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ABSTRACT

A numerical study of the fully nonlinear instability of the ocean to Langmuir circulations is reported.
The extended Craik-Leibovich theory is used to compute the development of a mixed layer in an ocean
of infinite depth as an initial value problem. A wind stress and surface wave field are imposed on a
quiescent ocean with a linear temperature gradient. The initial response to the applied stress is a rectilinear
current that is unstable to Langmuir circulations. The resulting convective motions appear to cascade
energy from small-scale circulations to more vigorous ones of larger scale. Horizontal averages allow one
to identify the Reynolds stress, heat flux and mixing efficiency of the Langmuir **eddies.”” Mixing effi-
ciencies several times (up to an order of magnitude) larger than those reported in laboratory experiments
are possible. It is suggested that numerical experiments such as these may offer a means of parameterizing
the effects of sea state and Langmuir circulations for use in one-dimensional and mixed-layer models.

1. Introduction

Langmuir circulations (L.C) are large-scale, organ-
ized convective motions in the surface layers of the
ocean. Surface windrows are visible manifestations
of LC that often, but not always, form along the
convergence zones of the convection cells. LC are
typically of larger horizontal scale than thermally
driven convective instabilities, and exist under both
thermally stable and thermally unstable conditions.
Downwelling velocities approaching 1% of the wind
speed and the large scale of LC suggest that this
phenomenon can be a powerful mixing mechanism,
and of importance in the establishment and main-
tenance of the mixed layer. The purpose of this paper
is to explore the contributions made by LC to the
stirring of the mixed layer in quantitative terms. To
this end we isolate Langmuir circulations from the
collection of possible mixing mechanisms, and cal-
culate the development of a mixed-layer subject to
no other mixing process.

In the recent Craik-Leibovich theory (Craik and
Leibovich, 1976; Leibovich, 1977a; hereafter denoted
as CL and L1, respectively), Langmuir circulations
occur due to the interactions of wind-driven cur-
rents and surface waves. The theory rests on a set of
equations, set out in their fullest form in Leibovich
(1977b, hereafter referred to as L2) for the Eulerian
mean flow in surface layers under the influence of
nearly irrotational surface waves and a surface wind
stress. Statically stable or unstable density stratifi-
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cation is allowed for through the Boussinesq ap-
proximation. These equations may be derived by the
averaging procedure described in L1 or more easily
(Leibovich, 1980) from the exact generalized
Lagrangian mean equations of Andrews and
Mclntyre (1978). Surface wave activity leads to a
forcing of the mean flow that is felt through a *‘vor-
tex force’’ created as a result of vortex line deforma-
tion by the wave Stokes drift in a way first de-
scribed by Leibovich and Ulrich (1972) in a paper
that reexamined the Langmuir circulation model
originally proposed by Craik (1970). This vortex
force may create a torque on the underlying water
(see L2) leading to convective activity in either of
two ways. One mechanism, explored in CL, L1 and
Leibovich and Radhakrishnan (1977) and which we
will call CL1, directly forces overturning motions
through a surface wave field with a high degree of
directional order. The second (or CL2) mechanism
(Craik, 1977, L2) produces overturning as a result of
an instability of the mean flow created by a vortex
force due to waves with no special directional
properties.

The generalized CL equations (L2) have an
**equilibrium’’ solution consisting of an unsteady
unidirectional current [L1, (2.3), (2.4)] and no tem-
perature perturbations. We have studied the global
stability and the linear instability of this motion, and
the results will be presented elsewhere (Leibovich
and Paolucci, 1980a,b). One result of these studies
is confirmation that the motion is most unstable to
rolls aligned with the applied wind stress; since ob-
served Langmuir circulations are of this form, the
result was expected.
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This paper explores the fully nonlinear con-
sequences of the instability mechanism of generating
Langmuir circulations in a stratified ocean. The
establishment of a mixed-layer structure from an
initial uniform (stable) density gradient by means of
Langmuir circulation instability is computed from
the theory as an initial-value problem. No other
mixing mechanisms are invoked. The calculations
assume a constant applied wind stress, motion
independent of the coordinate aligned with the ap-
plied wind stress, and a horizontally homogeneous
surface wave field as input. The results of the
numerical experiments are detailed time-dependent
temperature and velocity fields in the Langmuir
cells. Reynolds stresses and buoyancy flux due to
the Langmuir circulations are computed from the
detailed motion by means of horizontal averages.

Langmuir circulations are reportd to occur when
wind speeds exceed 3 m s™! for time durations of
several minutes. One presumes, consequently, that
their occurrence in the ocean is pervasive, and that
most vigorous wind stirring events involve LC as
one component. The position, size and motion rela-
tive to the water of LC depend on, and are therefore
as variable as, the wind and sea state. Thus, in ve-
locity measurements made in the ocean with sub-
records averaged over periods of an hour or longer,
Langmuir circulations appear as part of the turbu-
lence. In fact, as in the case of the ‘‘coherent struc-
tures’’ in turbulent shear flow now being explored
experimentally in many laboratories, the occurrence
of LC cannot be determined solely from time series
of velocity obtained from a single instrument or even
from an array of instruments unless the array was
especially designed and deployed for this purpose.
As in the case of turbulent ‘‘coherent structures,’
identification of LC requires conditional sampling,
and visual guidance has been essential.

One-dimensional models of the mixed layer are
semi-empirical and depend on laboratory stirring
experiments for inputs. Laboratory experiments,
however, must underestimate mixing, because large-
scale instabilities producing vigorous mixing are
excluded in these experiments. This point is made in
Turner’s (1973) monograph, with specific reference
to LC. As an indication of the vigor of LC mixing,
our computations show that typical sea state and
wind stress conditions produce a mixing efficiency
several times that measured by Kato and Phillips
(1969).

A theoretjcal description of LC consistent with
field observations of the actual events can therefore
supply ‘information for use in one-dimensional
models that is otherwise unavailable. In addition to
providing information relating mixing to wind forc-
ing, the effects of the sea state, which are impor-
tant to LC formation, presumably can be parame-
terized from numerical experiments on a theoretical
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model of LC such as ours and introdiced into one-
dimensional models.

