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The proper modeling of nonequilibrium gas dynamics is required in certain regimes of 
hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with 
source terms representing the chemistry. Often a wide range of time scales is present in the 
problem, leading to numerical difftculties as in stiff systems of ordinary differential equations. 
Stability can be achieved by using implicit methods, but other numerical difficulties are obser- 
ved. The behavior of typical numerical methods on a model advection equation with a 
parameter-dependent source term is studied. Two approaches to incorporate the source terms 
are utilized: MacCormack type predictor-corrector methods with flux limiters and splitting 
methods in which the fluid dynamics and chemistry are handled in separate steps. Com- 
parisons over a wide range of parameter values are made. On the whole, the splitting methods 
perform somewhat better. In the stiff case, a numerical phenomenon of incorrect propagation 
speeds of discontinuities is observed and explained. Similar behavior was reported by Colella. 
Majda, and Roytburd (SIAM J. Sci. Stat. Comput. 7, 1059 (1986)) on a model combustion 
problem. Using the model scalar equation, we show that tkis is due to the introduction of 
nonequilibrium values through numerical dissipation in the advection step. 6 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

In nonequilibrium gas dynamics, chemical reactions tween the constituent 
gases must be modeled along with the fluid dynamics. s added complexity is 
required in certain regimes of hypersonic aerodynamic modeling, for example, in 
the bow shock of hypersonic vehicles. 
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8651319. 
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Coupled systems of this form also arise in combustion problems. In particular, 
the modeling of scramjet engines that might be used in hypersonic vehicles requires 
the numerical simulation of supersonic combustion. 

Restricting our attention to inviscid flow, we have essentially the Euler equations 
of gas dynamics, coupled with source terms representing the chemistry. In two 
space dimensions these equations take the form 

u, +f(uL + g(u), = ti(u) (1) 

where u is the vector of dependent variables including momentum, energy, and den- 
sities or concentrations for each species in the reacting mixture. The flux functions f 
and g describe the fluid dynamics as in the Euler equations while the source 
term $(u) arises from the chemistry of the reacting species. 

A variety of such systems are possible, depending on the level of detail of chemi- 
cal modeling included. Examples and more discussions of these equations may be 
found in various references, e.g., [2, 13,,18]. 

When we attempt to solve the reacting flow equations numerically, new dif- 
ficulties arise that are absent in non-reacting flows. Aside from the increase in the 
number of equations, the main difftculties stem from the possible “stiffness” of the 
reaction terms. Although many excellent numerical methods are now available for 
the nonreacting case ($ = 0) which give high resolution and sharp shocks, it is not 
clear to what extent these methods can be used in the reacting case. 

The kinetics equations often include reactions with widely varying time scales. 
Moreover, many of the chemical time scales may be orders of magnitude faster than 
the fluid dynamical time scales. This can lead to problems of stiffness akin to the 
classical stiffness problems of ordinary differential equations (ODES). Stiff ODES 
arise, for example, in modeling chemical kinetics in a uniform stirred reactor where 
the fluid dynamics terms drop out. The numerical difficulty with such problems is 
that some time scales will typically be much faster than the scale on which the solu- 
tion is evolving and on which one would like to compute. This occurs when the fast 
reactions are in near-equilibrium during most of the computation. With many 
numerical methods, including all explicit methods, taking a time step appropriate 
for the slower scale of interest can result in violent numerical instability caused by 
the faster scales. 

Of course, if the fast reactions are always in equilibrium it may be possible to 
eliminate these reactions from the system. In the extreme case one obtains equi- 
librium gas dynamics in which the kinetics are not explicitly modeled but the equation 
of state varies with the mixture. In many problems, however, nonequilibrium effects 
play an important role and must be included. 

In practice, it is common to take time steps which resolve the fastest scales. Boris 
and Oran [2] suggest as a rule of thumb that time steps must be restricted so that 
the energy release from chemical reactions does not change the total energy in any 
cell by more than l&20%. It is more desirable, however, to develop robust 
methods that can allow larger time steps. This will naturally incur some loss of 
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resolution-reaction fronts will lose their structure and approach discontinuities, 
for example. What we should demand is that the correct disco~ti~~ities are 
obtained. They may be smeared out due to numerical diffusion, but sho repre- 
sent the correct jumps in the correct locations. This goal can be achiev for the 
nonreacting case by using “conservative” numerical methods [12] (See Sectio 

In this paper we investigate the extent to which this goal can be achieve 
Eq. (1) using various popular finite difference techniques. In particular, we 
duce and study a simple one-dimensional scalar model equation whi@ 

the difficulties sure to be encountered also in solving more realistic equa- 
e investigate the following questions: (i) Can we develop stable methods? 
we obtain “high resolution” results, ith sharp discontinuities and second 

accuracy in smooth regions, and (iii) we obtain the correct jum 

Numerical stability is typically not -a problem. A variety of excellent im 
m ods have been developed for solving stiff systems of 0 
sa techniques can be applied to the stiff source terms i 
methods for solving this system. 

