulence. We find that unforced counterrotating vortices do not 
merge irrespective of the circulation strength and vortex size. Langmuir cells do grow 
in scale, however, when the forcing due to the Stokes drift is included. Thus the 
growth in scale of Langmuir cells through cancellation of opposite-signed vortices is 
different from the amalgamation of like-signed vortices in two-dimensional turbu- 
lence. 
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The CL2 model is self-consistent and is able to reproduce qualitative features 
observed in Langmuir circulation, but a detailed quantitative comparison between 
the model and observations appears to be lacking. In this paper two key quantities 
will be used to test the model prediction. One is the maximum downwelling velocity 
and the other is the pitch representing the ratio of the downwind jet strength to the 
maximum downwelling velocity. Weller and Price (1988) observed a downwelling 
velocity up to 0.3 m s-l with comparable magnitude for the downwind velocity. We 
shall show that, by adjusting the eddy viscosity, the CL2 model can account for the 
downwelling velocity, but the downwind jet predicted by the model is weaker than 
observed. 

2. Nondimensionalization 

Leibovich (1977a) averaged the Navier-Stokes equations on a time scale much 
longer than the surface wave periods and the turbulence time scale, and obtained the 
governing equations for Langmuir circulation. Ignoring density stratification, these 
are 

ali aa ati 
2 + ii Y + fi z = vJ2ii, 

ay 
ad aliz ati d& aii 
t+l++ti-g=VTv2ii-T~, 

ay dz ay 
b = VqJ, 
y = -g, ti = I&, 

in which ii, i;, @ are the downwind, spanwise and vertical velocity components, 
respectively, A is the streamwise vorticity and fi, is the Stokes drift current. This set of 
equations can also be derived (Leibovich, 1980) by using the generalized Lagrangian 
mean description of Andrews and McIntyre (1978). 

Four input parameters for Langmuir circulation are the friction velocity u * 
representing the wind stress applied at the water surface, the surface value 2S0 and 
e-folding depth 1/(2l3) of the Stokes drift current, and the eddy viscosity VT. In 
Leibovich’s original formulation, wave height and wave length of the dominant wave 
were chosen as the input parameters, but ocean surface waves have a broad 
spectrum, with no discernible peaks in fully developed seas. It would be difficult to 
select the dominant wave from the wave spectrum. According to Craik-Leibovich 
theory, however, what really matters in Langmuir circulation is the Stokes drift. 
Kenyon (1969) and Huang (1971) calculated the Stokes drift for random surface 
waves by using the directional wave spectrum and found that the Stokes drift current 
may be approximated by an exponential profile. We thus replace the wave param- 
eters with the surface value 2& and e-folding depth 1/(2l3) of the Stokes drift in our 
parameterization. 
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Nondimensionalization leads to the Craik-Leibovich equations 

where the nondimensionalized Stokes drift has the form 

us=2ea 

and the Langmuir number La is defined as 

(1) 

(2) 

(3) 

(4) 

The Langmuir number is thus inversely related to the Reynolds number and 
represents the ratio of viscous to inertial forces. It can be also interpreted as the ratio 
of the rate of diffusion of vorticity to the rate of production of streamwise vorticity by 
the vortex tilting accomplished by the Stokes drift. 

The boundary conditions at the surface are 

WY, 0, t) = *zz(Y, 0, t) = 0, (5) 

Uz(Y, f&t) = 1. (6) 

Dimensional and nondimensionalized quantities are related through the following 
formulae: 

($i, 

so -l/3 
-= - 

- 0 u* u* 
Lam213u, 

I+ so 1’3 = - 
u* ( ) u* 

La-l13(v, w), 

i so -l/3 

ll(u*P) = u* i i 
La l13t 

’ 

iI so 1’3 -=- 
i i u*P u* 

La-‘13R. 

(8) 

(9) 

It should be noted that there are two dimensionless parameters La and SO/u * in the 
model, but that SO/u * does not appear in the governing equations. 
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3. The friction velocity and Stokes drift 

To compare model predictions with observations, we need estimates of the water 
friction velocity, the eddy viscosity and the Stokes drift. The wind stress T, is related 
to the wind speed U,,, (typically measured at 10 m above the sea surface) through an 
empirical formula 

7, = P,wJ; (11) 

where pa is the air density and CD is the drag coefficient determined from experimen- 
tal observations. For wind speeds between 5 and 25 m s-l, CD increases with wind 
speed from 0.88 x 10e3 to 1.88 x lop3 (Smith, 1988). 

The net transfer of momentum to the current in the mixed layer is the wind stress 
less the local growth of surface wave momentum and the divergence of the surface 
wave momentum flux. Using the JONSWAP wave observations (Hasselmann et al., 
1973) Richman and Garrett (1977) found that 97% of the wind stress T, is 
transferred to the current; in fully developed seas, most of the momentum transfer is 
through wave breaking (e.g. Thorpe, 1992a). 