The theoretical CL1 model explored in earlier
work appears to give results consistent with field
observations (L.1; Leibovich and Radhakrishnan,
1977) and with laboratory experiments on Langmuir
circulations designed to test the CL1 mechanism
(Faller, 1978; Faller and Caponi, 1978). The CL2
instability mechanism explored here is based on the
same scaling assumptions and therefore, as sug-
gested by Leibovich and Radhakrishnan (1977,
p. 484), the general features of the convective cells
resulting from both the direct and the instability .
mechanisms are expected to be similar. The present
computations confirm this expectation. Since the
instability mechanism does not depend upon any
special surface wave organization, it would seem to
be the more attractive possibility for Langmuir
circulations. It should be noted, however, that the
direct forcing mechanism nearly always acts, but
may be able to exert a coherent effect only for short
periods of time. While this short time duration limits
its ability to produce long-lived Langmuir circula-
tion structures, the direct forcing can be expected
to lead to initial perturbations that can be sub-
sequently amplified into long-lived Langmuir cir-
culations by the instability mechanism.

In Section 2, the equations and boundary condi-
tions governing the motions we shall study are pre-
sented. Four dimensionless parameters, depending
on wind stress, surface wave characteristics, tur-
bulent fluid ‘‘properties’ (where an eddy viscosity
assumption has been made) and the initial ambient
temperature gradient, appear. These parameters are
an inverse Reynolds number, called the Langmuir
number following L1, a Prandtl number, a **Richard-
son number,”” and a parameter specifying the
horizontal width of a convection cell.

The energetics of the convective motion are dis-
cussed in Section 3. The finite difference method
of solution that we use is presented in Section 4,
and numerical results are discussed in Section 5.
In numerical experiments such as this, the width of
the computational field must be specified a priori.
One usually expects, however, that a preferred hori-
zontal wavenumber is selected by the instability
process. We present detailed calculations for a cell
spacing close to the mode Leibovich and Paolucci
(1980a) expected to be most unstable according to
linear theory, and also for one other choice of width
of the computational space. In both cases, convec-
tive motions with more than one wavelength initially
grow and compete, leading to a changing number of -
convection cells as the computation advances in
time. It appears as though a cascade occurs from
small-scale circulations to the largest scale possible
in the calculation. Clearly, although the instability
characteristics of linear theory select the preferred
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mode for marginally unstable systems, they are not
useful in the highly unstable regimes considered in
this paper, and generally prevailing in the ocean.

A transfer of energy to larger scales was one of
the principal conclusions drawn by Faller and
Caponi (1978) from their laboratory wind-wave tank
experiments on Langmuir circulations. The ultimate
size of the cells in the experiments is limited by the
water depth, but the trends in the experiments
are consistent with trends in the solutions pre-
sented here.

Moen (1978) has constructed a model for Langmuir
circulations in homogeneous water. We do not
believe the model is correct [see Section 3 of Leibo-
vich (1980) for a critique]. Nevertheless, the final
equations that he employs have exactly the same
mathematical form as the CL equations for constant
density water (although the interpretation and param-
‘eters are, of course, different). Thus, computations
with these equations may be transformed by a suit-
able scaling into solutions of the CL equations.
Moen (1978) has carried out extensive computations
similar to the ones presented here, and with similar
results. In particular, his calculations also suggest
a cascade from smaller to larger scales, although he
did not place the same weight on this tendency as
we do. Taken together, the two series of computa-
tions reinforce each other, and strengthen the evi-
dence for an energy cascade.

2. Equations for wind- and wave-driven convec-
tive mixing of stratified water by Langmuir
circulations

In this section, the Eulerian-mean equations
governing wind-driven motion of stratified water will
be recorded. The reader interested in their deriva-
tion is referred to Leibovich (1977b).

If we let the positive Z coordinate point vertically
upward, the  coordinate point in the wind direction
and the x-y plane represent the ocean surface, then
in the Boussinesq approximation the motion of the
developing currents are described by

Vv =0, (D
—6? + v Ve

<>

=iy, X (VX %) — VIT + Bgbk + v,V2%, (2)

a6 , _ .
with the boundary conditions
. 9 N
9 M 9y 2§=0 on z=0
9 v 8z , 4
v, 80 as f— -
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where the carets signify dimensional quantities,
and the del operator is understood to be dimen-
sional. In the above, ¥ is the velocity vector, 6 is
the temperature deviation from the conduction solu-
tion 7(2) in the motionless fluid, ITincludes the mean
kinetic energy of the wave motion per unit volume
in addition to the averaged pressure per unit volume,
and 1 is the Stokes drift velocity (see Phillips, 1977)
defined by the time average (indicated by the angle

brackets)
?
g = <( J ﬁwdr)~Vﬁw>

and arising from averaging the Navier-Stokes equa-
tions over the time scale comparable to the period
of the surface wave field 4,. In Eqs. (2)-(4), u, is
the water friction velocity, B8 the coefficient of ther-
mal expansion, and v; and a, are the (turbulent)
viscosity and thermal diffusivity, respectively; all
are assumed to remain constant in time.

The boundary conditions chosen reflect the fact
that at the free surface Z = 0, the vertical current
vanishes, and the problem of motion developing
under the action of an applied wind stress may be
treated by imposing the appropriate stress boundary
conditions. For water of infinite depth, all disturb-
ances should decay as Z — —o. Finally, thermal
boundary conditions must also be imposed on the
temperature 8. By virtue of the definition of T, if we
assume that the temperature at the surface and at
infinite depths is held fixed, then § = 0 at 2 = 0 and
as Z —» —o,

Any suitable boundary condition on

T=1,+T+86,
where T, is a reference temperature, could have
beenimposed at the free surface Z = 0. For example,

one may have taken a prescribed temperature
T43,0), in which case

é()’) 501i) = 7‘—‘0()’\) ’f) - Tr - T(o)’
or a prescribed heat flux T,/ (3,1), in which case

&)

