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Three-Dimensional Langmuir Circulation Instability in a Stratified Layer 

SIDNEY LEIBOVICH AND AMIT TANDON 1 

Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 

Some reports of Langmuir circulations describe windrows at systematic angles to the local 
wind direction. Other observers find windrows in close alignment to the wind direction, but with 
a systematic drift sideways to the wind. These effects probably result from more than one physical 
cause. Here it is shown, by an analysis of the linear stability of the surface layer, averaged to 
remove surface wave fluctuations, that persistent small windrow angles can result from weak stable 
density stratification. In these cases, the linearly most unstable modes are found to be weakly 
three dimensional for the range of parameters considered. Possible surface windrow patterns 
include rolls mostly parallel to the wind but of finite length, with branching and merging, as well 
as parallel rolls inclined to the wind and drifting laterally with respect to the wind direction. For 
unstratified flow, steady two-dimensional rolls are preferred. 

INTRODUCTION 

Streaks may be formed on the sea surface by a variety of 
causes, including convergences due to internal waves, possi- 
bly instability of the Ekman layer, Langmuir circulation, as 
well as other convective motions. The hallmark of Langmuir 
circulation is windrows approximately parallel to the wind 
direction, especially when the water column is unstratified 
or stably stratified. Most reports of streaks attributed to 
Langmuir circulations do not indicate any systematic bias in 
windrow direction relative to the wind. Nevertheless, there 
are observations (specifically, Fatter [1964] and Katz et at. 
[1965]) that have revealed a systematic angular deviation in 
a system of parallel windrows. 

In the more commonly reported cases, individual 
windrows nearly parallel to the wind terminate after a fi- 
nite distance or split into two, or two windrows coalesce into 
one. This branching process appears to result, at least some 
of the time, from a secondary instability of the system of 
parallel rolls. This origin of the branching process is a non- 
linear effect not requiring density variations and has been 
explored by Thorpe [1992], Tandon [1992], and A. Tandon 
and S. Leibovich (in preparation). 

The problem treated in this paper is more appropriate 
as a model for experiments in a wind-wave tank than as a 
model for phenomena in the mixed layer, since it assumes 
a rigid no-slip bottom, and the effects of the Coriolis accel- 
eration are ignored. Nevertheless, the analysis shows that a 
small stable density stratification can lead either to persis- 
tent (small) angles of parallel windrows to the wind direc- 
tion, or to the branching and merging of windrows otherwise 
aligned with the wind. Both patterns are time-periodic in 
a stationary reference frame, but each pattern results from 
a travelling wave, and so is steady in a frame of reference 
moving either across the wind (former case) or with it (latter 
ca..•o_ Tho•o are offoct.• of hnnva.ncv. a.nd a.ri•e a.f, f, ho ]inoa.r 
...... i .................... .• ---.•; ................ 

level in a stability analysis of the current and its wind-wave 
interaction in the Craik-Leibovich (CL) theory [Craik and 
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Leibovich, 1976] of Langmuir circulation as formulated by 
Leibovich [1977b]. Which pattern is described by the lin- 
ear analysis depends on the choice of linear eigenfunctions 
combined, and so depends on initial conditions. A more 
complete analysis of which form is physically realizable re- 
quires a nonlinear (secondary stability) analysis not done 
here. 

The angular deviation of windrows observed by Fatter 
[1964] averaged about 13 ø to the right of the wind, and 
Katz et at. [1965] report a similar figure (with a smaller 
data set). The tendency to lie to the right of wind suggests, 
as FMler emphasizes, that the deviation is due to Corio- 
lis effects. This is plausible, since the surface current on 
which Langmuir circulation is imposed can exhibit Ekman 
spiralling. This effect is not included in the present anal- 
ysis, which shows that the angular deviation possible from 
the linear stabihty analysis is maximum at an intermediate 
value of the stratification. The largest angle found for the 
range of stratification investigated here is 5.3 ø , but windrows 
have an equal likelihood of being on either side of the wind. 
Furthermore, the speed of lateral drift associated with the 
angular deviation increases with stratification. 

