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ABSTRACT

The sensitivity of the inner-shelf circulation to the form of the vertical mixing is examined using a steady,
linear, two-dimensional, eddy viscosity model. For both alongshelf wind stress and pressure gradient forcing,
the alongshelf circulation over the inner shelf is insensitive to the form of the eddy viscosity profile. However,
the cross-shelf circulation is sensitive to the form of the eddy viscosity profile. In particular, the location and
width of the cross-shelf divergence in the Ekman transport over the inner shelf, and hence the corresponding
upwelling or downwelling, depend on the form of the eddy viscosity profile.

1. Introduction

Over the middle to outer continental shelf, the sur-
face and bottom boundary layers are typically thin
compared to the water depth (Lentz 1992; Lentz and
Trowbridge 1991). Ekman (1905) pointed out that in
this case the stress-driven transport within the boundary
layers (Ekman transport) is perpendicular to the ap-
plied stress due to the earth’s rotation. In shallow water
the earth’s rotation is less important; there is a direct
transfer of the stress through the water column and the
stress-driven transport is in the direction of the applied
stress. Between these two extremes there must be a
transition region characterized by a cross-shelf diver-
gence in the Ekman transport due to the interaction
of the surface and bottom boundary layers. The inner
shelf is defined here to be this transition region. This
definition differs from many of the previous uses of
the term inner shelf (e.g., Allen et al. 1983), but is
similar to the “nearshore region” defined by Mitchum
and Clarke (1986). The inner shelf plays a key role in
the overall shelf dynamics because it is the region where
the shelf circulation adjusts to the presence of the
coastal boundary condition. For example, in the sim-
plest cases it is the cross-shelf divergence of the Ekman
transport over the inner shelf that drives both coastal
upwelling and wind-driven coastal-trapped waves (Gill
and Clarke 1974).

The few attempts to model inner-shelf circulation
have generally relied on simple eddy viscosity models.
In his seminal paper, Ekman (1905) used a constant
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eddy viscosity to examine wind-driven, two-dimen-
sional shelf circulation. His results indicate that the
divergence in the Ekman transport occurs in water
depths between about 46 and ég (Fig. 1), where dg
= (2A4,/f)"* is the Ekman layer depth scale, 4, is a
constant eddy viscosity, and fis the Coriolis parameter.
Mitchum and Clarke (1986) used the constant eddy
viscosity solution and the long-wave assumption to de-
termine a coastal boundary condition for coastal-
trapped wave theory.

There have been a number of model studies of the
inner shelf based on eddy viscosity profiles that are
linear near one or both boundaries (surface and bot-
tom) (Thomas 1975; Witten and Thomas 1976; Jenter
and Madsen 1989; Poon and Madsen 1991). This
choice is motivated by observations that the velocity
profile is logarithmic near the bottom (e.g., Weatherly
1972; Grant and Madsen 1986) and that a logarithmic
region may exist near the surface (Richman et al. 1987;
Lentz 1992; Agrawal et al. 1992). A logarithmic ve-
locity profile and a constant stress region near the
boundary are consistent with an eddy viscosity profile
of the form xu,z’ near the boundary, where x = 0.4 is
von Karman’s constant, z' is vertical distance from the
boundary, and u, = (7/pg)'/? is the shear velocity,
with 7 the stress at the boundary and p, a reference
density (e.g., Thomas 1975). While observations sug-
gest a linear eddy viscosity profile is a reasonable rep-
resentation of the turbulent mixing near the bound-
aries, it is less clear what the appropriate form of the
turbulent mixing should be in the interior of the water
column, even for an unstratified flow. Commonly used
eddy viscosity profiles can have very different interior
eddy viscosities (e.g., Smith and Long 1976; Jenter and
Madsen 1989; Signell et al. 1990). An obvious question
is to what extent results are sensitive to the form of the
eddy viscosity profile that is used in a model.
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The objective of this study is to determine whether
the inner-shelf circulation is sensitive to the form of
the turbulent mixing profile. The focus is on subinertial
motions and the cross-shelf divergence in the Ekman
transport over the inner shelf. The turbulent mixing is
parameterized in terms of various simple eddy viscosity
profiles. Simple eddy viscosity profiles such as those
cited below and the ones examined in this study neglect
the influence of stratification. The most obvious mo-
tivation for using such models is their relative simplic-
ity. Furthermore, simple eddy viscosity models may
be a reasonable representation of the mixing over the
relatively shallow inner shelf, where stratification may
be weak or nonexistent (e.g., Lee et al. 1989; Lentz
1994). The goal is not to identify a particular form for
the eddy viscosity profile as correct or even to suggest
that a simple eddy viscosity is the best representation
of turbulent mixing, but rather to determine whether
certain aspects of the inner-shelf circulation are sen-
sitive to variations in the form of the eddy viscosity
profile.