The second question is investigated in Sections 2 an re we will see that 
some care, second-order accuracy and reasonably eo~ti~~itie~ can be 

ined. 
rd question is the most interesting. For stiff reactions it is ssible to 
ble solutions that look reasonable and yet are completely wro because 
tinuities are in the wrong locations: Stiff reaction waves move at non- 

physical wave speeds, often at the rate of one grid cell per time step regardless of 

n has also been observed by Colella, 
similar study of the limiting be vior with increasing sti 

1 systems. In particular, they look the Euler equations cou 
variable representing the mass fracti 

detonation wave. These waves have the structure of a 
raises the pressure to some peak value, followed imme 
that brings the pressure back down to a new equilibrium value. 
is not possible to resolve this combustion spike and the best one can hope for a 
single discontinuity linking the two equilibrium values and moving at the correct 

Colelia, and Roytburd apply Godunov’s method and a big 
extension nov’s method [6] to this problem. The source terms 
by splitting and solving the resulting ODES exactly, so that stab2 
roblem. wever, they observe that on coarse grids the numerical solution is 

incorrect. The computed solution consists of a weak deto~at~o~ wave, 
all the chemical energy is released, followed by a fluid dynamic shock 

traveling more slowly. The reaction wave always travels at the speed of one 
per time step, which is totally nonphysical. 
simpler model system is also studied in [5] and is shown to exhibit similar 
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behavior numerically. This system is essentially Burgers’ equation coupled with a 
single reaction equation. By studying this system and its numerical solution 
theoretically, progress has been made in understanding the structure of numerical 
solutions of the reacting Euler equations. 

However, the essential numerical difficulty can be identified and studied most 
easily by looking at even simpler equations. This same numerical behavior of 
discontinuities traveling at incorrect speeds can be observed in scalar problems. We 
have found it illuminating to study the model problem 

with 

ur + u* = be) (2) 

$(u) = - pu(u - l)(U - ;,. (3) 

This is the linear advection equation with a source term that is stiff for large ,u. 
Along the characteristic x=x,, + t, the solution to (2) evolves according to the 
ODE 

$ eGl+ 4 t) = ti(4xo + t, t)) (4) 

with initial data u(xO, 0). This equation has stable equilibria at u = 0 and u = 1 and 
an unstable equilibrium at u = 1. For large p and arbitrary initial data the ODE 
solution consists of a rapid transient with u approaching 0 (if u(xO, 0) < 4) or 1 
(if u(xe, 0) > i). 

Consequently, the solution u(x, t) to (2) with initial data u(x, 0) rapidly 
approaches a piecewise constant traveling wave solution w(x - t), where 

1 

0 if 24(x, 0) < 1 
w(x)= 1 if U(X, 0) = 1 

1 if u(x, 0) > i. 

In particular, the solution with piecewise constant initial data 

4% O)= 
i 

1 if x<xO 
o if x>xO (5) 

is simply U(X, t) = u(x - t, 0). In this case the ODE solution is in equilibrium on 
each side of the discontinuity, which theoretically behaves as it would if the source 
term were not present and we simply solved the linear advection equation 
11, + u, = 0. 

This linear discontinuity could easily be converted to a shock by replacing U, in 
(2) by f(u), for some nonlinear flux function j However, the numerical behavior is 
qualitatively the same in either case and nonlinearity of the flux is not the source 
of the difficulties of primary interest here. 
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Other functions $(u) could also be considered. A model corresponding more 
closely to the “ignition temperature kinetics” of [ 5] is obtained by using 

This gives numerical behavior similar to what is reported here for (3) and will not 
be considered further. 

All of the methods studied in this paper give propagation of the st 
at incorrect speeds when the source term is sufficiently stiff, i.e., 
ficiently large. We identify the quantity ky, where k is the time step 
parameter affecting the propagation speed. Unless kp is much s 
numerical difficulties are observed. 

Note that z -. l/p is the relaxation time scale for the source term. Typically 
k = O(h), where h is the spatial mesh width, and therefore k is the appropriate time 
scale for advection on the grid. Consequently, we can view kp 
advection time scale to the relaxation scale, as a sort of “cell 

The numerical phenomenon of incorrect propagation speeds is studied in 
Section 4. A simple explanation is found for the scalar model that also carries over 
to systems of equations such as the model system studied in [5]. 

The basic explanation is that numerical advection of the dis~o~t~nu~ty gives a 
smeared representation, which includes intermediate states 0 < M < 1 that are not in 
equilibrium. When kp is large, the source term restores near equilibrium in each 
time step, shifting the value in each cell towards 0 or 1 and consequently shift 
the discontinuity to a cell boundary. It is thus not surprising that nonphysi 
propagation speeds of one cell per time step can be observed for large kp. 

Clearly this scalar model is inadequate as a full test of any rmmerical met 
However, it does model one essential difficulty encountered in reacting flow 
problems and is sufficient to point out difficulties that may arise also on more co 
l&ted systems of equations. Moreover, due to th mplicity of this equation, 
umerical problems that do arise can be easily rstood and their 

identified, yielding insight that may be valuable in d ping better metho 
We will discuss two different approaches to constructing numerical met 

(1) and compare their numerical behavior on the model problem (2) for various 
values of p. For simplicity we only discuss the one-dimensional version of (1 ), in 
which gz 0, but in each case two-dimensional analogu are easily defined. 
Forward and backward differences of g-fluxes can e in6luded in the 
predictor-corrector methods along with differences of the S-fluxes. 

