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The Craik-Leibovich (CL) equations for Langmuir circulations are shown to be an 
Eulerian approximation to an exact theory of the generalized Lagrangian mean (GLM) 
due to Andrews and McIntyre. Derivation of the CL equations using the GLM formal- 
ism is decisively simpler than the original method. The CL theory is then compared to 
other wave-current interaction theories of Langmuir circulations, notably those of 
Garrett and of Moen. 

1. Introduction 
Craik & Leibovich (1976; designated as CL hereafter) and Leibovich ( 1 9 7 7 ~ )  have 

presented a theory of Langmuir circulation that appears to be consistent with the 
facts known about the occurrence of Langmuir circulations in oceans and lakes, and 
with available laboratory experiments (Faller 1978). 

The theory rests upon a set of equations, set out in their fullest form in Leibovich 
(19773), for the Eulerian-mean flow in surface layers under the influence of nearly 
irrotational surface waves, and a wind stress which creates rotational currents that 
are weak compared to particle speeds in the waves. These equations, in which wave 
activity is represented as a rectified effect, predict convective activity similar to 
Langmuir circulations to result from either of two mechanisms. One mechanism 
(explored in CL, Leibovich 1977a, and Leibovich & Radhakrishnan 1977) requires a 
surface wave field with a high degree of spatial structure, which can, through the CL 
equations, act to directly force circulatory motion. The second mechanism (first des- 
cribed by Craik 1977 and further explored by Leibovich 19773) derives circulations 
from the CL equations as an inviscid instability of a unidirectional current in the 
presence of a wave field without special spatial structure. 

We refer to CL, to Leibovich ( 1 9 7 7 ~ )  to Leibovich & Radhakrishnan (1977), to 
Craik (1977), and to Leibovich (1977b) for a discussion of the observed phenomenon 
of Langmuir circulation and for the development of the theory, and we refer to any 
results obtainable from the CL equations as a ‘CL theory’. 

Another wave-current interaction theory for Langmuir circulations has been pro- 
posed by Garrett (1976) that contemplates a situation which is, in part a t  least, 
similar to that postulated in the CL theories, viz., nearly irrotational waves and a 
weaker rotational current. A variant of Garrett’s theory is given by Moen (1978). In 
these approaches, in contrast to CL, refraction of trains of surface waves by horizontal 
shear in the Langmuir circulations plays a dominant role. The refraction results from 
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the presence of the relatively weak rotational mean current, and is computed by 
kinematic wave (WKB) theory. Garrett has to invoke an additional ad hoc assumption 
concerning dissipation of wave energy; Moen does not need this but his theory also 
has eclectic aspects. In €J 3, we discuss these two theories, and their connections and 
contrasts with the CL theories. 

In the averaging procedure used by CL, a correction of the wave field to account 
for the rotational current is also required. This correction need not be computed 
explicitly, however. All that is needed is the vorticity vector associated with the wave 
activity; or, expressed another way, the vorticity fluctuations induced by the waves. 
In  the final CL equations, the only vestige of the surface waves lies in a ' vortex force ' 
term containing the Stokes drift due to the irrotational, lowest-order, wave field. One 
purpose of the present note is to point out that any rational wave-current interaction 
theory for Langmuir circulations that shares the CL hypotheses (that a small amplitude 
surface wave field exists and is, to a good approximation, irrotational) must be repre- 
sented by the CL equations. This statement follows from the fact that the CL equations 
are derived from the Navier-Stokes equations by rational methods in which the errors 
committed can be estimated systematically. In this paper, we show that the CL 
equations are the appropriate approximation to the exact WaveImean flow interaction 
equations presented by Andrews & McIntyre (1978, designated AM hereafter). In 
particular, if the generalized Lagrangian-mean (GLM) equations of the AM theory 
are specialized to homogeneous fluids subjected to any small-amplitude surface wave 
fluctuation dominated by its irrotational part, they reduce to the CL theory. The 
present derivation allows one to see the errors incurred in the CL equations from 
another perspective since the process of approximation is done without the added 
distractions of averaging. 