Assuming thus that all the wind stress goes to drive the current, the water friction 
velocity is 

U* =(~i”‘=(~cD)“‘uw 

= (i&to&) u,. 
(12) 

using typical values of CD. 
Huang (1971) derived a general formula for the Stokes drift for random surface 

gravity waves, 

iis = s k 2ukE(k)em21kk dk, (13) 

where u is the frequency, k is the wavenumber vector and E(k) is the directional wave 
spectrum. 

Using the empirical Pierson and Moskowitz spectrum 

E(U) = 1~g~(27r)-~a-~ exp [- $i’] 

for fully developed seas, we get 

z&(Z) = O.O16U, r+ exp [-0.7484fd4 + 2f2z*] df 

(14) 

(15) 
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in which 

Pl, 4 

and ti z* = - 
u2 w  

w-9 

with g being the gravitational acceleration. The cut-off frequency fc is chosen so that 
the first three significant digits of the Stokes drift current velocity remain the same 
even if fc is made higher. 

The surface Stokes drift is 

z&(O) = 2S,, = O.O16U,,,, (17) 

in agreement with Kenyon (1969). 
The effect of an angular spread in the wave spectrum would be to decrease the 

Stokes drift component in the principle direction of wave propagation. For example, 
for the symmetric spreading factor 

S(a) = cos* a for loll I r/2, 

the Stokes drift in the direction 01 = 0 is reduced by a factor 0.91 form = 4 and 0.85 
form = 2. Thus we have 

ii,(O) = 2so = (0.014 - O.OlS)U,. (18) 

Combining (12) and (X3), we have 

so - = 4.6 to 6.9. 
u* (19) 

The e-folding depth of the Stokes drift calculated from the Pierson and Moskowitz 
spectrum is found to be 

(20) 

One can express the eddy viscosity in terms of the Langmuir number as 

VT so 1’3 
- = - 

i 1 u*lP u* 

~~213 

= 0.077 to 0.088 for La = 0.01, 

= 0.017 to 0.019 for La = 0.001. 

With La = 0.01 to 0.001, the value of eddy viscosity compares favorably with the 
estimates given in Huang (1979). 

4. Spectral simulation 

In spectral methods the solution is expanded as a series of the basis functions (or 
trial functions) (e.g. Canuto et aZ., 1987). The test functions are chosen to ensure that 



19931 Li & Garrett: Effects of Langmuir Circulation 743 

the differential equation is satisfied as closely as possible by the truncated series 
expansion. We shall adopt a Fourier Galerkin method in our model, in which both 
the trial functions and the test functions are chosen to be Fourier series. 

The stress boundary condition (6) at the water surface can be made homogeneous 
by separating thex-component velocity into two parts, namely u = U(z, t) + u’(y, z, t) 
in which U(z, t ) is the basic current, uniform in the spanwise direction, and u’(y, z, t) 
is the perturbation current. Two forms of U(z, t) are used in our model. One is the 
steady Couette flow, which satisfies a no-slip condition at the bottom boundary. In 
this case the wind stress applied at the surface is totally supported by the frictional 
resistance at the bottom boundary. Another choice is the developing similarity flow 
given by 

where 

U(z, t) = 2(Lat)“‘f(q) (21) 

Z 
’ = 2(Lat)lf2 ’ 

f(T) = = -1’2e-Q2 + qerjfic( -q). 

In this case the bottom cannot support the total velocity shear. The velocity shear 
NJ/az for the two forms of U(z, t) is the same near the water surface, and this may be 
all that matters (see later). 

Subtracting the equation for U(z, t) in (l), we get for the perturbation downwind 
current u’(y, z, t) 

(22) 

Following Leibovich et al. (1989), we shall consider a model in which the surface 
stress remains constant. Thus perturbations u’(y, z, t) are considered stress-free at 
both upper and lower boundaries. Written in mathematical terms, the boundary 
conditions at the top and bottom boundaries of the layers are 

*=$c~=O at z=O,-f3d 

where pd is the depth of the layer. 
Periodic boundary conditions are imposed at the two lateral boundaries, i.e. 

NY + PL) = NY), u’(y + PL) = u’(y). (24) 

The horizontal extent PL of the cells is an unknown and cannot be determined from 
the model, as noted by Leibovich and Paolucci (1980) and Cox et al. (1992). In most 
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runs we choose a computational box with l3L = 27r and l3d = 1~, so that the Stokes 
drift which provides the forcing drops to less than 0.002 of its surface value at the 
bottom boundary, but we will later double both the horizontal and vertical scales of 
the computational domain to examine the sensitivity of the numerical results. 

The solutions + and U’ are expanded as Fourier series in both y and z directions 
and are chosen so that the imposed boundary conditions are satisfied. The spatial 
resolution is chosen such that the one-dimensional energy spectra show exponential 
decay at high wavenumbers. It is found that 64 x 64 or 128 x 128 Fourier modes 
provide adequate resolution for the La regime studied in this paper (generally 
speaking, high resolution is required at low La). 