This study uses a steady, linear, unstratified, two-
dimensional model to investigate the sensitivity of the
flow characteristics over the inner shelf to the form of
the eddy viscosity profile. Descriptions of the model,
the numerical scheme, and the different eddy viscosity
profiles considered are given in section 2. In section 3
the characteristics of the flow field over the inner shelf
for various forms of the eddy viscosity profile are com-
pared. Two general cases are considered, flows driven
by an alongshelf wind stress (section 3a) and by an
alongshelf pressure gradient (section 3b). Results are
discussed and summarized in section 4.

2. The model
a. Equations

A steady, linear, unstratified, two-dimensional model
is used to focus on the sensitivity of the inner-shelf
circulation to the form of the eddy viscosity profile. A
right-handed coordinate system is adopted (Fig. 1) in
which x is the cross-shelf coordinate, positive onshore;
y is the alongshelf coordinate, positive poleward; and
z is the vertical coordinate, positive upward. The mo-
mentum equation is
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where v(x, z) is the current vector, P is the pressure,
and A4,(x, z) is the eddy viscosity. The boundary con-
ditions are
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F1G. 1. Hodographs of the horizontal velocity in different water
depths (D) for an alongshelf wind stress, from Ekman (1905). A vector
from the large circle at the bottom of each hodograph to a point on
the curve represents the current at some depth. The 10 small dots
on each curve indicate the elevation above the bottom in 0.1D in-
crements. Note the flow is alongshelf throughout the water column
near the coast (D = 0.798g), but there are relatively large cross-shelf
velocities near the bottom and surface in deeper water (D = 7.858g).

and

0
U=f udz=0 at x=0, (4)
-D

where 75 is the wind stress vector, zos and zop are surface
and bottom roughnesses, and D = D(x) is the water
depth. For this two-dimensional model, the coastal
boundary condition (4) and continuity imply that

U=0 forall x. (5)

The model is forced by the wind stress +° and the
alongshelf pressure gradient dP/dy. The cross-shelf
pressure gradient dP/dx is chosen to satisfy (5).

It is straightforward to include time dependence in
the model and in the numerical scheme outlined below.
For simplicity, however, only steady-state solutions are
presented. Over typical inner shelf depths the model
flow reaches steady state on time scales of about a day.
Thus, the steady solutions are relevant to subinertial
variability at midlatitudes.

b. Numerical scheme

Given the forcing terms 7° and P/ 9y, the eddy vis-
cosity profile A,(z) and dP/dx at a particular cross-
shelf location, (1), subject to (2) and (3), can be solved
for v(z). While this system of equations can be solved
analytically for certain choices of 4,(z), to maintain
flexibility in the choice of eddy viscosity profiles, a nu-
merical scheme outlined in Patankar (1980) is used,
with the vectors represented in complex notation. The
procedure consists of a control volume representation
in the vertical and involves solving a tridiagonal matrix.
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The standard grid consists of 1001 points in the vertical
with logarithmically increasing grid spacing extending
from the surface and bottom boundaries. Increasing
the number of grid points by a factor of 2 in several
model runs gave almost identical results, indicating that
the vertical structure is well resolved by the standard
logarithmic grid.