This derivation from the AM theory is of interest for other reasons. First, the 
alternative derivation is remarkably simple. Only the leading terms in the implied 
perturbation expansions need now be considered, In particular, the vorticity fluctua- 
tions induced by the waves do not enter explicitly at  all. A similarly drastic simplifica- 
tion is found when the Coriolis effects considered by Hasselmann (1970) and Huang 
(1979) are taken into account. Second, the original derivation of the CL equations by 
perturbation expansions required a specific ordering of effects; exactly the same 
ordering is, not surprisingly, necessary to obtain the CL equations from the GLM 
equations. 

Relaxation of the CL ordering assumptions seems to preclude the derivation of a 
closed set of rectified equations by the method of Craik & Leibovich (1976). For 
example, the method cannot be applied if the ordering originally assumed by Craik 
(1970, in the paper containing the seeds of what eventually evolved into the CL theory) 
is adopted. For this reason, the introduction by Leibovich & Ulrich (1972) of the 
ordering incorporated in the CL theories - an ordering generally in accord with ob- 
served motions involving wind-generated waves and currents in the ocean - was 
an essential step in the derivation of equations describing nonlinear rectified effects of 
waves on currents by the CL method. By contrast, the GLM equations of AM describe 
such rectified effects without the need to invoke the CL assumptions, and suggest 
that some of the essential mathematical structure underlying the existence of 
Langmuir-circulation instabilities might carry over into conditions under which 
the CL equations do not apply: in particular, when wave orbital speeds are not large 
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compared to mean currents (so the waves can no longer be essentially irrotational), 
or when finite wave amplitudes must be accounted for. That the existence of wave- 
driven convective motions in the former case is likely was indeed indicated by the 
linearized analysis of Craik (1970) (in which the waves were assumed infinitesimal but 
rotational). 

2. Reduction of AM to CL 
We begin with the mean-flow evolution equation for momentum in the GLM 

(generalized Lagrangian mean) description as presented by Andrews & McIntyre 
(1978) (their equation 3.8): 

where the equations have been written for a constant density fluid in laminar motion, 
or in turbulent motion parameterized by a constant eddy viscosity. Here 

1 -  

P 
77 5= - P L - ~ u s + ( + x ~ ) . u 5 ,  

where P is the fluid pressure; the notation is esseiitially that used by AM, and the 
meaning of the other terms will be discussed below. In ( l ) ,  51 is the angular velocity 
of a rotating reference frame: the CL theory set 51 = 0, and its inclusion is not necessary 
for our present purposes. We have introduced it here temporarily because the joint 
development of an Ekman layer and Langmuir circulations can presumably be des- 
cribed by this set of equations (and by the CL set for S2 + 0). 

To define the quantities appearing in ( l ) ,  we briefly restate as much of the AM 
formulation as required here; the reader is referred to AM for the details of their 
theory. Consider two sets of trajectories with Lagrangian velocities 

i i L  
ax 
dt 
-=  

and 

respectively, where u is the actual instantaneous velocity of a fluid particle and iiL 
is the corresponding quantity for a fictitious, or reference, fluid motion that takes 
place with a ' Lagrangian-mean velocity '. An oscillatory displacement, described by 
the vector field E(x, t ) ,  from the reference path is assumed to take place, and the two 
sets of trajectories are related by the map 

x w X ( x , t )  = x + E ( x , t ) .  

Let an overbar refer to any suitable averaging operation that may be contem- 
plated in an Eulerian framework. Then the generalized Lagrangian-mean operator 

( 
- 

)L applied to a tensor field (say q5) of any rank is defined in terms of (7 by 

9 ( x ,  qL = d ( X ( x ,  t ) ,  t ) .  

q55(x, t )  = $ ( X ( X ,  0 ,  t )  
In AM, the notation 
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is used, and 45' is defined to be 

9' = $E -3". 
Thus the ' Lagrangian-mean velocity' of the field associated with the instantaneous 
velocity field u(x, t )  is defined to be 

The 'Lagrangian-mean material derivative ', DL, is defined to be 

and 

Furthermore, the vector p is identified in Andrews & McIntyre (1978) as the wave 
pseudomomentum per unit mass, and is defined to be 

Pi@, t )  = - tj,iru:. + (Q x Qjl. (4) 

This serves to identify all of the terms in. equation ( 1 ) .  As AM emphasizes, ( 1 )  is an 
exact equation, although practical use of it has been restricted to waves of small 
amplitude, measured by a dimensionless amplitude parameter e,  so that the displace- 
ments g are O(e)  compared to wavelengths, say A, in the wave field. 