An infinitesimal random disturbance is imposed for the vorticity distribution and 
the perturbation U’ is set to zero at t = 0. To ascertain whether the solution is 
sensitive to the initial setup of the model and because we do not know precise initial 
data, we have tried other types of initial conditions. For example, two counterrotat- 
ing vortices of finite strength are imposed for the vorticity distribution. In conjunc- 
tion, a prescribed jet is imposed as the initial downwind current. We find that, for La 
in the range of 0.01 to 0.1, the same flow patterns are established after an early 
adjustment stage. During this adjustment stage, the prescribed vortices are being 
replaced by vortices which are solutions of the Craik-Leibovich equations. Thus it 
appears that the quasi-steady solutions of the CL2 model are insensitive to the initial 
setup. 

5. The evolution of Langmuir cells 

The spectral code is used to follow the time evolution of Langmuir cells. Cells of 
relatively small size appear first and grow in scale until a quasi-steady state is. 
reached. 

a. Merging process 

It has been suggested (e.g. Faller and Auer, 1988) that the merging of Langmuir 
cells is analogous to the inverse energy cascade in two-dimensional turbulence. We 
shall demonstrate, however, that unforced counterrotating vortices cannot merge in 
any case and that the growth in scale of Langmuir cells is due to forcing by the Stokes 
drift. 

i. Unforced. When no external forcing is present in a weakly dissipative vortex 
system, vortices are driven around by each other. In agreement with Melander et al. 
(1988) we find that two prescribed corotating vortices merge into a bigger vortex if 
their original locations are sufficiently close together. 

On the other hand, a pair of counterrotating vortices sitting at an upwelling site 
pair up with their respective image vortices and move apart, even when they are 
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unequal in size or strength. When two counterrotating vortices of the same size and 
vortex strength are located at a downwelling site, they sink vertically as a dipole. If 
the members of this vortex pair differ in size or strength, the weak vortex swings 
around the strong vortex as they both translate. Irrespective of circulation strength 
and vortex size, however, none of the vortices of opposite sign have merged in our 
numerical simulations. 

ii. Forced. In contrast with the unforced situation, counterrotating Langmuir cells 
grow in scale when the forcing due to the Stokes drift is considered as in the CL2 
model. To illustrate the cell-merging process, we show snapshots of vorticity and 
downwind current contours taken sequentially in time (Fig. 1). In this example La = 
0.02 and the basic current U(z, t) is the developing similarity flow. We start with an 
infinitesimal random distribution of vorticity and assume that at t = 0 the wind is 
switched on to drive the current. 

Rotating cells of alternating sign are generated shortly after the inception, with 
different cell sizes coexisting. The cells are rather weak initially and the downwind 
current at t = 10 is barely disturbed from U(z, t). However, both the circulation of 
the cells and the downwind current anomaly increase with time. In the contour plots 
at t = 20, three pairs of counterrotating vortices are observed and are associated with 
three maxima of the total downwind current. 

At t = 30, we see that the two vortices located close to the left side of the box are 
being squeezed by their neighboring vortices. The third one on the left and last one 
on the right expand horizontally. In the contours of the total downwind current, two 
maxima approach each other. Since periodic conditions are imposed at the lateral 
boundaries, it is easier to visualize the flow pattern if we envisage two boxes of the 
same flow field to the left and right of the box shown. In the next snapshot, two cells 
of opposite sign have cancelled and only four cells are left. Accordingly, only two 
maxima of the downwind current remain. This vortex-cancellation process repeats 
itself until the cells reach a quasi-steady state. At t = 40, two cells situated in the 
neighborhood of the two lateral boundaries are being pushed by the middle two. Two 
maxima of the downwind jet are being pulled together. The cancellation of these two 
vortices is completed at t = 60. We are then left with two counterrotating cells and 
one maximum of the downwind current. Thereafter the flow structure within the two 
cells shows no significant change, although the cells drift slightly to the right. 

By comparing the results in the unforced and forced situations, we can conclude 
that the merging of Langmuir cells, or rather the cancellation of counterrotating 
vortices, is different from vortex merging in two-dimensional turbulence. There the 
dominant mechanism for the inverse energy cascade is through the merging of 
like-signed vortices. The two key assumptions used in two-dimensional turbulence, 
namely the conservation of energy and enstrophy (or vorticity), cannot be made in 
Langmuir circulation. Moreover, in the CL2 model, the forcing term due to the 
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Figure 1. Snapshots of vorticity and downwind current contours at different dimensionless 
times. La = 0.02 and the box size is defined by f3L = 27~. and pd = r. The basic current 
U(z, t) is the developing current. 