Since many of the eddy viscosity profiles considered
depend on the bottom stress, which is not known a
priori, an iterative scheme is required (¢.g., Madsen
1977). To begin the iteration, an initial guess of the
bottom stress is made based on the depth-averaged
alongshelf component of (1)

P % LB

dy * D D’
assuming |78] ~ |+%|. This estimate of the bottom
stress is used to determine the eddy viscosity profile
and (1) is solved for v(z). The resulting velocity profile
is then used to estimate a new bottom stress that is in
turn used to determine a new eddy viscosity profile.
This procedure generally converges in a few iterations
and is stopped when the change in the bottom shear
velocity (uZ = (|7%/po|)'/?) is less than 10 m s~'.
An iterative scheme is also used to find the value of
0P/ dx that satisfies (5). An initial guess is made, again
based on the depth-averaged form of (1), and the re-
sulting velocity profile is used to estimate U. Subse-
quent estimates of dP/dx are found using a linear
search procedure to minimize U. In most cases a 9P/
dx that yields an fU less than a few percent of the
terms in (6) is achieved in 5-10 iterations. Jenter and
Madsen (1989) use a similar procedure in their study
of bottom stress for wind-driven depth-averaged flows.
The numerical model was compared to analytic solu-
tions for a constant eddy viscosity profile and for the
bilinear eddy viscosity profile in deep water (Madsen
1977). In both cases the numerical model results agree
with the analytic solutions to within one percent.

0= (6)

¢. Eddy viscosity profiles

Five forms of the eddy viscosity profile were ex-
amined (Fig. 2): a constant eddy viscosity (Ekman
1905; Mitchum and Clarke 1986); a bilinear profile
(Madsen 1977); a bilinear-cutoff profile (Deardorff
1972; Smith and Long 1976); a cubic profile (Signell
et al. 1990); and a bilinear that decays exponentially
toward zero in the interior (Long 1981; Glenn 1983).
With the exception of the constant profile, all these
eddy viscosity profiles have the form A4, = xu,z’ near
the boundaries. They differ in how they extend into
the interior of the fluid.

The bilinear profile suggested by Madsen (1977) and
subsequently used in a number of applications (Jenter
and Madsen 1989; Poon and Madsen 1991) extends
the linear profiles into the interior. The vertical extent
of the linear portions associated with the surface and
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F1G. 2. Examples of the five eddy viscosity profiles examined in
this study for the cases of a wind-driven flow (upper panel) and a
pressure gradient driven flow (lower panel). The bilinear profile in
the lower panel extends out to 4, = 0.5 (m?s™').

bottom stresses are weighted by their respective u,, so
that the stronger stress influences more of the water
column. This generally leads to a discontinuity in the
eddy viscosity profile at the matching depth (Jenter
and Madsen 1989).

The cubic profile is the simplest polynomial that can
match the two constraints at each boundary: that the
eddy viscosity approach zero and the slope be «u,, (Sig-
nell et al. 1990), where u, will in general be different
at the surface and bottom boundaries. The cubic profile
typically is similar to the bilinear profile though it has
a smaller maximum in the interior and no disconti-
nuity. In contrast to the bilinear profile, the weaker
stress (surface or bottom) influences the larger fraction
of the cubic profile.

The bilinear-cutoff profile is linear near the bound-
aries and constant in the interior. This is based on the
notion that the eddy viscosity will not continue to grow
indefinitely away from the boundary (e.g., Deardorff
1972). Typical choices for the distance from the
boundary beyond which the eddy viscosity is constant
are around 10% of the turbulent boundary layer scale
é(e.g., Smith and Long 1976) (where 6 = xu, /f). Ten
percent is the choice used here. In the present appli-
cation, since the surface and bottom boundary cutoff
values for the eddy viscosity are not generally the same,
they are joined by a linear interior profile. In very shal-
low water (less than 20% of the Ekman scale ) the bilin-
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ear-cutoff profile becomes identical to the bilinear pro-
file.

The exponential profile is similar to the bilinear-
cutoff profile except that away from the boundary the
eddy viscosity decays exponentially toward zero; that
is, Ay(z") = kuyez’ exp(—z’/!) (Long 1981; Glenn 1983;
Sanford 1984 ), where / is the exponential decay scale,
which was somewhat arbitrarily chosen to be 0.274.
For this choice the eddy viscosity decays to about 1%
of its maximum value at a distance of 26 from the
boundary in deep water. This choice also yields a max-
imum eddy viscosity similar to the bilinear cutoff ( Fig.
2). This eddy viscosity profile is qualitatively similar
to the profiles from more sophisticated turbulence clo-
sure models (e.g., Weatherly and Martin 1978). The
effect of varying the vertical scale of both the bilinear
cutoff and exponential eddy viscosity profiles is ex-
amined in section 3.