We now show that if the motion u(x, t) is dominated by O(s)  wave activity, and if 
the waves are irrotational to O ( E )  with rotational contributions to the motion O ( E )  

(typically O ( E ~ ) ,  as is Stokes wave drift), then the AM equations are equivalent to the 
CL equations. We note that the latter are equations for the Eulerian mean velocity 
ii(x,t), and not the Lagrangian mean EL. The Eulerian and Lagrangian means are 
related (AM, equation (2.25)) by 

fiL = G+GS ( 5 )  

where 6 s  is the (generalized) Stokes correction. Let @ be a typical velocity scale for 
the mean motion (we may take 9 to be the larger of the scales for the Lagrangian or 
the Eulerian mean motion). For E small, and = O(@) = o(lu' l ) ,  as postulated in 
CL (CL specifically assume that 9 = O( Iiisl = O(s2c), where c is a typical wave speed 
for convenience, but @ / c  can be regarded as an independent small parameter), AM 
(p. 619) show that iis = g. Vu' (see also Phillips 1966, p. 31), where u' is the Eulerian 
wave velocity perturbation, i.e. 

u' = u(x, t )  - ii(x, t ) .  

More specifically, retaining %/c as an independent small.p(e) parameter, the use of 
AM (2.27) shows that 

(6) 

Furthermore, AM show (p. 631) under the circumstances just stated, with S2 = 0, and 
assuming that (7 is an average in time (by explicitly introducing multiple time 
scales, as in Leibovich 1977a, or implicitly by introducing a smoothed running time- 
averaging operator, as in Bretherton 1971), that i i a  = p + O ( 8 ) .  In fact, the error term 
is smaller. From (2)  and (3), g,t = uz+ O(B%), and u1 = .u' + O(E@) (AM 2.28). Further- 
more, u' is assumed to be irrotational at O(s) ,  and to derive its vorticity from the weak 

ii* = g . VU' + O(e29) .  
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mean current. Thus curlu' = O(s@/h) ,  so u ; , ~  = ~ ( i , ~ +  O(s@/h).  But, following AM, 

or 

For currents with 9 = 0(c2c) ,  the error term is O(s4c). By replacing iiL-p by ii 
through ( 5 )  and (71, equation (1) can be written (for S = 0) 

Assuming no impressed pressure gradients, and small viscous force contributions, the 
rate of change in time is O(iiL/h),  where h is a characteristic length scale. The relative 
error terms in (8) arising from setting p = iis are then O(e2@/i i ) ;  if the mean motion 
itself is second order in s, the terms retained in (8) are correct to O(e4). 

Noting that 
-L- uj U i , j + U j U j , i  - -L - - L -  - uj (u,,j-uj,i)+(u.uL),i 

3 3  

= { - iiL x curl ii + V ( 0 .  

equation (8) can be written 

The viscous force term may be reduced to vV%, by the following calculation. Let 
F = v V ~ U ,  then the viscous contribution to the ith component of the above equation is 

The first term may be simplified since 
- 
F$ = & ( ~ , t ) + K . \ J & ( ~ , t ) + 0 ( ) [ 1 ~  IF(h-2) 

= V(V2Ui + 5. vvyii, + u;) + O(s29/A2)). 

This expression can be further reduced, since 

c. VV2(ii + u') = e . vv2ii + 5. VV2u'; 

the first t e rn  is identically zero (since = 0) and the second involves the Eulerian 
disturbance velocity u' = u - Zi, which to O(&) is irrotational; thus this second term 
is of order s2@. Consequently, 

The second part of the viscous force contribution may be approximated in a similar 
way 7 

(using AM (2.28)). Since V2u' = O ( C @ ~ - ~ ) ,  and 131 = O(@), each term in the bracket 
is of the same order, and the entire term is O( we2%h-2). 