90 . .
Ty @,0,0) = To'(y,8) — T'(0),

where

and

3=0-

Lo of
'O =—-©

The chosen boundary condition on é is therefore
one of several physically interesting possibilities.
We assume that the ocean is initially at rest, ex-
cept for a statistically stationary random surface
wave field (or the more elementary case of straight-
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crested monochromatic waves) with Stokes drift in
the wind direction, and that the mean motion that
ensues on application of the wind stress is independ-
ent of the wind (x) direction. Thus, we write
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V=90.20 = (,0,W), 8= 000,
lAls = (123(2),0,0)

It is appropriate to nondimensionalize our variables

with respect to wave parameters following L1:

vl o)\ 2 o
X = k'x, i = (—TL t, i, = a*koug, M= ula® (—)H
AKU Vr (8)
R u,’ o \12 g \12 . o
V= {—*— u, u*a(—-) v, u.*a(—) wil, 0=«k"T()0
VrK Vr Vr
Here u, is the water friction velocity related to a
constant wind stress 7, by 7, = pu %, where p is a Pr = Pr (13)
(constant) reference value of the water density; « is Vap

a characteristic wavenumber of the surface wave
spectrum; g is a characteristic wave amplitude; and
o a wave frequency scale which is taken to be
(gx)Y2. Tt is worth noting at this point that u.(z)
typically decays with depth at least exponentially
fast [see Kenyon (1969) for the Stokes drift for a
wavefield with arbitrary energy spectrum].

If the dimensionless variables in (8) are introduced
in (1)-(3), we obtain

V-v=0, C)
—%% + v-Vv =uVu + Ri 6k — VII + La Vv, (10)
00
—67+v-V0=—w + La Pr! V24, (11)

where the nondimensional parameters arising are the
Langmuir number La as defined by Leibovich
(1977a) to be

1/2
Kvp [ vp
La = -1,
au, \ o

(12)

a turbulent Prandtl number, defined to be

1/2
Wzt = 2(£) [exp(—n?) — mioy erfe(n)li = @i, =
w

VII = u, Vi, 6=0

Actually, any transient solution of the one-dimen-
sional unsteady heat equationin —» < z < O can be
taken for 0; the choice in (17) is obviously the simplest
possibility. To analyze the stability of (17) numeri-
cally, one can superimpose a disturbance to the
above solution at any time 0 < ¢ < +o%, and trace
its growth (or decay) in time.

A quantity of physical interest is the heat flux
across the ocean surface. This is measured in dimen-
sionless form by the Nusselt number Nu, which is
the ratio of the actual heat flux to that caused by con-

and Ri, a Richardson-number-like parameter, defined
to be B
_ BeT'®) v

Ri = .
(auwx)? o

(14)

The nondimensional boundary conditions are

El,i: 1, a_v:w::ezo on z=10
0z 0z (15)
v, §—>0 as z—> —®

We also note that the dimensionless temperature
is now given by

T(y,z,t) = T(z) + 0(y,2,0),

where we let

(16)

«T

r="1-1) 5
7 T

Since the temperature was nondimensionalized with
respect to the conduction temperature gradient, the
surface temperature can be arbitrarily fixed.

A solution to the above problem subject to zero
initial conditions is (cf. Leibovich, 1977a)

4

 2(La ) a7

duction alone; if there is no convection, Nu = 1.
The local value of the Nusselt number at the surface
is given by
a6
NUO = 1 + —
62 2=0

(18)

3. Energetics

In this section, we briefly consider the sources
and sinks of mixing energy in the fluid, and introduce
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horizontal averages that will be later extracted from

z
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the detailed numerical experiments.

We suppose that the motion is periodic in the cross-
wind (y) direction with wavelength A,,. We need not

z
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Streamline patterns at various times for A, = 2.
Downwelling motion occurs along the sides of the region and
upwelling in the center. Since the cells are symmetric, only one
of them will be labeled and other will have the opposite sign.
(@)t =29;(b)t = 35; (c) ¢ = 56.

restrict ourselves in this section to motion independ-
ent of the wind (x) direction; if we allow for x varia-
tions, however, we require that they also be periodic
with a finite period A;. If the scalar product of the
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momentum equation (2) with the velocity vector ¥V is
formed, the resulting equation integrated over a
period iny and x (or over a unit x distance in the case
of x independent motion) and over the entire water
column —« < z < 0, and boundary conditions (4)
applied, the result is

ax _ J pg P bdx + J 7ot (x,y,0,t)dxdy
dt 174 S

i,
~f piy £ dx - D,
v dz

where K is the kinetic energy of the. mean motion

K=1% J pv-vdx

v
and D is the dissipation rate to the turbulence and
eventually to heat,

D =J pvVV:Vidx.
v

Also V is the fluid volume over which the integration
is taken, 7, the (assumed constant) surface wind
stress, and S the horizontal rectangular surface with
sides A, and A,. We note that the rate of increase of
potential energy, PE, of the system is

i PE = —

dt (1)

J pg B bdx
v
so the rate of increase of mechanical energy of the
mean motion

E =K + PE
is described by

"
arE J rofidxdy — J v Zdx — D, (20)
< dz

dt 4

According to (20) the increase in kinetic and po-
tential energy of the ocean is due to (i) the rate of
work done at the surface directly by the wind stress
7, on the mean current; (ii) the rate of energy ex-
tracted by the mean current Reynolds stresses from
the surface waves, as represented by #,; and (iii) a
decay due to transfer of energy to turbulence and
heat through D. We note, in particular, that the
Langmuir circulations draw energy from the wind
in two ways, one directly as in (i), and the other from
the waves which, if they are to be maintained (as
assumed here), must extract energy from the wind at
arate sufficient to compensate for the loss to the LC.
It turns out, however, that the rate of energy trans-
fer from the wind to the L.C via the waves is very
small compared to the direct power deposition by
the wind to the mean current.