3. Model comparisons’

In this section the results of model runs using the
five eddy viscosity profiles in Fig. 2 are compared. Two
basic cases are considered: the response to an alongshelf
wind stress and the response to an alongshelf pressure
gradient.

a. Alongshelf wind stress

The model described in the previous section was
run for each of the eddy viscosity profiles assuming a
constant, spatially uniform, alongshelf wind stress and
no alongshelf pressure gradient. Thus, based on the
surface stress, the turbulent boundary layer scale 6 and
the deep-water Ekman transport Ug = 7/ pg f were each
constant. The vertically averaged alongshelf momen-
tum balance (6) under these assumptions yields the
simple result that the alongshelf component of the bot-
tom stress equals the surface stress. Therefore, the cross-
shelf Ekman transport in the bottom boundary layer
will also equal Ug in deep water and assuming |7%]
~ | 75|, the bottom boundary layer scale will be ap-
proximately 6. The model inputs were 75 = 1 dyn cm ™2,
f=10"*s7!, an effective roughness z, = 0.01 m at
both the surface and bottom (e.g., Drake et al. 1992),
and water depths ranging from 0.1 to 10 8. These values
give 8 = 40 m and Ug = 1 m?s™'. The value of the
constant eddy viscosity was chosen to give o = (2A4,/
f)'/? = 40 m. This results in an eddy viscosity of 0.08
m? s~!, which is rather large but is appropriate for
comparisons with the other profile results since the
depth will be normalized by é. As pointed out by Peg-
gion and Weatherly (1991) the constant eddy viscosity
may be chosen to match the bottom drag coefficient
rather than the bottom boundary layer scale. This al-
ternate choice is discussed below. _

The normalized cross-shelf transport in the upper
half of the water column, U,/ Ug, is plotted versus D/
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FiG. 3. The wind-driven cross-shelf transport in the upper water
column U, normalized by the Ekman transport Ug plotted against
the water depth D normalized by the turbulent Ekman scale 6 for
each of the five eddy viscosity profiles shown in Fig. 2. Since the net
cross-shelf transport is zero, the upper and lower water column trans-
ports have equal magnitudes and opposite directions.

8 in Fig. 3 for the five eddy viscosity profiles. Here U,
is estimated as the cross-shelf transport above the cen-
tral zero crossing of the flow. Since the depth-integrated
cross-shelf transport is zero by (5), the cross-shelf
transport in the lower half of the water column must
be equal in magnitude, but opposite in direction, to
the cross-shelf transport in the upper water column.
The cross-shelf structure of U,/ Uk falls into three main
regions. For D/é < 0.4, rotation is unimportant and
there is essentially no cross-shelf circulation. For D/é
> 4, Uy/Ug ~ 1, which is the deep water solution.
There 1s a 10%-20% overshoot (Uy/ Ug > 1) in all the
profiles. The overshoot has the largest cross-shelf extent
for the cubic and bilinear profiles, for which U, exceeds
Ug well beyond D/é = 10. This overshoot is a conse-
quence of the reversal in the flow near the base of the
Ekman layer associated with Ekman spiraling.

The most variation between the models occurs over
the range 0.4 < D/§ < 4, the inner shelf where the
cross-shelf divergence in the Ekman transport occurs.
The divergence in the Ekman transport occurs in
deeper water for the constant eddy viscosity model than
for the other models. At D/é = 1 there is an order of
magnitude difference in the cross-shelf transport be-
tween the bilinear cutoff and the constant eddy viscosity
model. The two profiles with larger interior eddy vis-
cosities (bilinear and cubic) diverge in deeper water
and over a wider area than the two profiles with smaller
interior eddy viscosities (bilinear cutoff and exponen-
tial). This is not surprising since the region where the
divergence occurs depends on the extent to which there
is a direct transfer of momentum from the surface to
the bottom, which in turn will depend on the interior

eddy viscosity. The exponential and bilinear-cutoff



JANUARY 1995

ucm/s
-4 -2 Q 2 4 6
0.0 L 1 1 1 -
1 constant — . r

©
N 4
N

ucm/s

FIG. 4. Examples of the vertical profiles of cross-shelf velocity for
three of the eddy viscosity profiles: (upper panel) the vertical profiles
for D/8 = 1 and (lower panel) the profiles for D/é = 10. The current
profiles for the bilinear eddy viscosity profile (not shown) resemble
those for the cubic eddy viscosity profile and the current profiles for
the bilinear cutoff resemble those for the exponential eddy viscosity
profile.