Stokes drift is as important as the advection term in the vorticity equation (2). Thus, 
the forcing due to the Stokes drift plays a dominant role in the merging of Langmuir 
cells. 

b. Development of the velocity field 

To understand the cell-generation process and, in particular, the amplification of 
the downwind current anomaly, we study the linearized momentum equation for the 
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Figure 1. (Continued) 

perturbation current u’ = u - U(z, t), 

KS au 
at - -w jy + LaV2u’ (25) 

where dU/& > 0. The viscous term LaVk is much smaller than the advection term 
-wdU/& except near the surface. Since -w&Y/& > 0 at the downwelling site and 
-w&Y/& < 0 at the upwelling site, u’ will increase with time beneath the surface 
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Figure 2. Vertical profiles of the perturbation downwind velocity component at upwelling and 
downwelling sites at t = 10. 

convergence zone but decrease with time beneath the surface divergence zone. At 
t = 10, the perturbation downwind current has a subsurface maximum at the 
downwelling site and a subsurface minimum at the upwelling site (Fig. 2). The profile 
of the surface perturbation current is shown in Figure 3. 

At the water surface, where w  = 0, Eq. (25) becomes 

(26) 

At the convergence line, the model shows a2u’/ayz < 0 and a2dlaz2 > 0, while 
a2u’/dy2 > 0 and a2u’/dz2 < 0 at the divergence line (compare Figs. 2 and 3). At 
early stages the derivative in the z direction is necessarily greater than that in they 
direction, because of the vertical transfer of u' by w. Hence ad/at > 0 at the 
convergence line and &‘/at < 0 at the divergence line, so that the surface-current 
anomaly is amplified. In physical terms, the surface downwind jet is reinforced 
because the frictional resistance is less at the downwelling site than at the upwelling 
site. 
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Figure 3. Perturbation surface current at t = 10. 
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As the surface current anomaly further increases, the y derivative becomes 
comparable with the z derivative. Furthermore, the nonlinear term v(&‘/Gy) be- 
comes important and always makes a negative contribution to ~3u’ldt. The perturba- 
tion surface current then becomes increasingly negative (Fig. 4) because the horizon- 
tal momentum is transferred to the underlying current by the cells. The wind stress 
that supplies the momentum to the current is fixed and so is the growth of the total 
downwind momentum. If more momentum is transported downward, the perturba- 
tion downwind current at the surface must decrease. In Figure 5, we show profiles of 
the total downwind current averaged across the cells. At t = 20 it is less steep than 
U(z, t), and at t = 40 a portion of the profile becomes homogeneous. As cells 
penetrate deeper into the water, the downwind current becomes uniform over 
greater depths. Except near the surface, the downwind current becomes vertically 
uniform from t = 60 onward. 

As an indicator for the evolution of the cells, we plot the time series of the kinetic 
energy consisting of y and z velocity components (Fig. 6). As instability sets in, the 
energy increases exponentially. The energy then oscillates for a few cycles before 
settling down to a constant level for t > 100, suggesting that a quasi-steady state is 
established. 
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Figure 4. Evolution of the perturbation surface current. 

c. The final quasi-steady state 

Flows in the quasi-steady cells are shown in Figures l(g1) and l(g2). Away from 
the downwelling site, isolines of the total downwind velocity u = U + u’ are 
horizontal and the high shear is concentrated near the surface, indicating a surface 
boundary layer. Right at the narrow downwelling zone, however, the downwind- 
velocity isolines become nearly vertical except in the top corner. Within the corner 
region where the surface boundary layer and the downwelling site overlap, the 
downwind-velocity isolines make an angle of approximately 45” with the horizontal 
direction, implying the velocity shear has comparable y and z components. 

In addition to the contour diagrams, vertical and horizontal velocity profiles are 
plotted to further illustrate the properties of the steady convective cells. Figure 7 
shows the downwind-current profiles at the upwelling and downwelling sites. The 
existence of the boundary layer at a small Langmuir number is demonstrated in the 
downwind-current profile at the upwelling site with a sharp velocity gradient close to 
the surface and an almost homogeneous profile down below. In contrast, the 
downwind current at the downwelling site has a shear penetrating deeper into the 
water, although evidently even this profile is less steep than the wind-driven current 
U(z, t) without the cells. To reveal the flow structure at the downwelling site, we have 
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Figure 5. Evolution of the averaged downwind current. 

plotted a profile of the perturbation surface downwind jet at t = 160 in Figure 4. The 
downwind perturbation velocity increases steadily as a water particle is swept away 
from the divergence line. But there is a rapid jump of the downwind velocity within 
the narrow region at the convergence zone, because friction is reduced there. 

Figure 8 shows that the downwelling velocity is significantly larger than the 
upwelling velocity as a consequence of the asymmetry of the cells. 

d. Flow indices 
We now examine the maximum downwelling velocity 

Lam113w dn (27) 

and the ratio of surface downwind jet strength to the maximum downwelling velocity 

Pt = km - adiv 
So -213 

= 
@dn t-1 

La-1,3 Con - udiv 

u* WdJl 
(28) 

as functions of La. 
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Figure 6. Time series of the cross-wind kinetic energy. 