The first method we consider is based on MacCormack’s predictor-~orre~~~~ 
method for conservation laws [14]. This second-order accurate method 
modified to include the source terms, which appear in each step of the meth 
source terms are usually handled in a semi-implicit manner to obtain stability with 
reasonable time steps. We have found, however, that one very natural and com- 
monly used modification does not preserve the second-order accuracy of the semi- 

581/86/l-13 
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implicit method on time-dependent problems, although steady states are accurately 
computed. Based on a truncation error analysis, we show how this can be easily 
rectified in Section 2. 

In order to avoid oscillations near discontinuities, MacCormack’s method can be 
modified by adding a flux-correction step motivated by the theory of TVD 
methods [ZO, 211. We will compare two different forms of this correction. 

The second approach we study is the splitting method, in which one alternates 
between solving the conservation laws (with no source terms) in one step and the 
stiff systems of ODES modeling the chemistry (with no fluid motion) in the second 
step. This approach has certain advantages, in that high quality numerical methods 
exist for each of the subproblems. Combining these via splitting can yield stable, 
second-order accurate methods for the full problem. This is demonstrated in 
Section 3. 

Numerical tests on the model problem (2) reveal that methods can be devised by 
either of these approaches that will be stable and second-order accurate as the mesh 
is relined. However, for realistic choices of grid and time step, stiff reaction waves 
will have the nonphysical behavior described above. This is investigated in 
Section 4. 

2. EXTENSIONS OF MACCORMACK'S METHOD. 

MacCormack’s method for a system of conservation laws is a two step predictor- 
corrector method in which backward differences are used in the first step and 
forward differences in the second step (or vice versa). The method is easily modified 
to include source terms in an explicit manner and maintain second-order 
accuracy [19]. For the one-dimensional system 

ut +f(uL = rl/(u) (6) 

this explicit method takes the form 

AU(‘)= -~(flul)-ful~,))+ki(UI) 

(7) 

Ui”+‘=uj”+~(AU!“+Auj2’). J 

Here h is the grid spacing in x and k is the time step. Computing the truncation 
error for this method shows that it is second-order accurate in both space and time, 
as the grid is refined with kjh fixed. 

Note that if we set f(u) = 0, so that (6) reduces to a system of ODES, then (7) 
reduces to the standard two-stage Runge-Kutta method. Clearly this explicit 
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method will be inadequate if the system is stiff, in that the time ste 
stability will be much smaller than desirable for accuracy. 

It is natural to try to improve the stability of the method 
implicit, so that the source terms are handled implicitly while th ux terms are still 
explicit. In order to avoid solving nonlinear systems of equati 
linearly implicit method is frequently used. Methods of this 
by many workers (e.g., Bussing and Murman 
Hussaini [7], and Yee and Shinn [21]). This met 

,;+l= U; + ; (AU(‘) + AUj2;). 

The values of oj and Uj are still unspecified. In most of the papers reference 
qj = Fj = Uj’) is used, as motivated by (7). However, another possibility 
U= U, = Uj’. A truncation error analysis for the method shovvs that t 
choice is in fact preferable, since it gives a method that is second-order a 
both space and time. The traditional choice is second order in 
order in time. Thus it gives second-order steady state solutions 
first order in time for unsteady problems. 

Actually, in order to achieve second-order accuracy overall, it is only nece 
to use Oj = UT, The choice_ of oj is immaterial so long as $‘( oj) = $‘( UJ’ ) + 
In particular, U, = UJ’ or U, = Uj” are both allowed. In view of this it seem most 

e oj = UT in practice, since then the matrix [I- ik$‘( 
uted and factored once and the resulting factorization us 

fractional step. 
These statements are justified in the Appendix, where we study the truncation 

error for this class of methods. These results have also been verified numerically for 
smooth initial data. 

Flux Limtlers 

The method (8) is spatially centered and hence will typically give oscillatory 
behavior on problems involving steep gradients. To minimize this problem, one can 
introduce flux limiter terms into the method, as motivated 
methods. This is described in more detail in 1120, 211 and so 
description here. 

IJet A,+ l/2 represent an average of f(u) between Uy and UT, 1, e.g., t 
approximation [ 15 ]. Let Rj + ,,z be the matrix of right eigenvectors of iaj., 1,z 
ii, 112 the vector of corresponding eigenvalues. Also, lei 

Ej + 1/2 = R721/2 ( uJ”+ 1- UT 1. 
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The components of this vector give the coefficients of the decomposition of the 
jump UJ’, i - UJ.’ into eigenvectors of Aj+ 1,2. Corresponding to the Ith component 
of this vector, ~l,!+i,~, define a limited version by 

Of+ l/2 = minmod (a:- 1i2, xj+ 1j2, a,!+ 312 1. 

where the minmod function is defined by 

minmod(a, b, c) = smin(l4, 14, 14) if s=sgn(a)=sgn(b)=sgn(c) 
o 

otherwise. 

Other versions of this limiter can also be used (see [ZO, 211) but we will restrict our 
attention to this one, Finally, we define 

k 
l&=-a! h 1+1/z 

and the smoothed absolute value 

q(z) = i 
I4 if 1zI 2.5 
(z’ + &q/2& if JzI <E 

for some positive parameter E. In our present example this plays no role, and in fact 
q(z) simply reduces to the absolute value in the context where we use it. 