models diverge in the shallowest water because their
effective boundary layer scale is actually about half 5.
This is clear in vertical profiles of the cross-shelf velocity
(Fig. 4) and is easily understood. The bilinear-cutoff
eddy viscosity is roughly constant and equal to A,
= ku4(0.18) over the outer 90% of the boundary layer,
where rotation is important. Using this eddy viscosity
to estimate the effective boundary layer scale yields 6y
= (2Ay/f)"? = 0.455. A similar argument holds for
the exponential profile with the maximum eddy vis-
cosity determining the boundary layer scale.

A primary consequence of the cross-shelf divergence
of the Ekman transport is that it drives a vertical ve-
locity (i.e., upwelling or downwelling). The offshore
location and width of the cross-shelf divergence deter-
mines where the upwelling or downwelling occurs and
how strong it is. The vertical velocity at midwater col-
umn can be estimated by integrating the continuity
equation from the surface to the central zero crossing
of the cross-shelf velocity, which yields
_ Uy _

ax

Assuming a bottom slope of 102 and estimating dU,/
dD from Fig. 3, estimates of the vertical velocity from

w(z ~ —D/2) (7)
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(7) are shown in Fig. 5. Note that the cross-shelf scales

in Fig. 5 seem unreasonably large. In most cases strat-

ification will limit the thickness of the boundary layers

over the mid and outer shelf (e.g., Lentz and Trow-

bridge 1991; Lentz 1992) and hence the cross-shelf ex-

tent of the inner-shelf region. Consequently, these fig-

ures are intended to indicate tendencies and not real-

istic cross-shelf structure. From (7), the magnitude of
the vertical velocity is proportional to the bottom slope.

Continuity requires that the total vertical transport

equal the offshore (or onshore) transport in deep water,

that is, the Ekman transport. Consequently, since the
magnitude of the vertical velocity is proportional to
the bottom slope, the cross-shelf scale of the vertical
velocity must be inversely proportional to the bottom
slope; that is, the gentler the bottom slope the broader
the region over which the cross-shelf divergence in the
Ekman transport occurs. The profiles with the weakest
interior eddy viscosities have the largest vertical veloc-
ities over the narrowest region in the shallowest water.
Figures 3 and 5 summarize the primary result of this
study. The cross-shelf structure of the cross-shelf cir-
culation over the inner shelf, and hence the location
and width of the cross-shelf divergence in the Ekman
transport, are sensitive to the form of the eddy viscosity
profile. This suggests that any model of the inner shelf
that seeks to determine the cross-shelf circulation due
to wind forcing must accurately represent the vertical
structure of the mixing.

In contrast to the cross-shelf flow, the alongshelf flow
is not very sensitive to the form of the eddy viscosity
profile (Figs. 6 and 7), with the exception of the con-
stant eddy viscosity. The two profiles with small interior
eddy viscosities have slightly larger alongshelf velocities
than the profiles with large interior eddy viscosities.
This is a manifestation of the influence of the eddy
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FIG. 5. Estimates of the vertical velocity at mid-water column as
a function of offshore distance for the five eddy viscosity profiles.
The vertical velocities were estimated from (7) assuming a bottom
slope of 1073,
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and the bottom stress. The constant eddy viscosity
profile gives a much weaker depth-averaged alongshelf
flow, because the constant eddy viscosity extends all
the way to the bottom and consequently the boundary
is less slippery than for the profiles where the eddy
viscosity goes linearly to zero at the boundary. A
smaller constant eddy viscosity (4, = 0.005 m?s™!)
yields the same depth-averaged alongshelf velocity in
deep water as the other models (i.e., the same bottom
drag coefficient) (Peggion and Weatherly 1991), but
the corresponding g is smaller than for the other mod-
els. The resulting dependence of U,/ Ug on D/dg is
identical to that shown in Fig. 3, when the smaller 6g
is used to normalize D.