If the momentum and heat equations are integrated
only over the horizontal rectangle S indicated above,
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F16. 2. The wind-directed current speed at the surface as a
function of the spanwise coordinate y for different values of time.

the result normalized by the integration area, and the
operation indicated by an overbar

_ Lo ™
)= J de Cydy, @D
A'.'4!‘A'1l 0 0
the results are
oV 0
AR A
ot dz
o . Om 9%
= (fy— +gB0 — — |k + vp— , (22
( dz 8k z ) T 8z2 22
00 #6  8—
— = ap— — — W6. (23)
ot a9z 9z
Continuity implies
w =20 (24)
and the stress boundary conditions imply 7 = 0.
Thus, Eq. (22) reduces to
oh o onw
—_— =y — — 25
ot T 9z 0z (25)
and
a7 oh .
— =0, — + gB86. 26
0z oz &k =
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Ugye (2,1)

t=29
t=35
t=475
t=56

Fi1G. 3. Average profile of the wind-directed current speed as
a function of depth and time. The average is taken over a wave-
length A, corresponding to the streak spacing.

In Section 5, we shall report computed values of
the heat flux

qn = —Wwb (27)
(or buoyancy flux Bgq,) and the Reynolds stress
—iw (28)

resulting from Langmuir circulation ‘ ‘fluctuations.”’
The mixing efficiency m is defined in the literature
in various ways, depending on what measure of the
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d
" (PE)(pu Az \y) ™!

m = —
d

0

= —phe | awdzlpnt.  Q9%)

—o0

If the dimensionless variables (8) are used to evalu-
ate g;, the result is

~wédz. (29b)

m _aK_2((r)”2 BgT’ r

Vr Uy —»

For the initial value problem of the kind that we
have posed here, m is a function of time, and sample
values are given in Section 5. We add here that for an
infinitely deep ocean, the neglect of Coriolis accelera-
tion implies that the applied surface stress is always
unbalanced. This implies that the momentum in the
wind direction must always increase, and that a
steady state cannot be attained. Consequently, m
need not have a steady limit.

4. Finite-difference approximation of the model
equations

In order to examine the stability of the basic solu-
tion (17) to roll motions numerically, it is convenient
to introduce a streamfunction s and the x component
of vorticity ¢. In these variables Eqs. (9)-(11) and
boundary conditions (15) are

power input of the wind is used. Here m will be _aﬁ. = —~V-(uv) + La V2, (30a)
defined to be ot
03}
= oz2f
3
0.1} -
//— \\
-~ 0 N \‘ "
SSS=05°7°10 15—-"30 -25 _-30— -35 -4.0
b4
v
-0 H /
\ , — =56
\ =35
-02} \ / _____ t=29
S
3 -03f
-04al

FI1G. 4. Vertical velocity component as a function of depth at planes of convergence
(y = 0) and divergence (y = 1) at various times.
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FiG. 5. Maximum upwelling and downwelling speeds as functions of time;
wyp = max w(l,z,t) and Weewn = max |w(0,2,1)].
z z

_f’ai = —V-(¢v) + La V% + F(y,z,1), (30b)
t
%‘i = —V-(6v) + LaPr1 vz —w, (30c)
t
0 0
Vzlyb = '—fy § = ja'v;v' - —a; > (30d’e)
0
v::_?ﬂ, =—_—lg, (30f’g)
9z dy
where
Ry = - S %y”— FRIST, Gon)
z y
M, E=y=6=0 on z=0, (30D
0z ,
U=¢=y=0-0 as z— —%. (30j)

In anticipation of the solution (17) being unstable
and this instability leading to motions periodic in
the y direction, symmetry boundary conditions are
imposed:

ou
dy dy

y=0 and y =d.

=0

on
GD

Here d will correspond to some multiple of one-half

the wavelength of the emerging periodic solution.
The above problem is not closed, since the width d of
our region, or more precisely a preferred wavelength
A¢, remains to be determined. How A, must be
chosen will be discussed later,

Since it is expected that instability will arise from
perturbing the current speed to make it depend on
the spanwise coordinate, we choose to perturb the
windward velocity component u, and take the dis-
turbance to be independent of the x direction.

The model equations (30a—h) and boundary condi-
tions (30i,j) and (31) are approximated using finite
differences central in space and forward in time. For
the convective terms the second upwind differencing
method is used (see Roache, 1976). The numerical
scheme of Leibovich and Radhakrishnan (1977)
was easily adapted with the addition of the energy
equation and the buoyancy term in the vorticity
equation. The computer program was modified to be
more machine efficient. The finite-difference equa-
tions along with the sequence of computations are
listed in Paolucci (1979).

The original scheme of Leibovich and Radhakrish-
nan (1977) was not fully conservative because the
finite-difference approximation of the free-surface
boundary condition was not conservative. A con-
servative equation holding at this boundary was
derived using a control volume approach. The
derivation is given in Paolucci (1979).
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FiG. 6. Surface values of the spanwise (sweeping) velocity
component as a function of the spanwise coordinate for dif-
ferent time levels.

The upwind differencing scheme introduces an
artificial viscosity. The error due to this artificial
viscosity was shown by Runchal and Wolfshtein
(1969) to be negligible for two-dimensional driven
cavity flows. Since our flow is independent of the x
coordinate, and roll circulation is expected, then at
any time we essentially have a two-dimensional

cavity flow, and the error introduced from the

artificial viscosity is expected to be negligible in
our case also. The resulting scheme is then in some
sense second-order accurate in space and first-order
accurate in time, and is conservative and satisfies
the transportive property as described by Roache
(1976).

The Poisson equation in (29d), which Leibovich
“and Radhakrishnan (1977) solved using optimized
successive overrelaxation, is now solved using an
efficient non-iterative exact numerical scheme

0.5

04

0.3r
max

oar

oI+
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utilizing the Buneman variant of cyclic reduction.
The program used was developed by Swarztrauber
and Sweet (1975) at NCAR. Here, as in Leibovich
and Radhakrishnan (1977), the condition

(33)

is applied at the finite lower boundary, since it was
shown that for any fixed depth the above condition
was more appropriate and gave more accurate
numerical results than by applying ¢ = 0 there.

It is noted that the shear solution (17) has a
singularity at r = 0. Hence, the numerical calcula-
tions had to be started away from this singularity.
By setting the Stokes drift velocity u, to zero, the
solution was recovered with very good accuracy
with spatial increments Ay = Az = 0.1, by imposing
the appropriate initial conditions [obtained from the
analytical solution (17)] at a time slightly away from
t=0,eg.,t=1.