As noted by Leibovich [1983], in two dimensions the CL 
theory of Langmuir circulations is mathematically analo- 
gous to more extensively studied double diffusive convection 
problems (with unit Prandtl number and with a possibly 
nonlinear temperature profile). This is no longer true for the 
CL theory in three dimensions. The equations controlling 
the stability problem are more complex, and the parame- 
ter space is enlarged. For example, given the form of the 
depth variation of the Stokes drift and assuming eddy coef- 
ficients for diffusivity of momentum and heat, the problem 
depends on four dimensionless parameters R, Re., $, and r. 
Even when we restrict consideration to the molecular value 

of the f' • .......... ( ) rl:itlLklb! IttlllLUCl: in water, v rutverse) = 0.14, we 
are able to examine only a small corner of the remaining 
three-dimensionM parameter space. The parameter R is a 
relative measure (analogous to a Rayleigh number in ther- 
mal convection) of the destabilizing effect of the vortex force 
due to wave-current interaction [Leibovich, 1983]; Re, is a 
Reynolds number based on the friction velocity, layer depth, 
and eddy viscosity; and S is a measure of the stabilization 
due to buoyancy relative to viscous effects. 

If c• is the phase angle made by disturbance modes as mea- 
sured from the wind direction (so c• -- tan -• m/k, where 
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k is the component of the wavenumber vector in the direc- 
tion of the wind, and m is the component at right angles to 
the wind), then the main results of the stability analysis are 
as follows: (1) for a given $ and Re., the system is unsta- 
ble when R is increased above a critical value, Re(S, _Re.); 
(2) the most unstable modes are three-dimensional (c• • 0) 
for all S > 0; (3) for a fixed S, [a[ at critical conditions 
has a maximum at Re. • 6; (4) the maximum value of the 
angle c• is reached at an intermediate value in the range 
0 _• S _• 980 studied here, achieving a value of 5.30 ø at 
S -- 120; (5) for large values of _Re,, Rc approaches an 
asymptote whose value is an increasing function of $, with 
rare2, approaching a constant, Ci(S); (6)for small values 
of Re., R• approaches the same asymptote with m/Re2. ap- 
proaching C2(S); and (7) marginally unstable modes are 
oscillatory, and the resulting motion appears as travelling 
waves. 

In the final section, we construct "windrow patterns" by 
computing trajectories of particles on the free surface ad- 
vected by a velocity field found from our linear stability 
analysis. 

FORMULATION 

We consider a layer of water with a mean free surface at 
the plane z* -- 0 and with a no-slip bottom at z* - -d, and 
infinite in x* and y* directions. A uniform wind stress r,o-- 
pu2., taken to be in the direction of the x* axis, is applied at 
the surface. The temperature is taken to be T(0) at the top 
of the layer and T(0) - AT at the bottom. Following CL 
theory [see Craik and Leibovich, 1976; Leibovich, 1977a, b], 
the wind stress is assumed to result in dominant surface 

waves and a weaker mean current evolving on a slower time 
scale. We follow the averaging process of Leibovich [1977b] 
in which the averaged effect of surface waves appears as a 
Stokes drift Us. The averaged equations governing the flow 
in this layer [Leibovich, 1983] are given by 

0u* 
+ u* ß 57'u* - Us* x 57* x u* 

= -V*II* + fia0*k+ •rX7*2u *, (1) 

00' 

Or* + (u* + Us*) ß 57* 0* + w *, (2) 

v* =0, (3) 

where u* = [U* (z) q- u*, v*, w'l, Us* is the Stokes drift, v•- 
is the eddy viscosity, c•- is the eddy heat diffusivity, U*(z) 
is the steady steady mean current, and 8* is the deviation 
of temperature from the mean. 

Equation (2) corrects the corresponding equation in Lei- 
bovich I1977b] to include the advection of temperature by 
the Stokes drift in the energy equation as in G. H. Knightly 
and D. Sather (Langmuir circulations when the Stokes drift 
has a cross-wind component, preprint). 