Observations of shelf flows are commonly from
moorings at a fixed water depth. Since 6 depends on
the wind stress, the width of the inner shelf will vary
with the wind stress. Consequently, a fixed mooring
site may be in or out of the inner shelf as the wind
stress varies. This can be seen in Fig. 8, which shows
the cross-shelf transport as a function of the wind stress
at a particular isobath (D = 40 m) for the five eddy
viscosity profiles. There are notable differences in the
onshore transport response to alongshelf wind stress
for the various eddy viscosity profiles. For small wind
stresses, 75/ po < 0.2 X 1074 (m s™1)2, all the profiles
tend toward the deep-water linear relationship that the
onshore transport equals the deep water Ekman trans-
port. However, for larger wind stresses, the onshore
transport response reaches a maximum and then ac-
tually declines for the profiles with small interior eddy
viscosities. This peak in the onshore response occurs
near D = § [i.e., when 75/ pg = 10™% (m s~")? for the
parameters used]. For the profiles with large interior
eddy viscosities (cubic and bilinear), the onshore

v cm/s

FI1G. 7. Examples of the vertical profiles of alongshelf velocity for
three of the eddy viscosity profiles. The upper panel shows the vertical
profiles for D/é = 1, while the lower panel shows the profiles for D/
5 = 10.

transport is nearly constant for +5/py > 0.5 X 107*
(m s™")2. This indicates that for a given location under
variable wind conditions the relationship between the
on/offshore transport and the wind stress will be sen-
sitive to the form of the eddy viscosity profile. This
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FIG. 8. The cross-shelf transport Uy versus 7%/(pof ) in 40 m
of water for the five eddy viscosity profiles.
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suggests that for inner-shelf regions where the wind
stress is the dominant forcing a scatterplot of on/off-
shore transport versus wind stress may suggest the
qualitative form of the eddy viscosity profile. As ex-
pected from the results shown in Fig. 6, the depth-
averaged alongshelf velocity response to the alongshelf
wind stress at a given location is essentially the same
for all the eddy viscosity profiles except the constant
eddy viscosity.

For the eddy viscosity profiles examined, two or three
parameters must be specified besides the forcing, the
water depth, and the latitude (i.e., Coriolis parameter).
With the exception of the constant eddy viscosity case,
surface and bottom roughnesses, zys and z,z, must be
prescribed. Additionally, a vertical scale must be spec-
ified for the bilinear cutoff and exponential profiles.
The sensitivity of the model results to these parameters
is discussed here. One might anticipate that the cross-
shelf transports would be insensitive to the surface and
bottom roughnesses, since the cross-shelf transports
depend on the surface and bottom stresses, which are
independent of the roughnesses (6 ). This is confirmed
in Fig. 9 (upper panel), which shows U,/ Ug, as a func-
tion of D/é for zop = 0.001, 0.01, and 0.1 m. For a
two order of magnitude change in zyp there is almost
no change in Uy/Ug. The particular example shown
1s for the bilinear eddy viscosity profile, but the results
are the same for the other forms of the eddy viscosity
profile that depend on zy. The depth-averaged along-
shelf velocity should be sensitive to zgp, or more pre-
cisely to log(zog), because zgg influences the relation-
ship between the bottom stress and the interior along-
shelf velocity by changing the bottom drag coefficient.
Again the results in Fig. 9 (lower panel) confirm this
hypothesis. The solutions are not very sensitive to the
value of the surface roughness z,s because the surface
stress is prescribed.

The cross-shelf transports for the bilinear cutoff and
exponential eddy viscosity profiles are sensitive to the
choice of the vertical scale needed to specify the profiles.
This is obvious given the argument above that the ef-
fective boundary layer scale depends on the maximum
eddy viscosity within the boundary layer. Thus, a
shorter vertical scale, which results in a smaller max-
imum eddy viscosity within the boundary layer, would
cause the Ekman transport divergence to occur in shal-
lower water, whereas a larger vertical scale causes the
transport divergence to occur in deeper water (Fig. 10).
The vertical scale for the bilinear cutoff and exponential
profiles also influences the alongshelf flow with slightly
larger alongshelf velocities corresponding to smaller
scales, that is, weaker maximum eddy viscosities.