- 
<i,i F; = vtj,i[v2u; + c . vv2ui] + 0 ( ~ ~ 3 5 i ~ ~ - 2 )  
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With these approximations, equation (8) can be written solely in terms of the 

(9) 

Eulerian mean and the Stokes drift, or 

fi. Vii + V ( n + i i .  ii*) = iie x curlii + v V i i  

with relative error O(%/c) + O(s2u/%A) (that is, this equation times a term 

[I + O(%/c) + O ( s 2 v / m ) ]  

holds). Notice that the simplification of the viscous force depends crucially upon the 
assumption of a constant viscosity coefficient, or constant eddy viscosity. (This was 
pointed out to me by M. E. McIntyre.) 

Equation (9) is the constant-density form of the averaged momentum equlztions 
given by Leibovich (1977 b) ; they are supplemented by the continuity equation, 
which requires the Eulerian mean velocity ii to be solenoidal. 

The arguments that led to the reduction of ( 1 )  to the form (9) depend upon the 
assumption that the waves are dominated by their irrotational part, so that (7) may 
be invoked. If the reference frame has an angular velocity 51, the wave field will have 
a rotational part, even if viscosity is ignored. If, however, 101 4 IJ, where IJ is a typical 
wave frequency, the irrotational part of the wave field will continue to dominate the 
motion, and (7) still applies, but now with O ( s W )  + O(e2)Jz/h) error, or a relative error 
O(%/c) + O( lJzl/a). Thus, under the conditions necessary for (9) to hold, and provided 
lJzl/c 4 1, the Eulerian-mean equations of motion referred to a rotating frame are 

f i t +  ii. Vu + 2Jz x (fie+ ii) + V ( n +  ii . a s )  = Be x curlii + vV2ii, 

v.ii = 0. (lob) 

We note that Huang (1979) derived equations (10) by the CL method, and used them 
to explore the effects of wave activity on the development of the Ekman layer. (The 
assumption of horizontal homogeneity ruled out Langmuir circulation effects, although 
it seems clear that the vertical momentum transport in Langmuir circulations probably 
modifies the Ekman-layer structure a t  least as much as does the addition of a Stokes 
drift contribution to the Coriolis acceleration.) Hasselmann (1970), in a paper on wave 
forcing of inertial oscillations, derived the inviscid version of Huang’s Ekman-layer 
equation, and thus anticipated his work. 

3. Other wave-current interaction theories of Langmuir circulations 
Garrett (1976) has suggested an instability mechanism that could produce circu- 

latory motion due to wave-current interactions. The analysis separates the body of 
water into a thin zone influenced by surface wave activity and the water below, in 
which wave activity is assumed negligible. In  this  step, and in the calculations of 
wave properties, the wavelength of the surface waves is assumed to be small compared 
to the horizontal scale of features (particularly the surface jet) of convective cells in 
the Langmuir circulations. If this scale is denoted by L, and the wavenumber by K ,  

then a basic assumption in the theory is that ( K L ) - ~  ( E 8, say) is small. 
Adopt a Cartesian (x, y, z )  co-ordinate system, with z measured vertically upwards 

from the mean free water surface. Garrett assumes the existence of an initial current 
perturbation ( U ,  0, 0 ) ,  with a maximum in the spanwise (y) direction. In the upper 
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layer, it is assumed that vertical ( z )  variations of the current speed cam be neglected, 
or U = U(y); this is consistent with a perturbation procedure valid in the limit 2, 0, 
provided that the depth variation of U is smooth and essentially independent of wave 
activity. The existence of horizontal shear in U will lead to both refraction and reflexion 
of surface waves propagating at  an angle to the current direction (2). Assuming that 
the length scale of the current shear is L, the surface waves experience a slow variation 
of their propagation medium, and Garrett computes their properties approximately 
using a WKB analysis. This predicts wave refraction (but reflexions are precluded) 
that leads to an increase of wave energy on the line of maximum U .  