The mean current and the Stokes drift are both taken to 

be in the wind direction and only z*-dependent. A simple 
basic flow and temperature profile distribution can be 

T*(z) = T(O) q- ATz*/d, (4) 
v* - + v; 

where -T is the eddy viscosity assumed constant throughout 
the layer. A constant stress is applied at the mean top sur- 

face, so we take the top boundary to be stress-free for the 
velocity perturbations. We choose the bottom wall to be a 
rigid no-slip surface. This is appropriate for laboratory ex- 
periments in wind-wave tanks, and for water of shallow and 
approximately uniform depth. With this boundary condi- 

ß 2d/.: r tion, it is consistent to take U• - u, . 
The governing equations are made nondimensional by 

scaling the length scales by depth d, the mean current ve- 
locity and the Stokes drift by PT/d, and time by d2/pT. The 
two-dimensional linear stability problem (with variables in- 
dependent of the z direction) has been solved before by Lele 
[1985] and, under the assumption of a constant stress lower 
boundary, by Leibovich et al. [1989] (henceforth referred to 
as LLM). In two dimensions with a constant Stokes drift 
gradient the governing equations are analogus to equations 
governing the thermohaline convection problem, and these 
analogies have been explored in detail in previous studies 
[Cox et al., 1992a, b; LLM]. Following LLM, we take the gra- 
dient of the Stokes drift to be specified according to 

OU• OU• 
O• = O• (0)h(•). 

For simplicity, the Stokes drift gradient is taken to be a con- 
stant, that is, h(z) = 1. Our experience has shown that 
unless the length scale over which h(z) varies is small com- 
pared with d, the qualitative features of the resulting mo- 
tions do not depend on the form of h. Hence we take the 
form of Stokes drift to be 

Us- R(• + z) ] Re2, , o, o 
where 

Re, - u,d/,r. 

The nondimensionalization leads to two other parameters 
affecting the problem, 

S - figATd 3 

which represents the stabilizing effect of the temperature 
distribution, and 

7'- KT/PT, 

the inverse of the (turbulent) Prandtl number. The scal- 
ing used for the streamwise perturbation u is chosen to 

2dirt to compare with the linear stability results be u, , 
in two dimensions by Lele [1985]. Thus, (u*,v*,w*) = 

Consider small perturbations of the basic state in the form 
(u, v, w) and 0, that is, 

T=T(z)+O. 

The equation of continuity is written as 

+ + -0. (6) 

The linearized form of governing equations are used since 
the perturbations are considered to be small. We eliminate 
v and p by using the linearized z and x components of the 
curl of the vorticity and continuity equations. We arrive 
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at the following non-dimensionM equations for the velocity 
perturbations and temperature [cf. Leibovich, 1977b] . 

•[•, + (V + V•)•/]- • 

5[u, + (v + V)Ux + + 
[ ( = u, (s) 

x 

where 

Ot q- (U q- Us)Ox q- w -- rAO, (9) 

O 2 O 2 O 2 

A -- Oz 2 + •2y2 q- Oz •' 
0 2 0 2 

/•1 ---- Ox 2 q- Oy 2 , 
and the subscripts x, z, t denote differentiation. 

Parameter Estimates 

We estimate the likely ranges of parameters based on 
typical oceanic values. For example, we have examined 
data obtained during the Mixed Layer Dynamics Experi- 
ment (MILDEX). These data are part of the data analyzed 
and presented by Weller and Price [1988]. For a period 
in early November, 1983, during the experiment the mixed 
layer was about 40 m deep. The winds were fairly light, 
and on November 2, the temperature gradient in the mixed 
layer ranged up to almost 4 x 10 -3 K m -1. The winds 
increased after November 6, reducing the temperature gra- 
dient roughly by a factor of 4 on November 7. This leads to 
a Brunt-V/iis•il•i frequency of N = 3 x 10 -3 s -1 or less. We 
can rewrite the stabilizing parameter $ as 

/?gATd 3 ( NdRe. ) 2 = -- Ri, Re•, 

where Ri, is a Richardson number based on the friction 

velocity and layer depth. For the example discussed, with 
u, = I cm s -1, we can estimate S = (12Rc,) 2, or less. Ac- 
cording to Cox and Leibovich [1993], various estimates put 
Re, between 5 and about 50; Tandon [1992] argues that 
a two-layer structure may be more appropriate, and esti- 
mates that close to the surface where the dissipation rates 
are high, Re, may be as low as 2, while at greater depths 
the dissipation rates are smaller and Re, • 50. We vary 
Re, in a larger range for the numerical calculations in this 
paper, from Re, • I up to Re, = 100 for some runs. With 
Re, = 2, we get S = 576 (or less). Note that for labo- 
ratory experiments, we expect significantly smaller values 
of S. We do the stability calculations at S = 0, 10,120 and 
980, respectively in this study, with r = 1/6.7 held constant. 
corresponding to the molecular Prandtl number for water. 
For these parameters, the corresponding vMues of the crit- 
ical wavenumbers along and across the wind direction and 
the corresponding critical destabilizing Rayleigh number R, 
are then found. 