b. Alongshelf pressure gradient

The response to an alongshelf pressure gradient is
examined briefly here because it differs from the wind-
driven response in a number of ways. Assuming the
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FIG. 9. The normalized cross-shelf transport Up/ Ug (upper panel)
and depth-averaged alongshelf velocity v,,, (lower panel) vs D/s for
different values of the bottom roughness zgz. The bilinear eddy vis-
cosity profile is used in this example but the results are similar for
the other eddy viscosity profiles.

surface stress is zero, the boundary layer scale ¢ and
the deep-water Ekman transport Ug are both deter-
mined by the bottom stress. However, if dP/dy is uni-
form across the shelf, (6) indicates that the bottom
stress must increase as the water depth increases (given
7% = 0). Therefore,

it 1oPD
Up="F=—"72, (8
£ pof  po Oy f )
and
D |3P[\/?
aw%——), 9)
S \po|6y

assuming 7% > 75% so u, =~ (]7%”|/po)"’*. From (8)
there will be a cross-shelf divergence in Ug proportional
to dD/dx, even in water deep compared to 6.

To facilitate comparisons of the response to an
alongshelf pressure gradient with the wind-driven re-
sponse, the cross-shelf transport was normalized by Ug
and the depth was normalized by é as for the wind
stress. This may be viewed as the response to an along-
shelf pressure gradient that varies across the shelf so
that the bottom stress is constant. Even in this case
there is a marked difference in the cross-shelf structure
of Uy/ Ug (Fig. 11). As for the wind-driven case there
are three regions. For D/é < 0.4, rotation is unimpor-
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FI1G. 10. The normalized cross-shelf transport Up/ Ug (upper panel)
and depth-averaged alongshelf velocity (lower panel), vs D/é for dif-
ferent values of the vertical cutoff scale for the bilinear eddy viscosity
profile. Results for the exponential eddy viscosity profile are similar.

tant and the cross-shelf circulation is very weak. Most
of the divergence in the Ekman transport still occurs
over the inner-shelf region 0.4 < D/é < 4, and this is
the region where the response is most sensitive to the
form of the eddy viscosity profile. The differences in
the cross-shelf circulation in this region for the various
forms of the eddy viscosity profile are qualitatively the
same as for the wind-driven case.

The most notable difference from the wind-driven
response occurs for D/6 > 4, where the curves in Fig.
11 approach the asymptote Uy/Ug = 1| more slowly
and there is no overshoot. This response may be un-
derstood by considering the cross-shelf circulation (Fig.
12). There is an onshore flow in the bottom boundary
layer and a vertically uniform geostrophic offshore flow
in the interior. Integrating the alongshelf component
of (1) from the bottom to the top of the boundary layer
(hpr = 26 for the constant, bilinear and cubic profiles,
and hg; = 6 for the bilinear cutoff and exponential
profiles) yields

78y By

—=——(1—h 1
oof pof( s/ D), (10)

—D-+hpy
U = f udz,
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F1G. 11. Same as Fig. 3 but for a flow driven by an alongshelf
pressure gradient rather than a wind stress. The symbols show esti-
mates based on (10) for 4 < D/é < 10.

and (6) has been used to relate dP/dy and 727, assum-
ing 7% = 0. The net onshore (or offshore transport)
equals the deep water Ekman transport (78/ pg /) mi-
nus the portion of the geostrophic interior transport
that occurs within the bottom boundary layer. Thus
the onshore transport should approach the asymptote
Uk for large D/ 4. Predictions based on (10) represent
the model dependencies for D/é > 4 fairly well (Fig.
11). The underestimate of the responses for the bilinear
cutoff and exponential eddy viscosity profiles using /g,
= 2§ occurs because using the central zero crossing
results in an overestimate of U, due to the boundary
layer response that occurs above the central zero cross-
ing (Fig. 12). The alongshelf velocity response (not

z/6

ucm/s

F1G. 12. Cross-shelf current profiles driven by an alongshelf pressure
gradient in deep water (D/8 = 10) for the cubic and exponential eddy
viscosity profiles. ’



JANUARY 1995

shown) is essentially the same as for the wind stress
(Fig. 6).