All of our results have been obtained for La
= (.01, with the grid size Ay = Az = 0.1, and with
time step At such that it satisfied the numerical
stability requirement

At<[2La[‘l + 1]
U s Laye (a2

+

4Ay (UR + |'URI _‘UL + ‘UL‘)

. 1 : —1
+ 4_A_Z(WRJF |»gf'f| —w, + lel)] , (3%

where

1 I Il

20 30

40 50 60

FiG. 7. The maximum surface value of the spanwise velocity component as a
function of time. vmax = max v(y,0,).
v
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The field was scanned to determine the largest
allowable At satisfying the stability requirement (34)
and then a convenient constant value of At was used.
After every time step, comparisons were made to en-
sure that this value did not exceed the current stable
value of Ar.

The perturbation is introduced at any time by taking

ut; = a1 + 1072 sinyi)

vl =wl=60l=0 59
where @} is the shear flow (17) evaluated at time
t = nAt and at grid points y = (i — DAy, z
= —(j — DAz (j = 1 being located at the surface
z =0) and 7y is the perturbation wavenumber;
typically we let v = mw/4, m an integer. The se-
quence of computations is explicitly given by Pao-
lucci (1979).

Here we point out that for our computations the
cell Reynolds number, which is a measure of artificial
diffusion, is defined by

[v]a
Re,. = ,
La

where A = Ay = Az. Itis observed that in all cases
computed the maximum value of Re, in the field
was approximately 6; however, over most of the
computational region its value was considerably
less. We note that upwind differencing is not stability
limited by a cell Reynolds number, but for formal
second-order accuracy it is required that Re, < 4
(Roache, 1976). However, in practice, the require-
ment is not this stringent. Torrance (1968) in cal-
culations of natural convection at high Grashof
number (an equivalent of Re = 300), showed that
the second upwind differencing method results dif-
fered by less than 5% from a second-order solution.
Runchal and Wolfshtein (1969) also used the second
upwind differencing method to compute driven
cavity flows. At a Reynolds number of 100, their
13 X 13 mesh gives a cell Reynolds number of ~20.
Yet their results compare very favorably with a
second-order solution in a 51 X 51 mesh.

5. Numerical results

Several numerical experiments were conducted,
both in homogeneous water and in water with an
initially uniform, statically stable temperature
gradient. In Leibovich and Paolucci (1980a) we find
these flows (for the particular Stokes drift to be
adopted here) to be unstable for La < 0.66 for
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F1G. 8. Average temperature profile as a function of depth
and time. The average is taken over the cell wavelength A,..

homogeneous fluids; a statically stable initial
density distribution reduces this critical Langmuir
number, but for realistic values of the Richardson
numbers, the stabilizing effect is slight. In L1, it is
argued that under circumstances of interest in the
ocean, the Langmuir number is expected to be small
compared to unity, and probably in the range 0.001-
0.01 or smaller. We have chosen to present results
for La = 0.01; this permits a numerical computation
with acceptable spatial resolution, yet with suf-

_ ficiently small La to be physically reasonable. It also

permits a comparison with Leibovich and Radha-
krishnan’s (1977) solutions. The specific form of the
Stokes drift is not expected to change the qualita-
tive results found here.

Clearly, our flows are highly unstable from the
point of view of linear stability theory, and con-
vection therefore always took place in the numeri-
cal simulations. In the experiments, the (dimension-
less) width d of the computational domain, and the
Richardson number Ri were varied.

With boundary conditions (31), convection is
kinematically possible for wavelengths A, = 2d/n,
n =1,2,3,....Each wavelength A\, involves two
counterrotating vortices, each of which we call a
“cell”’, and for odd values of n, the computational
field of width d will contain an odd number of cells.
For a fixed width d, an even or odd number of cells
evolve if the vertical vorticity associated with the
initial perturbation (35) has an odd or even number
of zeros in the interior of the interval (0,d), i.e.,
if the initial conditions specify an even or odd num-
ber of cells, although the ultimate number of cells to
evolve is not necessarily determined by the initial
perturbation.

In this section, we present the results of two of
these numerical experiments. In both we take

u, = 2e%, Pr=6.7, Ri= 101
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The dimensionless Stokes drift corresponds to
straight-crested monochromatic surface waves, but
it is unlikely that the specific form of «, matters much
as long as it decays with depth on a scale com-
parable to the length scale «~!. The Prandtl number
is accurate for water based on molecular diffusivi-
ties; it is also a reasonable value when based on eddy
diffusivities. A Richardson number, defined by (14),
of 107! is a typical value for the ocean as we shall
show in Section 6.

The two experiments described here lead to con-
vection with dimensionless wavenumbers A, ="2
and A. = 4. Leibovich and Paolucci (1980a) expect
the linearly most unstable motion for La = 0.01 and
Ri = 107! to occur for A, =~ 7/2. Thus, the case
A, = 2 is not too far from the mode preferred by
linear theory.

a. Numerical experiment leading to \, = 2

In all cases where the flow was unstable, it was
observed that for some time the destabilizing effect
was very slow, and then within a very short time the
flow was totally destabilized giving rise to Langmuir
cells. Afterward, there was a relaxation of the flow
leading to a sort of ‘‘steady state.”’ An explanation
for this overshoot and subsequent relaxation has
been given by Leibovich and Radhakrishnan (1977).
The evolution of streamline patterns are illustrated
in Figs. la-1c for a perturbation leading to A, = 2.
In this case the shear flow was perturbed at time
t = 1 with perturbation wavenumber y = #/4. It is
observed that as time evolves, the vortex centers
move from near the surface to greater depths and are
closer to the sides of the region than to the center,
making downwelling stronger than upwelling mo-
tions. This is also clear from contours of the x vor-
ticity component, which are not shown here.

The initial conditions involve four regions of
alternating vorticity, or four initial cells. From the
vorticity plots it can be seen that four cells persist
at least until7 = 29, but two are destroyed (between

= 29 and ¢ = 35). This pattern is also reflected
by the surface, profiles of the velocity component
u for various times, shown in Fig. 2. At alltime levels
shown in the figure, a peak in # occurs over con-
vergence planes. In all the cases considered, peak
speeds exceed minimum speeds by 25-40%. We see
that for early times we have, in this case, three
maxima and two minima cerresponding to three
downwelling and two upwelling regions. Eventually,
we obtain downwelling regions next to the bound-
aries and upwelling aty = 1.