The downwelling velocity increases as La decreases (Fig. 9), and is proportional to 
La-1/3 at small Langmuir numbers. The pitch Pt decreases with La (Fig. 10) and at a 
rate for small La not inconsistent with the power law La1’6 which we shall later derive 
from a scaling analysis. The trend implies that as viscosity decreases the growth of the 
downwind jet cannot keep up with the increase of the vertical velocity, presumably 
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Figure 7. Vertical profiles of the total downwind current at downwelling and upwelling sites 
for quasi-steady cells. 

because the Stokes drift can more effectively transform vertical vorticity into 
streamwise vorticity when the friction is reduced. 

The form of U(z, t) does not influence the vertical velocity significantly, as shown 
in Figure 9. For the same magnitude of the downwelling velocity, the surface 
downwind jet is stronger for the steady Couette flow than for the developing basic 
current (Fig. 10). The gap between the two is indistinguishable at larger values of La 
but widens at small La. This gap is caused by the difference of dU/dz, between the 
two forms of the basic current, which becomes larger at smaller values of La. 

In Figure 11, we show how the width of the surface downwind jet varies with the 
Langmuir number. Since the surface jet profile does not look like a spike, it is difficult 
to define the jet width. By comparing the surface jet profiles at different values of La, 
we find that the increment of the downwind jet always takes two steps with similar 
magnitude, one over a broad distance and the other over a narrow region at the 
convergence zone. The subjectively estimated width of this narrow region increases 
with Langmuir number, but the lack of precision of the estimate presumably 
accounts for the departure from the La 1/Z law, which, again, we will later derive from 
a scaling analysis. 

Figure 12 shows the time series of the maximum downwelling velocity and pitch for 
La = 0.02. Both Gd,, and Pt fluctuate before approaching constant limits. The high 
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Figure 8. Vertical profiles of the downwelling and upwelling velocities for quasi-steady cells. 

pitch corresponds to very low downwelling velocity; both I+~~ and Pt are close to their 
respective asymptotic values when the cells have a finite circulation strength. 

6. Scaling laws at small La 

The numerical results presented in Section 5 have shown that, when Langmuir 
cells reach a quasi-steady state, the maximum downwelling velocity and the pitch 
obey power laws at small La. These power laws can provisionally be explained by a 
simple scale analysis. 

We base our analysis on the steady-state nondimensionalized governing equations 

where dUldz = 1 for the steady Couette flow and dUldz = erfc(-z/(2=)) for the 
developing flow. The length scales in they and z directions are denoted by Y and Z, 
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Figure 9. Maximum dimensional downwelling velocity #‘dn versus La. 

respectively; ? is chosen to represent the scale for stream function +, W is the scale 
of the downwelling velocity and U’ is the scale of the perturbation downwind cur- 
rent u’. 

As La goes to zero, the viscous term becomes negligible except near a boundary or 
in a high-shear region. Since the wind stress applied at the water surface drives the 
current, friction must be important in a thin surface boundary layer. A second 
high-shear region can be recognized in the numerical output, such as Figure l(g1) 
which shows that the downwind jet is confined near the convergence line for a small 
Langmuir number. The vorticity is also largely confined to these boundary layers at 
the surface and beneath the surface convergence line. We divide the flow field into 
four regions, as shown in Figure 13. Region 1 is the narrow downwelling zone, region 
2 denotes the boundary layer below the surface and region 3 is the corner region 
where regions 1 and 2 overlap. Region 4 is the interior which appears to be purely 
advective. 

a. The narrow downwelling zone 
Within the narrow downwelling zone, the length scale in they direction is much 

smaller than in the z direction, so that the viscous term is dominated by the 
horizontal component i.e. a218y2 B d2/az2. We hypothesize that the advective, 
diffusive and forcing terms are of the same order of magnitude. 
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Figure 10. The pitch Pt as a function of La. 

Equating advection and diffusion terms in (29) and (30) gives 

LaZ 
*=y. 

Balancing advection terms and forcing terms in (29) yields 

u’ = z = O(l), 

and, using (32), the same balance in (30) gives 

(32) 

(33) 

La2Z U 
-=- 

Y5 Y’ (34) 

Combining these relations, and taking the dimensionless vertical scale as 1, we have 

1I’ = Lali2, (35) 

w= 1, (36) 

Y = Lali2. (37) 
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Using (8), we can infer for the dimensional downwelling velocity 

Gdn cc La-‘13, (38) 
in excellent agreement with the empirical formula obtained from the numerical 
model. 

The prediction that the width of the downwind jet decreases with Langmuir 
number as La1/2 is also consistent with the numerical results at small La (Fig. 11). 

b. The su$ace boundary layer 
In the surface boundary layer (region 2, Fig. 13) viscous diffusion is dominated by 

thez component, a2/az2 s a2/ay2. 
If advection and diffusion terms are of the same order of magnitude, we have 

LaY 
*=y, 

whence 

2 = (PL)La112, 

by virtue of (35) and if we take Y = f3L as the horizontal scale. 