4. Discussion and summary

The model results presented suggest that the char-
acteristics of the alongshelf flow over the inner shelf
are relatively insensitive to the form of the eddy vis-
cosity profile except for the constant eddy viscosity,
while some aspects of the cross-shelf circulation are
sensitive to the form of the eddy viscosity profile. In
particular, the location and width of the region of cross-
shelf divergence in the Ekman transport is sensitive to
the form of the eddy viscosity profile. Profiles with rel-
atively weak interior eddy viscosities have narrower
regions of cross-shelf divergence in shallower water than
profiles with larger interior eddy viscosities. The sen-
sitivity of the cross-shelf divergence in the Ekman
transport to the form of the eddy viscosity profile is
not surprising. In deep water the presence of a spatially
uniform surface stress can only be transmitted to the
interior and to the bottom boundary layer through the
coastal boundary condition since the wind-driven stress
is confined by rotation to the surface Ekman layer.
Thus the path of communication between the surface
boundary layer and the interior or bottom boundary
layer is across shelf. The same argument holds for
communication between the interior and bottom
boundary layer for an alongshelf pressure gradient—
driven flow. In contrast, in very shallow water the stress
is transmitted directly from the surface to the bottom.
Thus the cross-shelf divergence in the Ekman transport
begins to occur where there is sufficient interior stress
to transfer momentum directly through the water col-
umn, circumventing the cross-shelf circulation path-
way. Where this occurs will depend on the strength of
turbulent mixing in the interior.

This study suggests that caution must be used in
generalizing model results for the inner shelf based on
a particular form of the turbulent mixing. Given the
evidence that a constant eddy viscosity is not realistic
near the boundaries (e.g., Weatherly 1972), this form
of the eddy viscosity profile should not be used in stud-
ies focusing on problems dependent on or related to
the inner-shelf cross-shelf circulation. However, there
is little observational evidence at present to suggest that
any one of the other four eddy viscosity profiles is more
realistic than the others.

Lentz (1994 ) used a time-dependent version of the
model described in section 2 to simulate observations
from a mooring on the northern California inner shelf
where the stratification was weak and observed currents
were driven by a combination of wind stress and
alongshelf pressure gradient forcing. Simulations were
made using four different forms for the eddy viscosity
profile: the bilinear, cubic, bilinear cutoff, and expo-
nential (Fig. 2). All four eddy viscosity profiles yielded
similar results and good agreement with the observa-
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tions, indicating that the basic features of the flow were
not very sensitive to the form of the eddy viscosity
profile. This was primarily because the dominant char-
acteristics of the flow were associated with the along-
shelf current. The cubic eddy viscosity profile yielded
a slightly better representation of the magnitude and
vertical structure of the relatively weak cross-shelf cur-
rent than the other eddy viscosity profiles. While
Lentz’s (1994) comparisons suggest that a simple eddy
viscosity model can account for most of the observed
variance in the northern California observations he ex-
amined, the comparison was not definitive in identi-
fying one form of the eddy viscosity profile as more
appropriate for the northern California shelf observa-
tions.

At present, relatively little is known about turbulence
over the inner shelf. Obviously, the presence or absence
of stratification will strongly modify the characteristics
of the turbulence. Consequently, the vertical structure
of the turbulence is likely to vary across the shelf, if
the inner shelf is unstratified and the middle and outer
shelf are stratified. Even in the absence of stratification
other factors may influence the vertical structure of the
turbulence. For example, the presence or absence of
strong tidal energy may influence the form of the tur-
bulent mixing profile (e.g., Davies and Jones 1990).
For the northern California shelf, Lentz (1994) hy-
pothesized that large rock outcrops significantly in-
creased the bottom drag on the flow. Such topographic
features may also alter the vertical structure of the tur-
bulence. It seems likely that surface gravity waves may
also be a significant influence on the turbulence in
shallow water. The model results presented here suggest
that the vertical structure of turbulent mixing is a key
element of the inner-shelf dynamics and its role in the
overall shelf circulation. While application of simple
models in combination with current observations
(Lentz 1994) may provide indirect insight into the
charactenistics of turbulence over the inner shelf, field
studies aimed at determining the characteristics of tur-
bulence over inner shelves are clearly needed.
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