We now replace the last line of (8) by 

and then set 

UP’= U”+&fU?‘+&p) I J J J 

q+‘= uy’ + CR,+ 1/2#j+ 112 -Rj- 1/2djj- 112 1, (9) 

where dj+ 1,2 has components 

4;+ l/2 = f Mv,!, l/2 I- (v,!, l/2 )21~~;+ l/2 - c2;+ l/2 1. 

Note that for smooth solutions, 01;+ 1,2 = O(h) and a,!+,,,- &j+1,2 = O(h2) and is 
also smooth. The perturbation to Uj*) in (9) will then be U(h3), leaving the method 
second-order accurate. Near discontinuities, however, this modification serves to 
introduce an upwind bias, dropping the method to first-order accuracy but reduc- 
ing oscillations. For a scalar problem with no source terms, the resulting method 
is TVD. When source terms are present, the true solution may no longer be TVD, 
and it is not clear what the correct theoretical criterion should be. 

The above flux correction procedure can be modified by basing the correction 
terms on Uc2) rather then U”. For example, in place of ozl+ 1,2 we would use 
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is advocated in [21] and has the advantage that U” nee 
correction. However, this is no real advantage if we intena to save 

U” for the second stage of MacCormack’s method, as we have arg 
should do for time dependent problems. When based on U(‘) rather 
method is no longer strictly TVD on scalar problems without sourc 

argue for the use of U”. When source terms are present it is not clear 
ach is superior. Good results for a steady state reacting flow 

eved in [21] with corrections based on U (2) This approach has also been . 
successfully used for unsteady problems in the nonreacting case [I, 16,231, 

The experiments below indicate that for the model problem (2), limiting 
on U” is preferable for small values of k,u but that limiting based on U(” 
more robust for larger values of kp. 

esults on Discontinuous Data. 

The method described above is second order accurate on smooth solutions, but 
eventually fronts sharpen and become nearly discontinuous. To inve 
ability of this method to deal with propagating disco~ti~~~ties, we co 
following initial data for Eq. (2): 

i 

1 
4x,0)= o 

if x d 0.3 
if x>O.3. 

We now use 6,= Uj = Uy exclusively and compare the effects of the 
limiters (no limiter, limiting based on U”, limiting based on Uc2’). 
h = 0.02, k/h = 0.75, and various values of ,u. Note that due to scaling pro 
the equation and method, results at time T with a particular value of p can equally 
well be regarded as results with p replaced by p//3, for arbitrary 9 at time pT with 
ime step ,!?k and grid spacing /?h (with x resealed so that [O, 1 becomes [S, fl] ). 
ndeed, the critical dimensionless parameters that determine the performance of the 

method are the mesh ratio 3, = k/h and the product kp of the time step and reaction 
rate. The value kp determines the stiffness of the system. When kp is large, relaxa- 
tion to equilibrium occurs on a time scale that cannot be temporally resolved on 
the grid. 

Figure 1 shows computed results at t =0.3 for ,u= 1, IO, 100, an 
(k@ = 0.015,0.15, 1.5, and 15). Each row of figures illustrates a different val 
The three figures in each row correspond to different choices of limiter. 
several interesting things from these graphs: 

e For small k,u (0.015) oscillations are visible if no limiter is used an 
lesser extent if the limiter is based on Uc2), while limiting on U” gives monotone 
results. This agrees with what is expected for the pure convection case (k.u = 

0 For larger kp (0.15%1.5), there is a slight overshoot in all cases, of similar 
magnitude regardless of the limiter. Note that for the case of no limiter there is iess 
oscillation here than with smaller kp, due to t e stabilizing effect of the source 
terms that tend to restore ~1 towards 1. 
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no limiter 

‘7 

limit based on U” 
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” 0 r 
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; 

FIG. 1. Numerical results using extended MacCormack method with discontinuous initial data:-, 
true solution; + , computed solution. 
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e For large kp (15) limiting on U” appears to be unstable (there are large 
scale oscillations near x = 0.3 not visible in the figure) whereas limiting on U(*) or 
using no limiter gives stable results, In each case, however, the solution is com- 
pletely wrong! The discontinuity has remained at its initial location x = 0.3 rather 
than propagating. 

Note that for kp = 1.5 there is also some discrepancy in the location of the 
continuity. The speed of propagation is slightly too small. For intermediate val 
of kp it is possible to obtain results with the discontinuity anywhere between 
and 0.6. This phenomenon of wrong propagation speeds for large kp vd 

iscussed in more detail in Section 4. 

3. SPLITTING IV!ETHODS. 

The semi-implicit predictor-corrector method (8) attempts to handle the flui 
dynamics and chemistry simultaneously. An alternative approach is to employ a 
time-splitting in which one alternates between solving a system of conservation 
Iaws, with no source terms, and a system of ordinary differential equations model- 
ing the chemistry. In the simplest case this splitting takes the form 

u n+ 1 = S,(k) Sy(k)U”. (II) 

ere S,(k) represents the numerical solution operator for the system of conserva- 
tion laws 

over a time step of length k, and S,(k) is the numerical solution operator for t 
E system 

To maintain second-order accuracy, the Strang splitting [17] can be use 
the solution u” +i is computed from U” by 

u n + ’ = S, (k/2) i!+(k) S, (k/2) U”. (12) 

Naturally, when several time steps are taken the adjacent operators S,(it/2) can 
combined to give 

U”= S,(k/2) S,(k)[S,(k) S,(k)]“-’ S,(k/i) hi’. 