Garrett then shows that the average of the vertical integral (ovei the wave zone) 
of the Euler equations (in three dimensions) leads to an apparent force on the mean 
flow towards the line of maximum U of amount M x curl U - UV . M, where U is the 
current (U = Ui in the applications) and M is the wave momentum per unit area 
M = Ew/d (equal to the vertical integral of p for irrotational waves in the WKB 
approximation); E is the wave energy density ( =  +pga2, where a is the local wave 
amplitude), K is the wavenumber vector, and w‘ is the intrinsic frequency ( =  N g K ) .  
This force exists even if it is evaluated for the incident wave alone, neglecting the 
refraction caused by the weak current anomaly U(y). (We shall return to this point 
later.) Thus, given a wave field and a current with vertical vorticity, a convergence 
force is exerted on the water within the wave zone. Since the waves apparently amplify 
near the maximum of U ,  it  is assumed that wave breaking may occur preferentially 
in this neighbourhood, leading to a momentum transfer from the waves to the Eulerian- 
mean current and essentially in the x direction. 

The forces exerted in the wave zone are assumed to exert a stress on the water 
below, where viscosity is accounted for; the stress in the x-direction is parametrized 
in an ad hoc way. Convection cells develop in this subsurface water as an instability - 
the wave breaking provides a coupling between the x-velocity component and the 
components in the plane normal to the x axis that is essential for the instability to occur. 

Garrett (private communication) has pointed out connexions between his theory 
and that of CL that are worth elaboration. Nearly monochromatic infinitesimal waves 
have a wave momentum per unit area in infinitely deep water 

E 0 
M = - K = &pw’a2K = pi i sdz ,  

C 1- 
where iis is the Stokes drift. In the case of interaction of the waves with weak currents 
Garrett’s convergence force, per unit area, simplifies (as he points out) to 

M x curl U = (pJ:m i i sdz )  x curl U. 

This expression is the vertical integral of the vortex force p(iis x curl ti) in the CL 
theories for the case of currents depending only upon y (as Garrett assumes). Further- 
more, in the limit E -+ 0 the CL equations seem amenable to analysie by the method of 
matched asymptotic expansions. The linearized treatment of the equations below the 
wave zone yields the same problem as Garrett found for the motions in the plane 
perpendicular to the wind; in one plausible treatment, the effect of the vortex force 
on the subsurface motion below arises from a matching with the wave zone, and takes 
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the form of the stress Garrett (1976) described. The subsurface motions do not, how- 
ever, by themselves indicate an instability. For instability to occur via the CL theory, 
one must examine the details within the wave zone and, in particular, vertical shear 
in the current cannot be ignored. As mentioned earlier, for instability to arise, Garrett 
was forced to invoke instead an added stress due to wave breaking. 

Moen (1978) disagrees with the radiation-stress arguments central to Garrett’s 
theory; he nevertheless adopts Garrett’s wave refraction solution as a central element 
in his theory and constructs a model with wave effects distributed throughout the 
watei depth. We refer to Moen’s thesis for the specifics of his criticisms of Garrett’s 
theory (although we do not find Moen’s arguments against it to be persuasive in 
themselves). We note a t  this point that a logical inconsistency absent in Garrett’s 
model now enters by the adoption of a wave field based upon ignoring the depth 
dependence of the current, since the Moen model purports to include depth dependence. 

The weak vorticity acquired during refraction from the current U(y) plays an 
essential role in Moen’s construction. Using Garrett’s solution, the increase in wave 
amplitude near maxima of the current tr(y) is noted. Moen then cIaims to  prove 
that wave fields with spatial variations of wave kinetic energy necessarily carry 
vorticity, and to build a theory in which Langmuir circulations derive from variations 
of wave kinetic energy. This is demonstrably incorrect in principle. In actual use, 
however, Moen’s application of Garrett’s wave field essentially employs a means of 
calculating wave-induced vorticity fluctuations that differs from the CL theories; 
from that point, the method of approach is similar to that of CL and the final equations 
are identical to a simplified form of the CL equations. 

4. Recapitulation and concluding remarks 
We have shown that the CL equations are the proper approximation to the AM 

GLM equations for wave-mean flow interactions provided that the waves are of small 
amplitude and irrotational to lowest order in wave slope. No other approximations 
are required to effect the reduction AM -+ CL (although one must have a large wave 
Reynolds number and a rotational current weak compared to orbital speeds in the 
irrotational waves - these conditions, however, are necessary for the assumptions on 
the wave field to hold). 