(39) 

(40) 
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Figure 12. Time series of ti& and Pt for La = 0.02, f3L = 27~ and @d = -IT. The solid line 
represents @d,, while the dashed line represents Pt. 

Comparability of advection and forcing terms in Eq. (29) gives 

U’ = 2 = (f3L)La1’2, (41) 

whereas the ratio of advection and forcing terms in (30) is La, implying that the 
generation of new vorticity is small in region 2 and that the circulation is mostly 
generated at the downwelling site. Eq. (41) implies that the downwind velocity 
increase across region 2 is proportional to the width of the cells. 

Eq. (41) shows that the difference in the nondimensional downwind jet between 
the divergence line and a point just outside the corner region is proportional to La”*. 
Continuing to the convergence line requires consideration of the corner, region 3, 
where every term in the governing equations must be considered and we do not have 
a simple scaling argument. However, our numerical output shows that the gain in the 
downwind velocity at the surface takes two steps with similar magnitude; the drop 
over the corner in region 4 is approximately the same as in region 2, being of order 
O(La1j2). Hence we can argue that the dimensionless jet strength, and pitch, vary as 
La112. Using (28), the dimensional pitch is proportional to La116, again consistent with 
our numerical results. 
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Figure 13. A schematic diagram of the four sub-regions within a cell 

c. Horizontally variable eddy viscosity 
In the Craik-Leibovich model, the eddy viscosity is assumed to be constant 

throughout the cells. This raises the question as to whether quantities such as the 
pitch are sensitive to spatial variations in the strength of the mixing. For a prelimi- 
nary investigation of this, we extend our scaling analysis to the case where the eddy 
viscosity v1 at the downwelling site is different from v2 in the surface boundary layer. 
Incidently, v1 may be seen as the horizontal eddy viscosity and v2 the vertical eddy 
viscosity. We now use the dimensional governing equations 

(42) 

(43) 

a* a* t;=--I$, -, ).+,=- ay fi = v2JI. (44) 

Let Y, 2 denote the horizontal and vertical length scales and ?, u’, W represent the 
scales for the stream function, perturbation downwind current and the downwelling 
velocity, respectively. Subscripts 1 and 2 are used to indicate regions 1 and 2. 
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In region 1, comparability of advective and diffusive terms gives 

VA 
%=y, 

1 

while comparability of the advective and forcing terms leads to 

3 = @So) s. 

E51,4 

(45) 

(46) 

(47) 

From these equations we can deduce 

(48) 

(49) 

where we have taken p-l for the depth scale z. Thus the downwelling velocity is 
inversely proportional to vi . 1’2 If the eddy viscosity at the downwelling region is 
reduced, the downwelling velocity will increase. 

Next we study region 2, the surface boundary layer. Comparability of advection 
and diffusion terms gives 

(51) 

whence 

(52) 

if, as before, we assume that q2 = qi, and take L as the horizontal length scale. 
Matching advection and forcing in (42) gives 

p3* ,” 114 

(i;=32=u,L - 
i 1 Go 

(53) 
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independent of v2. Combining the scales for the downwind jet and the downwelling 
velocity, we obtain 

u; v&d ,” 
( 1 

l/4 w=PL 7 
0 

which is also independent of v2. Thus, the pitch is unaffected by v2 if we assume that 
the u increment in the corner region is also independent of v2. 

7. Comparison between model predictions and observations 

a. Observations 
Comprehensive measurements were made at sea from the Research Platform, 

FLIP, by Weller and Price (1988) and Smith et al. (1987). They found downward 
vertical and downwind horizontal velocity components significantly larger than 
previously reported. The downwind, downwelling flow was jet-like in structure and 
was confined to relatively narrow regions that coincided with bands of convergent 
surface flow. At mid-depth in the mixed layer, the downwelling flow had a maximum 
velocity of 0.3 m s-l and was accompanied by a downwind, horizontal jet of 
comparable magnitude, about 0.4 m s- l. Thus, the net fluid velocity under the 
windrows is directed downward about 45” at mid-depth in the mixed layer. Away 
from the downwelling regions and in the lower half of the mixed layer below the 
convergence zones, the flow associated with the Langmuir cells was an order of 
magnitude smaller and not well resolved in the experiments. 

b. Downwelling velocity 
Leibovich (1983) suggested a simple linear relation 

wdn - = O.OOSSU, (55) 

between the observed downwelling velocities and the wind speed. With La = 0.01, 
we find using (19) that the CL2 model gives for the maximum downwelling velocity 

*dn = 0.006 to O.OlU,,,. 