In this form the method is nearly as efficient as (11). 
The splitting approach has also frequently been used to solve reacting 

problems [2,4, 51. At first glance it may appe to be less sati 
unsplit method such as (8), since in reality the 
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strongly coupled and cannot be separated. However, the fact that the splitting (12) 
is second-order accurate suggests that the interaction of different effects is adequately 
modeled by a split method, at least for smooth solutions. Moreover, there are 
distinct advantages to the splitting from the standpoint of algorithm design. High 
quality numerical methods have been developed both for systems of conservation 
laws and for stiff systems of ordinary differential equations. By decomposing the 
problem into subproblems of these types, it is possible to take advantage of these 
methods directly. To some extent the mathematical theory that supports them can 
also be carried over. By alternating between using a high resolution method for the 
conservation law and a stable stiff solver for the system of ODES, one can easily 
derive a method with excellent prospects of stability on the full problem. By 
constrast, attempting to devise a good hybrid method handling both effects 
simultaneously with good accuracy and stability properties can be difficult, as has 
been seen in the previous section. (But in the stiff case, we will still see the problem 
of incorrect wave speeds with the splitting method.) 

A split version of the method studied in Section 2 might take the form 

S, (k/2): [I-;k*‘(U;)] AUT=&k$(UJ) 

UT= U;+AUi” 

SfW AUj”= +(Uj*)-f(u,-,*)) 

u!” = ,‘J* + Au<” 
J J J 

AUj2’= -;(f(Uj:,, -f(Uj’))) (13) 

lJj”‘= lJj* + ;(Auj” +Auj2’) 

S, (k/2): [I-+~I+V(U~**)]AU~**=;~$(U,**) 

u;+‘= uj** +&Jj**. 

Here d* involves limited fluxes as before, based on U”. Alternatively, we can com- 
pute the limited value qj** based on Uc2) and replace R* and $* by Rc2) and dC2), 
respectively. 

Each of these methods could be replaced by other well-known methods for the 
respective problems. For example, any implicit stiff solver, such as the trapezoidal 
method, could be used for S, and any of a wide variety of high resolution methods 
used for S,. We consider the present form first as the logical choice for comparison 
with the previous results. The ODE method used in (13) for S, will be referred to 
as the “linearized implicit method.” 

Figure 2 shows the same set of experiments as in Fig. 1, now with the splitting 
method. We observe that 
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FIG. 2. Numerical results using splitting method with discontinuous initial data: -, true solution: 
+ , computed solution. 
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l For small kp either choice of limiter (based on UC2) or U*) works well, and 
good results are obtained. 

l For k,u = 15 the discontinuity again moves at the wrong speed, now too 
fast. In fact, it has moved to x=,0.7 and so is moving at speed 4/3 rather than 1. 
Since k/h = 314, this indicates that the wave is moving at the speed of one mesh cell 
per time step. 

l A large overshoot occurs in one mesh cell behind the discontinuity for 
kp = 15, regardless of the limiter used. 

With regard to this last observation, it appears that the overshoot must originate 
within the ODE-solving step. The flux-limiter method is applied only to the 
homogeneous conservation law and should give no overshoots, at least in the case 
where we limit based on U*. In other words, Sf(k) keeps monotone data monotone 
and therefore the lack of monotoniciy must be generated by S,(k). Note that this 
solution operator works pointwise (for example, Uj* is a function only of UJ’, inde- 
pendent of U; for i#j), and so is oblivious to the gradient in U. What it does see, 
however, is a nonequilibrium value of u near the discontinuity. The linearized ODE 
method used in (13) is stable but converges in an oscillatory manner to the steady 
state of a stiff equation and we are seeing this here. In ODE terminology, the S, 
is not an L-stable method (see, e.g., [ 11 I). 

These overshoots can be avoided by switching to a different ODE method. For 
example, if we leave SJk) unchanged but change S,(k/2) to the trapezoidal 
method, then these overshoots disappear for this value of kp (Fig. 3), but note that 
the propagation speed is still wrong. With the trapezoidal method we compute, for 
example, Uj* from 17; by solving the nonlinear equation 

Uj* = Uj” -t- ;k($( UT ) + $( Uj* )). 

Although we obtain monotone profiles in Fig. 3, the trapezoidal method also 
experiences overshoots if we go to still larger values of k,u. The use of an L-stable 
method such as the backward Euler method might eliminate this problem more 
generally, but backward Euler is only first-order accurate. One might consider the 
use of higher order BDF methods (the “Backward Differentiation Methods,” also 
called “stiffly stable methods” in [S]), but the second-order BDF method is already 

Y _ 
no limiter limit based on p limit based on U(*) 

-? _ Y 

7 ; ? 
0.0 0.2 cl4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 3. Results for kp = 15 when the trapezoidal method is used: -, true solution; +, computed 
solution. 
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a two step method and in the present context we appear to require a one step 
method, because of the nature of the splitting method. Implicit ~~~ge-K~~~a 
methods are a possibility. For reaction equations a ecial asymptotic method has 
been developed by Young and Boris I7221 (see als [2]) which may avoid this 
problem. Another possibility is to use several steps of an 0 E solver for S,(kj2), 
i.e., subdivide, the time interval to a point where we can more adequately resolve the 
transient approach to equilibrium. It appears that this fails to achieve our goal of 
using time step large relative to the fast time scales, but note that we would need 
to do this refinement in time only in regions where ~Qneq~ilib~ium con 
At grid points where u starts out close to equilibrium (e.g., those for 
is small, presumably most’ grid points), a single step of the linear 
method used in (13) is adequate to maintain stability. 