Boundary Conditions 

The system (7) and (8) is fourth order in w and u. We 
thus need four boundary conditions for u and w each, at 
both boundaries in z. Higher-order boundary conditions are 

derived by using the boundary conditions on v, the y com- 
ponent of velocity. Since the wind stress at the top surface 
is assumed constant, the perturbation velocity components 
carry no stress, that is, 

uz -- O, (10) 
vz -- O, (11) 
w -- O. (12) 

Differentiating the equation of continuity (6)with respect 
to z, •t z- 0 •nd using (10) •nd (11), we get 

w• -- 0. (13) 

We use the linearized y component of the vorticity equa- 
tion to derive higher-order boundary conditions for u. This 
equation can be written as 

o (d,u - - o - + (v + 
-- -$0x q- A(Re•,u• - Wx). (14) 

Recognizing that at the top boundary, u,t -- wxt -- uzx = 
w• -- 0, and using the continuity equation (6), we get 

+ - -SOx - Ox). 

Again, at z - 0, Wxxx -- Wxyy -- 0 from (12), and Wx** = 
(w**)x -- (-vyz- Re•.Ux,)x - 0 from (6), (10), and (11). 
Similarly, Au, - u,• + u•uy + uz** = U,z, at z - 0. Thus 
the boundary condition at the top boundary is 

Re4, ux + Re•,wz - Re•,u•- SOx. (15) 

In the stability analysis, (10), (12), (13), and (15) are used 
as boundary conditions at z = O. 

Various temperature boundary conditions may be appro- 
priate' we set 

0 -- 0 at z -- 0,-1. 

Since v has been eliminated, the no-slip conditions at the 
lower boundary are 

u = 0, (16) 
w = 0, (17) 

w, = 0, (18) 

where we have used (6) to get the last boundary condition. 
In addition, we derive a higher-order boundary condition 
from the y component of the vorticity equation (14). Rec- 
ognizing that wxt = w• = v u = w•x = Wxyy ---- 0 at the 
bottom wall, z =-1, equation (14) reduces to 

+ (v + V)Ux] - - - SOx. 
Assuming normal mode form for the perturbations, 

(u, v, •o,O) 
= Re{[u(z),v(z), w(z),O(z)]exp[i(mx + ky)+ err]} 

(19) 

(20) 

results in a tenth-order eigenvMue problem. The equations 
for u and w are each fourth order in z, and 0 is second order, 
with 10 boundary conditions. The eigenvalue er depends on 
the following parameters: 

er = er(ra, k; R, $, Re., r). 

Here, m is the wavenumber of the disturbance in the wind 
direction and k is the wavenumber of the disturbance in 

the cross-wind direction. This perturbation is at an angle 
tan -1(m/k) to the wind. 
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The equations are solved by using a spectral tau- 
collocation method employing Chebyshev polynomials, and 
the eigenvalues obtained by solving the corresponding ma- 
trix eigenproblem. The eigenvalue problem is solved using 
the double-precision complex version of the QZ algorithm 
[cf. Golub and VanLoan, 1991] . We consider the resolution 
to be sufficient when the eigenvalues are resolved to four sig- 
nificant places. The corresponding maximum change in the 
eigenfunction IIX•v2- X•v•ll/lIXm•xll • 10 -4 for the most 
unstable eigenfunction. 