In the FLIP observations, the wind speed U, varied between 5 and 15 m s-l. At 
La = 0.01 the CL2 model predicts ti& = 0.03 to 0.15 m s-l, being in the range of 
observed downwelling velocity of 0.03 to 0.27 m s-l. For smaller values of La, the 
CL2 model will give an even bigger downwelling velocity. In Section 3 we showed that 
for La = 0.001 to 0.01 the eddy viscosity is in the range of values commonly used for 
the ocean surface layer. Thus it appears that by choosing an appropriate value for the 
eddy viscosity, the CL2 model can provide the right prediction for the downwelling 
velocity. 
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Figure 14. A comparison of model predictions and observations for the pitch. f3L = ~-IT, pd = 
IT for the solid curve and f3L = 4a, pd = T for dotted points. 

c. Pitch 

The CL2 model and observations appear to disagree, however, with respect to the 
pitch, the ratio of the surface downwind jet strength to the maximum downwelling 
velocity. In Pollard’s (1977) diagram, the downwind current at the convergence zone 
relative to that at the divergence zone is about 0.1 m s-l, while the downwelling 
velocity varies between 0.02 and 0.06 m s-l. Thus the pitch Pt has a value of 1.7 to 5. 
The older Langmuir circulation data summarized by Pollard may not be reliable for 
forming Pt, because few of the early studies were made to capture the maximum 
downwelling. Recent observations by Weller and Price (1988) found a downwelling 
velocity of up to 0.3 m s-r, although smaller velocities in the range of 0.05 to 0.1 m s-l 
were more frequently recorded. The maximum horizontal velocity measured below 
the surface was 0.4 m s-l, which is used as a rough estimate for the surface downwind 
jet strength. Thus Weller and Price’s observations suggest a pitch about 1.33, but it 
can be as high as 8 if smaller values of downwelling velocity are used. The CL2 model, 
however, predicts a pitch between 0.37 and 0.49, about one third of the observed 
strength or less for La = 0.01, at which the right range of downwelling velocity can be 
predicted. In other words, the CL2 model predicts a downwind current strength 
appreciably less than the downwelling velocity. Figure 14 shows the comparison 
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Figure 15. Comparison of the downwelling velocity w&, for different values of f3L and pd. 

between observed and predicted pitch. In the figure the solid curve is a direct output 
from the numerical model (three solid points above the curve correspond to cells 
with an aspect ratio of 2 and will be discussed in the next section), but for 
observations we calculate the pitch from Pollard’s or Weller and Price’s measure- 
ments and combine it with the estimate of So/u * given in (19). Uncertainty in 
estimating the Stokes drift and friction velocity as well as calculating velocity 
components all contribute to a broad band defined by the data. 

As a summary of the comparison with observations, the CL2 model appears to 
predict a weaker downwind jet and the shape of the downwind jet is not pronounced. 

d. Dependence of cd,, and Pt on PL and pd 

For Langmuir circulations formed in a deep and homogeneous ocean, we have two 
dimensionless parameters La and So/u *. In the numerical model there are two 
additional parameters, (3L and pd, which describe the horizontal and vertical scales 
of the box, respectively. Our standard numerical runs are carried out in a box with 
pd = rr and pL = 27r. Now we want to check how rGdn and Pt vary with pL and pd. In 
these numerical tests we take the basic current U(z) to be the Couette flow. 

First we double the horizontal extent, i.e. choose a box with f3L = 47r and pd = -IT. 
For the same La, more cells are observed in this wider box as instability sets in. The 
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cells merge with each other and approach a quasi-steady state when a pair of flat cells 
with an aspect ratio of 2 is left. The maximum downwelling velocity rGdn remains 
almost the same, although Pt is bigger for the flat cells (Figs. 15 and 16). As predicted 
by (41), the surface downwind jet (Fig. 17) is stronger because a water particle is 
exposed to the wind stress for a longer time as it moves across a greater distance from 
the divergence line to the convergence line. Figure 17 also suggests that the width of 
the downwelling region does not vary with l3L. 

Next we double both the horizontal and the vertical dimensions of the computa- 
tion box, i.e. choose @?. = 4~ and l3d = 2~. At small La both cd,, and Pt converge to 
those of the standard runs at small La (see Figs. 15 and 16). The downwelling velocity 
KJ~,, does not vary significantly with l3d, but the pitch drops by a half when fld is 
doubled. 

In the FLIP observations the maximum wind speed was about 15 m s-l and the 
maximum horizontal cell size stayed close to 1.5 times the mixed layer depth as the 
depth varied from 40 to 60 m. At wind speed of 15 m s-l, the e-folding depth of the 
Stokes drift is 1/(2p) = 2.76 m (according to (20)). The quasi-steady cells shown in 
our standard runs thus have a horizontal scale of 1/2L = 17 m and a vertical scale of 
d = 17 m. The flat cells have a size of ‘/L = 34 m and d = 17 m, while the big square 
cells have l/2 L = 34 m and d = 34 m. Therefore the cells simulated in our numerical 
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Figure 17. The profile of the surface downwind current for La = 0.02, pL = 4~r and pd = T. 