This is another advantage of the splitting method-since the 0 
deeoupled from the fluid solver and is applied at each grid point ind 
is easy to change the ODE solver or even to use different solvers at different points 

ing on the character of the flow. This approach is also advocated by Young 
ris [22], who suggest using their asymptotic integration method at stiff 

points and explicit Euler elsewhere. 
We stress again, however, that improvements to the DE solver cannot cure t 

problem of incorrect propagation speeds. In the next s ion we will investigate t 
source of this difficulty. 

NONPHYSICAL W.kvi~ SPEEDS 

The numerical results presented above indicate a disturbing feature of this 
problem-it is possible to obtain perfectly reasonable results that are stable an 
of oscillations and yet are completely incorrect. Needless to say, this can be 
misleading. In order to understand how the phenomenon occurs, it is sufficient to 
consider a simpler version of the splitting method, in which we use the splitting (11) 
with the first order upwind difference method for Sf and the exact solution o 
S, of the ODE for S,. The method is then 

uj”+L S,(k) U,*. 

e use the exact solution operator for s, to avoid the suspicion that di~~~~t~es are 
caused by the ODE solver. 

We also want to stress that for this scalar problem the splitting itself s 
be suspect. In fact, it can be argued that the splitting method is the correct 
approach in the following sense. If S, and S, represent the exact solution operators, 
then they commute and the true solution u(x, t) in fact satisfies 

u(x, t) = S,(t) ,T,(t) 24 (x, 0). 



202 LEVEQUE AND YEE 

This is just a restatement of the fact that the solution is obtained by integrating the 
ODE along characteristics, since SJt) u (x, 0) = u(x - t, 0). But this says that the 
true solution at time t + k can be obtained from the solution at time t via the split 
method 

u*(x) = s)(k) u (x, t) [ =u(x-k, t)] 

u(x, t + k) = 3, (k) u*(x). 

The method (14) is a direct discretization of this in which we replace S, by the 
upwind method. This amounts to replacing u(x - k, t) by the interpolated value 

To see why this apparently reasonable method gives incorrect results when kp is 
large, suppose we take initial data 

(15) 

for some J. Applying the first step of (14) gives 

ui* = 

i 

1 if j<J 
3, if j=J, (16) 
0 if j> J. 

where A= k/h. In the second step we solve the ODE, which gives Ujn+i = Vi* for 
j # J. For j = J the value we obtain depends on 1 and the size of k,u. The interesting 
case is when kp $1, so that U, is restored to near equilibrium at the end of the time 
step. The equilibrium value reached depends on 1, which by (16) is the initial condi- 
tion for the ODE at grid point J. If d < l/2 then the solution rapidly decays to zero 
and so Ul;’ ’ z 0. If A> l/2 then the solution rapidly approaches 1, so U;+l E 1. We 
thus obtain the results, depending on the mesh ratio 1: If 3, <‘l/2, 

i-J;+lz 1 if j<J 
0 if j> J; 

if 1> l/2, 

,y, 1 if j<J+l 
0 if j> J+ 1. 

The same behavior occurs in each time step and so we obtain a wave moving with 
speed 0 if 1~ l/2 or with speed l/L (i.e., one mesh cell per time step) if 2 > l/2. (If 
1 is very close to l/2 this argument is not valid. In fact, it is easy to verify that if 
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A= l/2 the method gives the correct speed 1. Flowever, this is an ~~lik~~y special 
case.) 

In general we obtain propagation at a nonphysical speed that is purely an artifact 
of the numerical method. The problem lies with the smearing of the disconti~~~t~ 
caused by the advection, which introduces a nonequilibrium state (UF = A) into the 
calculation. Unfortunately, any conservative shock-capturing method 
conservation laws will necessarily introduce some smearing since the tru 
location almost never coincides with a cell boundary. At least one point in 
is necessary in order to represent a discontinuity within a cell. As soon as a 
~oneq~ilibri~m value is introduced in this manner, the source terms turn o 
immediately restore equilibrium, thus shifting the discontinuity to a cell bou 

It is difficult to see how this problem can be avoided using standard finite 
difference methods of the type used here, short of increasing the resolution 
siderably so that kp is small. To see how small kp must be to obtain reason 
resu it is interesting to plot the observed wave speed as a function of kp for Exe 
k/h. cause of the form of the true solution it is natural to define the wave spee 
in time step t? by 

wave speed=: C Uj’-C U7-l . 
J i 

For large kp this is essentially equal to 0 (if A --c l/2) or l/L = h/k (if A > l/2) in each 
step. For smaller kp this varies with II in a regular but generally oscillatory manner. 
To compare wave speeds for various kp, we define an average wave spee 
averaging this function over a fixed time interval t, to t,: or eq~ivalentiy as 

average speed = 

Figure 4 shows this average speed as a function of kp for several values of 2. 
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FIG. 4. Average wave speed as function of kp for I = k/h fixed. 
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This can be equivalently viewed as giving results on a tixed grid as p varies or 
as giving results with fixed p as k and h are varied (with 1 fixed), i.e., as the grid 
is refined. The latter viewpoint is more relevant to the discussion here and shows 
that a substantial refinement (e.g., k,u < 1) is necessary to obtain reasonable results. 