Independent checks were made to test the accuracy of 
some eigenvalues. Analogies with double diffusive systems 
with different boundary conditions can be made when the 
perturbations are taken to be two-dimensional. We have 
checked the eigenvalues against the analytical expressions 
available for the linear double diffusive systems [Huppert 
and Moore, 1976]. From equation (2.6b) of their paper, 
Rc- 898.3088 and eri = 4-1.46696, corresponding to the pa- 
rameters r = 0.15, k = •r/x/• and $ = 50 in our formulation, 
with appropriate boundary conditions. Our linear stabihty 
code gives us Rc = 898.3088 and eri = 4-1.46697. In the ab- 
sence of the Stokes drift and stratification terms, the system 
of equations reduces to those governing unstratified Couette 
flow. For unstratified Couette flow, we compare our results 
with those of Gallagher and Mercer [1962]. From their pa- 
per, for c• - 4, R = 1, A• = 1.70 + 0.0i which corresponds 
to er = -80.7783- 4.0i, and from the spectral code with 
N = 24, we get er = -80.7298- 4.0i. The eigenvalue checks 
were done against Lele [1985] for the cases where perturba- 
tions are independent of x direction at different stratification 
(and Re,) values. The eigenvalues for this case are indepen- 
dent of Re,, as expected. For a linear Stokes drift gradient 
(;k = 0), at $ = 0, r - 0.15 yields R• = 669.0, k• = 2.09 by 
the linear stability code which agrees with Lele [1985]. Some 
eigenvalues for three-dimensional modes were also checked 
against a shooting method using Newton's technique and 
numerical integrations using adaptively controlled step sizes 
[Press et al., 1986]. For example, when m - 0.2, k = 2.07, 
S = 20.0, Re, = 10.0, and R- 760.0, the spectral linear 
code gives er = -0.3461105 - 14.13044i, while the shooting 
method gives er = -0.3461527 - 14.13035i. The eigenvalues 
are also checked against mixed boundary conditions, as in 
Cox and Leibovich [1993]. For example, at mixed bound- 
ary condition parameters c•t = 0.06, c•b = 0.4, and S - 0, 
the critical values are k• = 1.2, and R• = 211.701, which 
checks with the linear stability results of S.M. Cox (private 
communication, 1991). 

RESULTS 

We search in parameter space for most unstable modes. 
The problem has the following symmetries: 

er(m,k;R,S, Re,) = er(m,-k;R,S, Re,), (21) 
er(m, k; R, S, Re,) = •(-m, k; R, S, Re,). (22) 

In the absence of stratification (S = 0), the energy equa- 
tion decouples from the velocity equations and an eighth- 
order eigensystem of ODEs is solved. For these cases it is 
found that the critical neutral disturbance (one that corre- 
sponds to the highest growth rate with the least destabi- 
lizing Rayleigh number) is one with m = 0. This implies 
that two-dimensional disturbances render the system most 
unstable, as suggested by the energy stability analysis of 

Leibovich and Paolucci [1980]. For this case, the critical y 
wavenumber kc - 2.09, eri - 0, and corresponding desta- 
bilizing Rayleigh number Rc- 669.0, independent of the 
Reynolds number. For a weak three-dimensional mode at 
S - 0, say, m = 0.02 and Re,• - 5.1, R• - 669.27 and 
er• - -0.672. At Re, - 1.0, for m - 0.02 at R- 669.0, 
the growth rate err - -0.29, and eri - -8.710. So, two- 
dimensional disturbances are most unstable for unstratified 

water. 

For stratified flow, three-dimensional effects become im- 
portant and most unstable modes correspond to ones with 
m • 0.0. The ratio of m to k still remains quite small, that 
is, length of critical rolls in wind direction is much longer 
than their width in cross-stream direction. In their energy 
stability analysis for an infinite depth layer, Leibovich and 
Paolucci [1980] concluded that the system is most unstable 
to two-dimensional disturbances, though they did not rule 
out the possibility of three-dimensionM disturbances in a 
narrow band about m -- 0.0 with a smaller region of global 
stability than at m- 0.0. 

To confirm that three-dimensionM disturbances are im- 

portant at all nonzero values of S, we find the critical desta- 
bilizing Rayleigh numbers for a three-dimensional mode and 
compare it with the two-dimensional values of the critical 
Rayleigh number. This is done at m - 0.02 while $ is var- 
ied from 10 to 200. The results appear in Table 1. The 
critical Rayleigh number R• with increasing S for m- 0.02 
is smaller than for m -- 0.0, so three'dimensional distur- 

--2 R•/R½2, c and bances are important. In Table 1, Re,• m , 
eri • er-7 since the dominant term in the eigenvalue problem 

__ 

for these parameters is Re, 2 + R/Re, 2. Another test run is 
done at constant stratification S = 120.0 and R- 913.73 

for different values of Re,. Then, er - o'(m•,kc, Re,•). The 
results appear in Table 2. 