Vertical momentum transfer is obvious in the
evolution of subsurface behavior of the horizontal
average of ¥ shown in Fig. 3. The presence of a
viscous boundary layer next to the surface is also
clear. The detailed spanwise distributions of u with
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10. Plot of the average heat transfer into the fluid due to convection.

The average is taken over the cell wavelength A..

depth and time are not shown here, but the cor-
responding profiles are shown for the A, = 4 exam-
ple. The detailed profiles, in both the A, = 2 as well
as the A, = 4 example, also illustrate the strong
vertical momentum transfer.

Vertical velocities are plotted as functions of depth
at planes of convergence and divergence in Fig. 4
for various times. Notice that the maximum upwell-
ing speed occurs at a slightly lower depth than the
downwelling speed and their depths progressively
increase with time. The maximum speeds change

very little with time after the velocity overshoot
subsides as can be seen in Fig. 5. The numerical
values for the maximum downwelling in all cases
considered vary from ~50% to the same as the maxi-
mum surface values of u; note that the scaling (8)
for the 4 and » components differ by a constant
factor and so the ratio of numerical values does not
indicate the ratio of actual velocities. For the largest
values of time shown in the present case, downwell-
.ing exceeds maximum upwelling by ~25%.

The surface values of the spanwise velocity com-

~{uw)
o] 000i 0002 0003 0004 0005 0006 0007 0008 0009
0 ¥ T T T LA S E— T
-1k
-2t

-4}

F1G. 11. Graph of the Reynolds stress versus depth at r = 56.
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F16. 12. Plot of the convection heat flux correlation as a functibn
of depth at t = 56.

ponent v are shown in Figs. 6 and 7. By comparing
values given in these figures with those in Figs. 4
and § it is seen that the maximum horizontal sweep-
ing velocity for the largest times is ~30% lower than
maximum downwelling. This remains approximately
true in the other cases computed. The maximum
value of spanwise velocity component is obtained
between one-third and one-half the distance between
downwelling and upwelling regions in all cases con-
sidered. In the present case it is located approxi-
mately at one-third the distance.

The mixed layer and a thermocline are clearly
established in Fig. 8 where we >show the tempera-
ture field, defined by (16), as it evolves from the
initial conduction profile to a nearly uniform one at
alater time. Notice the temperature inversion region
below the surface and the presence of a thermal
boundary layer. We do not show here the detailed
variations of temperature with depth in planes at
various spanwise locations since these figures are
similar to those for A, = 4, which will be presented.

The magnitude of the mixing can be appreciated
by observing the distortion of the isotherms shown
in Figs. 9a and 9b. Warm fluid from the surface is
transported down by the downwelling jet, while the
colder fluid is brought to the surface in the upwell-
ing region. It is clear, particularly from Fig. 9b, that
cold water overlies warmer water. Of course, this
is an instantaneous picture. The full nonlinear equa-
tions that we use include the usual nonlinear thermal
convection equations as a subset; therefore, the
evolution of thermally unstable configurations,
when they arise in our flows, are properly traced in
the course of the computations.

A plot of the heat transfer from the atmosphere
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to the ocean, averaged over one wavelength, is shown
in Fig. 10, where the result is for the extended in-
terval of time of t = 85. Again, the abrupt accelera-
tion of the instability and the subsequent relaxation
are evident from this figure.

The Reynolds stress —(uw) is shown in Fig. 11
for the nondimensional time of 56. For the same
value of time, we also show in Fig. 12 the thermal
flux correlation —(6w) associated with convection.
The maxima of the above quantities occurs near the
surface in the layer affected by u,. In the mixed
layer both Reynolds stress and heat flux decay, and
become essentjally zero at the bottom of the thermo-
cline. Both correlations vary considerably in the
mixed-layer region; however, it is expected (and can
be seen in the case of A, = 4 to be presented later)
that as time evolves, they will spread out to more
constant values within the interior of the mixed-
layer region.

A measure used to numerically define the depth
to which the fluid is influenced by the convection
is what we call the depth of influence (DOI). The
DOl is defined as the depth at which the windward
velocity component u decays to <1075 of its sur-
face value, and both ¢ and ¢ are <10~%. The depths
at which isotherms, Reynolds stress and heat flux
correlation, respectively, were less than 1079, are
considerably smaller than the DOI, and represent a
more meaningful, though still arbitrary, measure of
the depth influenced by the resulting cellular flow.
The depths at which the Reynolds stress or heat flux
exceed 107% both increase in time like 713 after a
temporary linear growth. This is in agreement with
the results from the one-dimensional models of
Niiler (1975) and deSzoeke and Rhines (1976).

b. Numerical experiment leading to \. = 4

For the same nondimensional parameters and
perturbations leading to different cell wavelengths,
we again observe the same qualitative features. An
interesting case is offered by that leading to A, = 4.
In this case the computational width was kept the
same at d = 2, while the perturbation wavenumber
was changed to A = #/2. With this wavenumber,
five cells initially exist. Only three remain at¢ = 38,
the earliest time shown in Fig. 13. Eventually the
middie of these three cells was destroyed by being
squeezed by the two adjoining cells. Once this was
accomplished, the two remaining cells, having cir-
culations of the same sense, merged into one larger
cell. Thus, in the end we obtain the flow pattern cor-
responding to a cell wavelength of 4.

The sequence of the events just described is clearly
seen in the streamline plots shown in Figs. 13a-13d.
The marked change from ¢ = 56 to ¢t = 59 results
from a period of rapid growth at about this time
similar to that occurring near ¢ = 30 in the solution
of Section 5a. It is observed that the cell is more
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Fi1G. 14. The wind-directed current speed at the surface as a
function of the spanwise coordinate y for different values of time.

asymmetric than in the previous case of A, = 2.
From the above cases, as well as from other cases of
A for which computations were made, we conclude
that as A, increases, the cells become more and
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more asymmetric. The difference between the surface
windward velocity at the convergence zone and that
at the divergence zone, and the difference between
the downwelling and upwelling speeds, is therefore
expected to increase. This pattern can be seen by
comparing Figs. 2 and 4 with Figs. 14 and 15 where
we display the wind-directed speed at the surface,
and the vertical velocity at planes of convergence
and divergence, respectively, for the present case
of A\, = 4. It can be observed that the relative speeds
also increase with increasing A..