In these calculations k/h was held fixed. One might also consider fixing h but 
taking k much smaller in an attempt to resolve the nonequilibrium effects. Figure 5 
shows that this is unsuccessful. Here h is held fixed at 0.01 and for various values 
of p the speed is plotted as a function of 1= k/h, as k is varied. As expected, the 
correct speed is obtained only at ;1= l/2 and J = 1. Note in particular that letting 
k -+ 0 with h fixed is detrimental and that if hp > 1 there is little hope of obtaining 
the correct speed. These results indicate that spatial resolution is as important as 
temporal resolution. This is not surprising, since it is the smearing of the discon- 
tinuity that is the source of the difficulty, and the extent of the smearing depends 
on the spatial resolution. 

If we wish to solve such problems without refining the grid to the extent 
indicated above, we must consider alternatives to the uniform finite difference 
methods considered so far. We must find methods that are capable of essentially 
increasing the spatial resolution without excessive refinement of the overall grid. 

One possibility is to use local refinement only near the reaction fronts. This is 
certainly more efficient than global refinement and may be practical in situations 
where the value of k,u on the coarse grid is moderate, so that a reasonable degree 
of refinement will give greatly improved results. Note that refinement in both space 
and time by a factor of 10 kp, for example, would reduce the tine grid value of kp 
to 0.1. According to our numerical results, accurate propagation can be achieved at 
this point. 

In situations where kp is several orders of magnitude larger than 1, this degree 
of refinement may not be practical, and is certainly not desirable if we can find 
another approach that achieves the correct propagation speed without resolving the 
fastest time scales. 

Front tracking is one possibility, in which the reaction fronts are replaced by 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 5. Average wave speed as function of I for h fixed. 
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sharp discontinuities that are explicitly tracked as the solution evolves. This would 
probably give the best results, but is quite complicated in multi-dirn~~sio~a~ 
problems. It would be nice to develop methods that can eal with stiff reaction 
fronts more robustly without requiring explicit tracking. 

It is illuminating to compare the present situation with that of a bomoge~eo~s 
system of conservation laws with no source terms. In the latter case, the use of a 
“‘conservative” numerical method (as defined below) guarantees that an isolated 
numerical shock of the type considered here must propagate at 

out over several mesh points, but the speed, 
must be correct by conservation. To see 

defining the cell average 

and integrating the conservation law U; + f (ze), = 0 over Lx,- 1,2, xJ+ 1iz ] x 
[I,, t,, I ], we obtain 

ession over j gives cancellation of t e flux terms so that we are 
s at the boundaries of our region. 
lues Uy are approximations to UT. A finite di 

said to be conservative if it can be written in the conservation form 

where Fly& 1,2 are the numerical fluxes based on U at neighboring points, a 
kF,“, iI2 approximates the corresponding integral in (18). ~nmmi~g (19 
the same cancellation of fluxes as in the true solution. Provided the 
boundaries of the region are correct, we maintain the correct total sum in each time 
step and hence the correct speed in the simple case of piecewise constant dat 
a single discontinuity. Lax and Wendroff [12] have shown more generally 
convergent conservative method must converge to a weak solution of t 
tion laws and thus must give discontinuities in the correct locations. 

If we now include a source term and integrate 

u, +f(uL = d4u) 
as before, we obtain 
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The new term appearing here does not undergo cancellation when we sum over j, 
and consequently it is important that this term is modeled accurately if we are to 
obtain the correct behavior. 

Note that for the model problem we are considering, where the true u is 
everywhere in equilibrium except at the discontinuity, we have It/(u) E 0 almost 
everywhere and so the integral of II/ in (20) is zero. In the numerical methods we 
have been considering, this integral is approximated by something analogous to 
k$(z$). This is a reasonable approximation if u is smooth, but very poor in the 
present context. We are replacing the average value of $(u) (which should be zero) 
by II/ evaluated at the average value of u (which may be far from zero). 

One possible approach toward deriving better numerical,methods is to attempt 
to model the integral of $ in (20) more accurately than simply using k$(Uy’). One 
possibility is to compute some approximation V(X) to U(X, t,) based on the grid 
values Uy, and then integrate $(0(x)). One way to obtain a local reconstruction is 
to use the “subcell resolution” approach of Harten [lo]. This method was 
originally proposed as a way to obtain sharp contact discontinuities in nonreacting 
flows, but appears promising in our context as well. The idea is to construct a 
piecewise polynomial function based on the data UJ’ that may have discontinuities 
within the cells. Smoothness criteria and conservation are used to locate the discon- 
tinuities. Harten [9] has tested a version of his method on the model problem con- 
sidered here and reports excellent results, as would be expected on this scalar 
problem with piecewise constant solution. It is not yet clear to what extent this 
approach can be extended to systems of equations and ultimately to multidimen- 
sional problems. 