model have a size comparable with observed cell size. Although the pitch for the flat 
cells is closer to the observations than the square cells, the downwind jet has a broad 
shape which does not match with the sharp jet observed by Weller and Price (1988). 

e. Effects of the Stokes drifiprojile 

We have used an exponential profile for the Stokes drift current. The Stokes drift 
current calculated from the Pierson and Moskowitz spectrum, from (15) drops more 
quickly than an exponential function in a thin surface layer but decreases more gently 
at lower depths (Fig. 18). To fit this profile, we have chosen a sum of two 
exponentials, i.e. 

iis = 1.0723& exp (0.42*) + 0.9277& exp (42*) (57) 
where z* = g/U;. The surface value and e-folding depth of this function are the 
same as calculated from (15). 

In Figure 19, Pt corresponding to (57) is compared with that calculated from the 
exponential profile. It is found that Pt is about 20 to 30% larger, with most of the 
change due to the reduction in tidn, perhaps due to weaker vorticity forcing at middle 
depths. The stronger forcing close to the surface is less effective due to high viscous 
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so 
Figure 18. Profiles of the Stokes drift current. Solid curve is from the Pierson and Moskowitz 

spectrum. The dashed curve represents an exponential profile and the dotted curve is a sum 
of two exponentials used to fit the solid curve. 

dissipation. It is concluded that the profile of the Stokes drift current does not 
significantly affect the magnitude of the pitch. 

8. Conclusions 

In the numerical simulation counterrotating cells are seen to cancel each other 
and then approach a quasi-steady state. The quasi-steady cells did not select a 
definite horizontal scale; our computations are for an aspect ratio Y&/d either 1 or 2. 
However, Smith et al. (1987) proposed that the mixed-layer depth might determine 
the maximum horizontal spacing and that the cell aspect ratio is about 1.5. In 
addition, Weller and Price (1988) observed that the merging of Langmuir cells is a 
continuous process and there is in fact a coexistence of multiple cell sizes with the 
dominant cell size increasing with the wind speed (Zedel and Farmer, 1991). In the 
numerical simulation we have not seen the regeneration of small cells and their 
subsequent upscale merging, though we plan experiments in which noise is added to 
the flow pattern of quasi-steady cells. 
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Figure 19. Comparison of Pt for different Stokes drift profiles. Solid dots correspond to the 
Stokes drift having an exponential profile. Open circles correspond to the Stokes drift 
having a profile which is a sum of two exponentials. 

An asymptotic regime is found at small Langmuir number in the CL2 model. The- 
flow within a cell consists of a surface boundary layer, a narrow downwelling zone 
and a purely advective region away from the boundaries. A preliminary scaling 
analysis predicts power law dependences in accord with numerical results, but 
further work is required, particularly for the corner region at the surface conver- 
gence. 

Our comparison shows that the downwind jet strength predicted by the CL2 model 
is appreciably smaller than the strength reported by Pollard (1977) and Weller and 
Price (1988). Pollard’s diagram is most suitable for the comparison of the pitch, but 
more recent observations by Weller and Price (1988) have focused on the down- 
welling velocity and have made no attempt to measure the downwind jet at the water 
surface. In Section 7 we used the maximum horizontal velocity measured at a depth 
below the surface as an approximation to the downwind jet strength, for Weller and 
Price claimed that the horizontal velocity signal is weak in places other than the 
downwelling site. The downwind jet at a depth below the surface may be stronger or 
weaker than the surface jet. In order to make a fair comparison with the model 
predictions, the surface downwind velocity as well as the maximum downwelling 
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velocity must be measured in future. The wind stress and Stokes drift profile (i.e. the 
full wave spectrum) are also required. 

A weakness of existing models is the use of a constant eddy viscosity to parameter- 
ize small-scale turbulent processes. Using scale analysis, we have argued that a 
horizontally variable eddy viscosity does not affect the magnitude of the pitch. 
However, a vertically variable eddy viscosity might alter the dynamics of the cells. 
The commonly accepted form of eddy viscosity is a linearly increasing function of 
depth, such as used in the atmospheric boundary layer. The ocean surface, which is 
constantly acted on by wind stress and breaking waves, is a source of turbulence. 
Hence the eddy viscosity might be a decreasing function of depth rather than an 
increasing function in a thin subsurface region. Thus a better understanding of 
small-scale turbulence may be essential in the modelling of larger coherent struc- 
tures such as Langmuir circulation. 

If better observations and further modelling confirm the discrepancy in the 
downwind jet strength, we then need to look for some other mechanism that can 
provide the extra forcing required to drive the downwind jet at the convergence zone. 
This could be preferential dissipation in the jet of short surface waves that are 
steepened while being refracted (Garrett, 1976). However, the steepening of some 
waves in a typical wave directional spectrum may be offset by the loss of waves that 
are internally reflected, resulting in less, rather than more, wave dissipation in the jet 
(Smith, 1983). 
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