Profiles of the wind-directed current speed as func-
tions of depth and time at different y planes are given
in Figs. 16a-16c. By looking at the average wind-
ward velocity profile shown in Fig. 16d, we see that
we have a well-defined layer in which the momen-
tum is mixed to a nearly uniform profile.

In Fig. 17, the surface values of the sweeping
velocity component are plotted as a function of the
y coordinate and time. As in the case A, = 2, it
achieves a maximum at approximately one-third the
distance from the converging zone to the diverging
zone. The magnitude of this maximum is higher than
for the case of A, = 2, as expected, and this trend
remains true for other values of cell wavelength.

The effect of this flow field on the original thermal
conduction solution is illustrated in Figs. 18 and 19.
In Figs. 18a—18d we show the deformation of the
isotherms. The presence of three cells is again ap-
parent in Figs. 18a and 18b and becomes more
complicated in Fig. 18c; however, byt = 59, we can
clearly see in Fig. 18d the emergence of only one
cell. Figs. 19a and 19b illustrate the temperature
profiles at the downwelling and upwelling planes,
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Fi1G. 15. Vertical velocity component as a function of depth at planes of
convergence (y = 0) and divergence (y = 2) at various times.
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respectively. The average temperature profile in
Fig. 19c shows that the mixed layer, besides having
a nearly uniform current profile, is also almost iso-
thermal in the vertical direction. However, in detail,
both current and temperature, of course, are func-
tions of the spanwise coordinate.

The Reynolds stress and heat flux correlation as
functions of depth are shown in Figs. 20 and 21,
respectively. As noted previously, both quantities
spread out to nearly uniform profiles as time in-
creases. Thus, we expect that both —(uw) and
—(6w) become nearly uniform in the mixed-layer
region.

In Fig. 22 we show a plot of the average heat
transfer into the fluid due to convection. Although
it has not reached some sort of equilibrium by
t = 86, it is nevertheless evident that the heat flux
is much higher than for the case of A, = 2 illustrated
in Fig. 10. By looking at the heat flux for other cell
wavelengths, we conclude that the rate of heat trans-

fer increases with increasing distance between .

convergence planes.

In short, the qualitative result from our limited
number of samples is that as the cells become bigger,
the flow becomes more vigorous leading to higher
speeds, greater mixing, and more sharply defined
convergence and divergence regions.

6. Discussion and examples

The structural features of the Langmuir cells
described in the previous section are remarkably
similar to those computed by Leibovich and Rad-

hakrishnan (1977). This is so despite the fact that-

the mechanism driving the convection differs in the
two cases, and, despite the fact that a stable stratifi-
cation exists here as opposed to the constant density
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case of the earlier study (this point is less important,
since the realistic values of buoyancy selected here
have only a weak stabilizing influence). In particular,
the following qualitative features of reported field
observations of LC are reproduced:

e Downwelling speeds are always greater than
upwelling speeds.

e Warm water is pumped down in downwelling
regions and cold water lifted in upwelling regions.

e The velocity component in the wind direction
at the surface is greatest at lines of surface con-
vergence and least at lines of divergence.

In addition, the LC are capable of creating and
maintaining a mixed layer in which the averaged
current and temperature are reasonably uniform

" from the surface to the LC ‘‘thermocline.”

a. E)éample 1

To illustrate the results, we take a concrete and
typical case and evaluate dimensional values of"
some quantities of interest. Let the friction velocity
u, = 0.78 cm s~! which corresponds roughly to a .
wind speed U =~ 10kt (5.1 m s™1); take surface wave
wavenumber x and slope € = ax typical (Lissau,
1977) for this wind speed of k = 2.4 x 1073 cm™!
and € = 0.073, and evaluate the wave frequency
from the deep water dispersion relation o = (gk)'/?;
take vy = 24.8 cm? s7!, which is consistent with .
some empirical correlations at this wind speed; and
take 7' = 10~ °C m™ [or Brunt-Viisild frequency
N = 4,47 x 1073 s~! (Phillips, 1977)] as the tem-
perature gradient in the ocean below the thermo-
cline. These values correspond to La = 0.01 and
Ri = 0.1, and we take the turbulent thermal dif-
fusivity to be 3.7 cm? s™! in order to give a Prandtl
number of 6.7 as assumed in the numerical work.

With these parameters, the numerical solutions
presented in the previous section may be adopted.
To evaluate physical effects, we turn to the example
of Section 5 for which A\, =2. The dimensional
wavelength, or distance between convergence lines,
in this case is 8.3 m. At the dimensionless time of
56, which corresponds to 66 min, we have the fol-
lowing results. The difference between the surface
wind-directed velocity component at the convergence
and divergence lines is 1.5 cm s™!; the total drift at
the convergence line is 11.4 cm s, of which 6.8 cm
s7! is due to the Stokes contribution. The hori-
zontally averaged total current at the surface is 10.4
cm s™!. The maximum sweeping (i.e., spanwise
ory directed) velocity component occurs 1.5 m from
the convergence line and has a value there of 1.7
cm s7!; the maximum upwelling and downwelling
speeds are 1.8 and 2.4 cm s™! and occur at depths of
3.5 and 2.9 m, respectively. The thermocline is ap-
proximately 11 m below the surface.
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FiG. 19. Temperature profiles as a function of depth and time.
Note that T(0,z,t) = T(z) + 6(0,z,t) and we have taken T(0)
= 7. (a) Profile in plane y = 0, a downwelling location; (b) pro-
file in planey = 2, an upwelling location; (c) average temperature
profile as a function of depth and time.
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The mixing efficiency is a function of time; it is
nearly zero for the first 30 min and reaches a maxi-
mum of 4.9 at 56 min. At 66 min, when the current
system described above exists, m = 4.2,