5. CONCLUSIONS 

We have proposed a very simple scalar equation as a model problem for under- 
standing the behavior of numerical methods on reacting flow problems. We have 
considered two classes of numerical methods for this problem: MacCormack style 
predictor-corrector methods and splitting methods. In either case it is possible to 
derive second-order accurate methods that are stable even for very stiff problems. 
However, all of these methods are subject to another numerical difficulty in the stiff 
case-incorrect propagation speeds of discontinuities. We have shown that this 
results from a lack of spatial resolution in evaluating the source terms. A non- 
equilibrium value in the numerical representation of the discontinuity, when viewed 
as the average value of u over a large mesh cell, will cause the source terms to be 
activated over this entire cell in a nonphysical manner. In order to avoid this dif- 
ficulty, it will be necessary to increase the resolution of the discontinuity, at least 
for the purpose of evaluating $(u). One possibility is to use some form of mesh 
refinement or shock tracking. A more appealing alternative is to attempt to model 
the integral of $ in (20) more accurately using, for example, subcell resolution. It 
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is not yet clear to what extent these approaches are practical for mu~tid~rne~si~~a~ 
systems of equations. The development of new methods along these lines is t 
subject of ongoing research. 

6. APPENDIX: ACCURACY OF THE METHOD (8) 

The truncation error T(x, t) of (8) is defined by 

T(x, t) =; (u(x, t + k) - 24(x, t)) --& (Au”’ (x, t) + dU(2) (x, r)), (21) 

where 

I-; k$’ (u(x, t)) 
-1 

and 

-1 

X -; [f(u’“‘(x + h, t)) -f(u’“‘(x, t))] + kql/(u(x, I))). 

Here the choice of zi and ti correspond to the choice of 0 and hi in (8), i.e., either 
U(X, t) or u(‘)(x, t). To compute the order of accuracy we must expand in Taylor 
series and simplify the expression (21). for T(x, t). This is easiest to do if we first 
consider the choice 6= O= U”. Then (21) becomes 

T(x, t)=;(u(x, t+k)-u(x, t))+h I-$k$‘(u(x, t)) 
! 

-1 

Using the approximation 

[I- $k$‘(u(x, t))] p1 = I+ ;k$‘(u(x, t)) + O(k2j, 

581/86/l-14 
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we obtain 

uyx, t)=u(x, t)+ Z+fk+((u)+...] { -$-(u),-pf(u),,+...]+k~(u)} i 
= 24 + 4$(u) -f(u), I+ WI 
= u + ku, + O(k2), 

where u = u(x, t). Consequently, 

f(u”‘(X, t)) =f(u) + kf’(u)u, + O(k2). 

Moreover, the O(k’) terms here are smooth functions of x and so will cancel to 
O(k3) when we computef(u”)(x + h, t)) -j(u(“(x, t)), giving 

f(u”)(X + h, t)) -f(u(‘)(x, t)) = {[f(u) + IIf( -t gzy-(24.. + . . . ] 

+ @f’(u) + W’(u), + . ..I cut + h,+...l + W2)} 

- tfw + v-‘(U)% + W2) > 

We also have that 

=W(u),+ wwxx+wf’(4, u,+f’(u)u,,)+ W3) 

= hf(u), + gz’f(u),x + hkf(u),, + O(k3). 

“04% t)) -flub - 4 t)) = W(u), - $w~4,, + O(k3) 

and so (22) becomes 

qx, t)= 
i 
u,+;ku,,+O(k*) 

l i 
+A r+fk@(u)+O(k2) 1 

x P&4 + kw”(~L - 2W(u) + W2)) 
= ut + ht f u”(~)x - ti(u)) + M!++)f(4, +f(u),, - V(u) $(u)l + W2) 

= O(k*), 

since u, = $(u) -f(u), and u,, = F(u) u, -f(u),, = F(u) $(u) - V(u)f(uL -f(u),,. 
This shows that the method (8) is second-order accurate provided we use 
l&i= ri,= u;. 

Now consider what happens if we use r7,= Vi (r) instead of Dj= UT. Then the 
term 2/2$(24x, t)) in (22) will become 

h[$(u(x, t)) + $(zP’(x, t))] = 2hl+b(u(x, t)) + hly(u(x, t)) du(‘)(x, t) f . . . 

= 2h$(u(x, t)) + hk$‘(u(x, t)) u, + O(k3). 
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Since this factor is multiplied by l/h in computing T(x, t), this will cause an Q(k) 
change in the truncation error and hence a reduction to first-order accuracy in 
general. But note that in computing a steady state, where U, = 0, this 
drops out and so Dj= Ujl’ can be used in that case. 

To justify our other claim, that alternative values of ri, are allowed 
Ic/‘( oj) = $‘( UJ’ ) + O(k), consider the effect that using a different 0, would have on 
T(x, t)~ For analytical purposes, we can rewrite (8) in this case as 

Ar;i,= [I-;k$‘(r3,)]-’ [I-;k$‘(U;)] AU;*’ 

lJ;+L u; + $(Au;(‘)+ ~0~). 

The first three lines are identical to the method already analyzed, i.e., (8) with 

oj = Dj = U,“. But now we compute a modified increment Aoj and use t 

update Uy rather than AUj . (*) Clearly the method remains second order accurate 
provided A E??~ = AUj’l!” + O(k3). But this follows easily by Taylor series ~x~a~s~o~ of 
the definition of A Uj, since $I’( oj) = $‘( UT ) + O(k) and d hij2) = O(k). 
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