One is, of course, free to choose a small-amplitude irrotational wave field with 
characteristics quite different from the class of waves considered so far in the CL 
Langmuir circulation theories, but the effect of different choices is simply to alter the 
Stokes drift term appearing in the CL equations. 

Some of the connexions and contrasts between the CL theory of Langmuir circu- 
lations, and the theories of Garrett (1976) and of Moen (1978), which introduce 
additional elements into wave-current interaction models of Langmuir circulations, 
have also been pointed out. 

The CL theories do not require an explicit calculation of modifications of the 
surface-wave field. Wave refraction is a second-order effect under the CL hypotheses, 
which contemplate Langmuir circulation currents weak compared to wave particle 
speeds and horizontal spatial current variations on a scale comparable to the wave- 
lengths of the dominant surface waves. The wave-refraction solution, on the other 
hand, upon which Garrett’s and Moen’s theories are based, is formally valid only for 
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surface waves with wavelength small (the WKB approximation underlying kinematic 
wave theory) compared to Langmuir cell spacing. Observed windrows clearly exist 
when ( K L ) - ~  is not small. Of course, the important question is not the formal validity 
of a calculation method requiring ( K L ) - I  < 1, but the degree to which wave amplitude 
variations actually occur as a result of current patterns associated with the Langmuir 
circulation field. This question is currently under consideration by J. Smith a t  
Dalhousie University using calculations not subject to the restrictions inherent in 
kinematic wave theories. (Partial wave reflexions - which are not represented in kine- 
matic, or ray, theories - may lead to reduced amplitudes a t  the maximum of the current 
anomaly U(y), instead of enhanced amplitudes.) Once the modification of the wave 
field caused by interaction with velocity fields characteristic of those in Langmuir 
circulations is better understood, it may be possible to assess the dynamical conse- 
quences of the second-order wave effects upon the mean flows. 

In  his analysis of field data from Lake George, Myer (1971) reported noticeable 
enhancement of wave amplitudes a t  lines of surface convergence in Langmuir circu- 
lations. This observation seems to be one motivation for Garrett’s theory, which 
gives a theoretical explanation of it. It seems that a firm correlation between windrows 
and enhanced wave amplitudes remain to be established, however. Myer (1971) does 
not give sufficient information in his report to establish whether such a correlation is 
statistically significant for the data presented, whether enhanced wave activity may 
be dynamically necessary to create or maintain the circulations, or to allow one to 
conclude that such a correlation is invariably present in Langmuir circulations. We 
know, from the controlled experiments of Faller (1978) and others, that phenomena 
resembling Langmuir circulations can be created in the laboratory with a minimam 
in wave kinetic energy occurring along lines of surface convergence, in apparent 
agreement with the original CL mechanism explored in Craik & Leibovich (1976). 
Thus, a maximum wave kinetic energy coincident with surface convergence has been 
experimentally proved not to  be necessary. I n  the second, or instability, CL mechanism, 
coherent variations of wave kinetic energy are not required for the initial formation 
of Langmuir circulations. The CL instability mechanism (which, according to the fully 
nonlinear computations in Leibovich & Paolucci, 1980, leads to LC patterns consistent 
with observations), on the other hand, does not preclude coherent variations in wave 
kinetic energy, provided that their dynamical effects on the mean current are of 
secondary importance. 

Experiments under carefully controlled conditions and comparisons with computa- 
tions carried out for competing theories using experimental conditions as input are 
feasible; they are needed to  test the validity of available theoretical ideas, and to 
clarify the parametric range in which the theories provide useful representations of 
observed Langmuir circuIation phenomena. 

This paper has benefited from comments of A. D. D. Craik, C. J. R. Garrett, 
M. E. McIntyre and J. Moen. I am grateful to them all for their const!rnctive criticism 
of the original draft of this paper. 

This work was supported by the NSF Physical Oceanography Program under Grant 
OCE 77-04482. 
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