b. Example 2

The mixing efficiency and the motion itself is
clearly a lively function of sea state. Many physi-
cally plausible sets of input parameters (u,, «, o,
a, vy, T') can combine to give the two dimension-
less parameters, La and Ri, that determine the
mathematical solution to the problem. For example,
the dimensionless solution for A, = 2, La = 0.01,
Ri = 0.1, can also correspond to the physically
reasonable set of parameters € = 0.1, ¢ = 2.5 571,
k=64 x 107 v, = 8.25cm?s Y, u, = 0.6l cms™?
and a Brunt-Viisila frequency of 1.06 x 1072 s71,
The dimensionless time of 56 now corresponds to
28 min, and A, = 2 corresponds to a distance of
3.2 m between convergence lines. The thermocline
is located ~4.2 m below the surface. The various
speeds in the convective motion are comparable;
the maximum value of m = 7.3 at 23.6 min, and has
relaxed to 6.3 at 28 min.

We have focused attention up to this point on the
case A\, = 2 because it is close to the most unstable
mode of linear theory. We recognize, however, that

“although this mode should dominate under marginally

unstable conditions, there is no compelling reason
why this is likely to be the case under the highly
unstable conditions dealt with in this paper. In fact,
in all our calculations, a cascade from smaller scales
to the largest compatible with the computational
domain d and the bias (toward an even or odd
number of cells in d) imposed by the initial
perturbation takes place. While our set of computed
examples is too small for us to draw a conclusion
from these observations, we point out the possibility

that these tendencies may be characteristic.

c. Example 3

With this in mind, it is inappropriate to single out
the A\, = 2 case as an illustration, and we therefore
describe the flow corresponding to the parameters
in example 1, but for the motion with A, = 4. The
time scale is as before, and we describe this flow at
a dimensionless time of 59 which corresponds to 70
min. The distance between convergence lines is twice
that of example 1, or 16.6 m, and the thermocline at
this time remains at ~11 m below the surface (by 101
min, however, the thermocline has penetrated twice
this depth). The difference between the surface
wind-directed velocities at convergence and diver-
gence lines is 2 cm s71; the total surface drift at the
convergence line is 12.6 ¢cm s, of which, again,
6.8 cm s~ is due to Stokes drift. The horizontally
averaged current at the surface is ~12 cm s™!. The
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Fi1G. 20. Graph of the Reynolds stress versus depth at different times.

maximum sweeping velocity is 2.4 cm s~'and occurs
~3 m from the convergence line. The maximum
downwelling speed of 4 cm s™! occurs ~3.8 m below
the surface; the maximum upwelling of 1.5 cm s~ oc-
curs at a depth of ~4.2 m.

The mixing efficiency in this example is ~13 at
70 min, reflecting the very large heat fluxes shown
in Fig. 21.

7. Concluding remarks

The character, length scale and strength of the
motions calculated in this paper are, to the best of
our knowledge, in agreement with field observations
of the phenomenon. For instance, the situation in
example 3 corresponds to a wind speed of ~5 m s71,

and the maximum vertical speeds attained (at 70 min)
are 4 cm s~'. This is 0.8% of the wind speed, which
corresponds well with observations (Scott et al.,
1969). The adjustable parameters in the theory are
the turbulent momentum and heat diffusivities vy
and ay, the appropriate value to be taken for «, and
the Stokes drift. There is little that we can add to the
discussion of Leibovich and Radhakrishnan (1977)
concerning the eddy diffusivities. We should note
here that we have tacitly assumed that u, should be
based on the full stress applied by the wind to the
ocean surface. This, however, remains an uncertain
assumption, particularly in the case of a developing
sea, in which some of the momentum transferred
to the ocean is radiated away by surface waves.
The formation of surface jets in the wind direction,
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F16. 21. Plot of the heat fux correlation as a function of depth at different times.
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FiG. 22. Plot of the average heat transfer into the fluid. The average is over the cell wavelength.

discussed in Section 6 and evident in Figs. 2 and 14,
is a well-known feature of observed Langmuir cir-
culations. The physical mechanism of their forma-
tion according to the CL theory is the same one put
forward by Langmuir (1938). Low momentum fluid
brought to the surface at upwelling sites is accel-
erated by the applied wind stress as it is swept from
upwelling to convergence zones. The speed (in the
wind direction) attained by a fluid particle depends
on the length of time it experiences the wind stress.
As it approaches a convergence zone, the sweeping
velocity decreases rapidly, and so the length of time
a particle spends near the surface increases near

convergence. Hence the more or less well-defined:

jet overlying convergences.

Our assumption of a fixed surface wave field,
hence a time-independent Stokes drift, is not a re-
striction imposed by the theory. The theory accom-
modates a developing wave field, and the convective
activity associated with such conditions can be cal-
culated with equal ease.

Adrian Gill (private communication) has suggested
that the inflection points in the horizontally averaged
velocity profiles (Figs. 3 and 16d) may be subject to
a shear-flow instability that could promote additional
mixing localized near the bottom of the mixed layer.
This kind of instability is filtered out of the present
computations, since x-dependence is required for it.
(I am indebted to Alex Craik for reminding me of
Gill’s comments.) Such an instability is a possibility,
although it is important to keep in mind that the
horizontally averaged flow differs considerably from
the very complicated (non-parallel) flow that actually
occurs near any given point.

Our computations suggest an energy cascade from

small to large scales in agreement with the experi-
ments of Faller and Caponi (1978). Furthermore,
by comparing examples 1 and 3, corresponding to
the same surface forcing, larger scales are more
vigorous and mix more efficiently. Thus, it would
appear that the strength of mixing by LC increases
in time as the scale increases. It is important to
remember, however, that the neglect of Coriolis
acceleration (or a bottom) places a restriction on
the interval of time for which the present model
is valid. After a reasonable fraction (1 4-1%) of a
pendulum day, Coriolis acceleration must be restored
if continued calculations are to relate to the ocean.
This, of course, entwines the Langmuir circulation
motions with an Ekman layer spiral, as reported in
field observations by Assaf et al. (1971). We are
currently working on an extended scheme that will
permit the calculation of these motions.
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