As Re, is increased with R and S fixed, the growth rate 
decreases for an intermediate range in Re,. R• approaches 
the same asymptotic value R• for Re, >> 1 and Re, << 1 
depending on S but independent of Re,. For Re, >> 1, 
rare2, -• const - C• for the most unstable mode; and 
for Re, << 1, mc/Re2,• -• const = C2. Both asymptotic 
behaviors are clear from Tables 3 and 4. 

To determine at what stratification S three-dimensionM 

effects become important, and to determine how their char- 
acteristics vary with Re, for a given stratification, we adopt 
the following strategy. Fix the stratification at a constant 
value S, and vary the Reynolds number from small to large 

TABLE 1. Critical y Wavenumber, Critical Reynolds Number, 
Critical Rayleigh Number and Imaginary Part of the 

Eigenvalue for Various Stratification Values 
at ra - 0.02 

S kc Re•2, •--2 __ c Re*c Rc rri rri 

10 2.06 3.93 179 705.5 -2.45 -2.44 

20 2.04 2.10 352 734.5 -4.75 -4.78 

40 2.00 1.64 478 780.4 -6.58 -6.61 

80 1.96 1.50 571 853.2 -8.12 -8.15 
200 1.93 1.61 633 1016.7 -9.79 -9.81 

For comparison, a restriction to two-dimensional modes (m 
0) at S - 10 yields Rc • 745 and at S - 200 yields Rc • 1200. 

•-•--2 

Re•2, c and Re,c correspond to the lower and higher values of Re, 
at which m = 0.02 ' mode is most unstable Re, ~ R•/Re , and ' c ~ 
rr i • rr--[ since the dominant term in the eigenvalue problem for 

these parameters is Re, 2 q- R/Re, 2. 
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TABLE 2. Wavenumbers, Growth Rate and Imaginary Part of 
the Eigenvalue for the Most Unstable Modes at S = 120, 

R = 913.73 with Increasing Reynolds Number 

Re2, mc kc o'r o'i 

0.01 13.3 x 10 -5 1.94 0.0 -8.90 
1 13.3 x 10 -3 1.94 0.0 -8.90 
5 64.0 x 10 -3 1.94 -5.97 x 10 -3 -8.82 

10 0.115 1.94 -0.02 -8.60 

100 0.107 1.94 -0.0176 -8.61 

500 0.024 1.94 0.0 -8.83 

103 1.22 x 10 -2 1.94 0.0 -8.94 

values and find (me, kc, R•) for each Re.. For each of these 
runs, we can also determine the maximum deviation of the 
roll axis from the axis of the wind direction, defined as 
c• - tan-l(m•/k•), in the process. The results for these 
calculations are presented in Tables 3, 4, and 5 correspond- 
ing to $- 10, 120, and 980, respectively. The tables show 
the variation against Re2.. This is the right scaling from the 
equations, and it also serves to enlarge the region of interest 
in Re. where three-dimensional modes occur. 

Some trends can be noted from Figure 1, which shows 
the maximum deviation of rolls from the wind direction for 

different values of stratification. At high and low Reynolds 
number the rolls are nearly aligned with the wind. There 
is an intermediate Reynolds number at about Re. - 6 at 
which the roll angle c• is a maximum. Figure 2 shows the 
corresponding values of R•- R__s_•. As stratification increases, 
the maximum angular deviation of roll axis from the wind 
direction increases to a maximum of 5.3 ø near S - 120 and 
decreases as the stratification is increased further. We can 

interpret the mc/k• ratio in two ways. One possible configu- 
ration is to imagine two-dimensional infinite rolls at an angle 
to the wind. This angle in our model depends on the strati- 
fication S and the Reynolds number Re.. So, at marginally 
unstable values of R, one may, for example, observe rolls at 
an angle to the wind direction. This linear stability analysis 
cannot predict whether the left or right rolls would be stable, 
and one needs to include nonlinearity to investigate these ef- 
fects. Another possible combination is to combine a left and 
a right mode to see two-dimensional rolls modulated in the 
direction of the wind. From Tables 3, 4, and 5 we see that 
the k• variation is small, that is, critical roll width in the 
cross-wind direction is approximately the same. In this case 

TABLE 3. Maximum Roll-Deviation From the Wind 

Axis at $ = 10, With Varied Reynolds Number 

Re2, rn, c kc Re o'i c•, deg. 

0.1 5.2 x 10 -4 2.06 705.4 -2.45 0.014 
1 5.2 x 10 -3 2.06 705.4 -2.45 0.14 

10 3.5 x 10 -2 2.05 705.6 - 1.88 1.00 
30 3.5 x 10 -2 2.05 •uo.• -1.24 i.00 
40 3.60 x 10 -2 2.05 705.8 -1.39 1.01 
50 3.71 x 10 -2 2.05 705.7 -1.63 1.04' 
60 3.7 x 10 -2 2.05 705.7 -1.77 1.03 
75 3.5 x 10 -2 2.05 705.6 -1.95 0.98 

100 3.0 x 10 -2 2.05 705.5 -2.15 0.84 
500 7.2 x 10 -3 2.06 705.4 -2.41 0.20 
103 3.70 x 10 -3 2.06 705.4 -2.47 0.10 
104 3.66 x 10 -4 2.06 705.4 -2.44 0.01 

Also enlisted are the critical wavenumbers, Rayleigh number, 
and imaginary part of the eigenvalue. 

* The maximum deviation is 1.04 ø at Re2. = 50. 

TABLE 4. Maximum Roll-Deviation From the Wind Axis at 

$ - 120, With Varied Reynolds Number 

Re2, mc kc Rc o'i c•, deg. 

1 13.3 x 10 -3 1.94 913.7 -8.90 0.39 
10 0.115 1.94 917.0 -8.62 3.39 

20 0.168 1.95 921.2 -8.26 4.92 

25 0.178 1.95 922.4 -8.19 5.21 

30 0.181 1.95 922.4 -8.20 5.30* 
35 0.179 1.95 922.3 -8.18 5.24 

40 0.175 1.95 921.8 -9.21 5.13 

50 0.163 1.94 920.7 -8.28 4.80 

102 0.108 1.94 916.6 -8.68 3.19 
103 1.22 x 10 -2 1.94 913.7 -8.94 0.36 
104 1.2 x 10 -3 1.94 913.7 -8.94 0.036 

Also enlisted are the critical wavenumbers, Rayleigh number, 
and imaginary part of the eigenvalue. 

* The maximum deviation is 5.30 ø at Re2. = 30. 

TABLE 5. Maximum Roll-Deviation From the Wind 

Axis at $ -- 980, With Varied Reynolds Number 

Re2, m c kc Rc o'i c•, deg. 

1 8.9 x 10 -3 2.13 1764.1 -15.83 0.24 
10 8.2 x 10 -2 2.14 1766.7 -15.64 2.19 
20 0.14 2.16 1771.7 -15.66 3.71 

30 0.16 2.18 1774.8 -15.19 4.20 

35 0.166 2.18 1775.6 -15.17 4.35 

40 0.168 2.18 1776.0 -15.24 4.41' 
50 0.165 2.18 1775.8 -15.35 4.33 

60 0.16 2.17 1774.8 -15.19 4.22 

70 0.15 2.17 1773.7 -15.16 3.95 

80 0.14 2.17 1772.6 -14.55 3.69 

100 0.13 2.15 1770.6 -15.68 3.46 

500 0.031 2.13 1764.4 -15.78 0.83 

103 1.57 X 10 -2 2.13 1764.2 -15.84 0.42 

The table also enlists the critical wavenumbers, Rayleigh number, 
and imaginary part of the eigenvalue. 

* The maximum deviation is 4.41ø at Re2. = 40. 

one could interpret the rn•/k• ratio to be a measure of the. 
inverse of the windward roll length. Therefore at $ = 10, 
the minimum roll length-to-width ratio is about 55.2; 10.77 
at S = 120; and at S = 980 it is 12.97. An intermediate case 
for different amplitudes of left and right modes would show 
us both modulation in the x direction and rolls being at an 

0.1 ........ I ........ 1 ........ 
5.30 ø . 

0.08 S = 120 - 
0.06 =980 _ 

0.04 _ 

0.02 

• •o 

0.1 1 10 100 
Re, 

Fig. 1. Deviation of rolls from the wind direction. The maxi- 
mum deviation is 1.04 ø, 5.30 ø, and 4.41 ø for $ = 10, 120, and 
980, respectively. An alternate interpretation is roll width-to- 
length ratios for various stratification values, characterizing three 
dimensionality of the most unstable mode. 
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10 s = 980 
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:1ø 
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Re, 

Fig. 2. The variation in critical value of the destabilizing Rayleigh 
number from its asymptotic value Rc- Rc with Re, at S - 10, 
120, and 980. 

angle to the wind. The inclusion of nonlinear effects would 
shed some light on which of these states would actually be 
observed. 

The imaginary part of the eigenvalue is nonzero, which 
indicates that most unstable modes are also time-dependent. 
For a 02-m layer, with Re, = 15, u, - 1 cm s -• the ß , 

dimensional time periods are of the order of 13.1, 3.5, and 
2.0 min at S -- 10, 120, and 980, respectively. For a mixed 
layer with a depth of 40 m and the same value of Re,, the 
time periods are increased by a factor of 200. 

DISCUSSION AND CONCLUSIONS 

Stratification causes the most unstable Langmuir circu- 
lation modes to be three-dimensional. For moderate values 

of stratification and physically reasonable values of Re,, the 
maximum roll angle is small. For Re, > 15, at S = 120 
the maximum roll-deviation is less than 4 ø. For lower Re, 

the maximum deviation is about 5.3 ø , and the maximum 
deviation appears at Re, • 6. 

We have calculated particular examples of surface 
windrow patterns based on our linear stability analysis to il- 
lustrate this effect. Windrows are formed by tracking 10,000 
particles on the surface of the layer for S = 120,/• = 922.4, 
and Re2, = 30, subject to the marginally stable velocity field 
obtained from the linear stability analysis. The normaliza- 
tion of the linear perturbation is arbitrary, and the choice 
made for the figures sets the maximum surface windward 
velocity perturbation to be 7.6% of the undisturbed surface 
speed. The particles are passive tracers moving with this 
velocity field. The required data are given in Table 4. The 
numerical integrations are performed by using a Bulirsch- 
Stoer method [Press et al., 1986] for the particle positions. 
We present two cases: a mode forming parallel rolls at an 
angle to the wind, obtained by taking a single unstable 
wavenumber ((re, k) = (0.181,1.95))and a linear combi- 
nation of the same mode but with both m = 4-0.181 with 

equal amplitudes. The degree of organization for left and 
right amplitude windrows is time-dependent and windrow 
patterns rearrange themselves in time. Figure 3 shows the 
left mode for /• - 922.4 and Re2, - 30 at a streamwise 
wavelength-to-depth ratio of 34.7 and spanwise wavelength- 
to-depth ratio of 3.2, after five time periods of the linear 
mode. The streamwise and spanwise scales in this figure 
are scaled by the depth. The corresponding pattern for a 
single wavenumber roll with m = -0.181 is a mirror image 
of the pattern at m = 0.181. The hnear combination of 
modes gives rise to a steady windrow patt. ern convected in 
the streamwise direction. This pattern is modulated in the 
streamwise direction as shown in Figure 4. 

The pattern in Figure 3 is periodic in time with (angular) 
frequency co =-8.20v•,/d 2. Writing pip = u,d/Re,, Il- 
8.20(u,/d)/Re,. The pattern would appear to be drifting 
from the top to the bottom of the page with a phase speed 

or - For the example, Re, = 
x/• = 5.5, and so c• = 8.3u,. For u, = 1 cm s -•, this gives 
a drift speed of about 8 cm s -• 
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Fig. 3. Windrow pattern for the left mode at ra = 0.181, k = 1.95, /•e2, = 30, and/• = 922.4, at the end of 
five time periods. The initial field is an equally spaced field of 10,000 particles covering two wavelengths in the 
streamwise direction. The windrows are at an angle c• - 5.3 ø to the wind direction. 
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Fig. 4. Same windrow pattern as in Figure 3, with equal amplitudes of left and right modes. 

The pattern in Figure 4 would appear to drift in the wind 
direction (to the right of the figure), with a phase speed 
c• -I•ld/k- elm/k, or c2 • .8 cm s -•. Notice that the 
ratio of windward wavelength to crosswind wavelength in 
this figure is 10.77, so that the length-to-spacing ratio of the 
modulated rolls has this value for this particular example. 
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