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A theory for the evolution of the wind drift current and of the Langmuir circula- 
tions in infinitely deep water of constant density is presented. The model improves 
and extends a recent quasi-steady theory of Craik & Leibovich which asserts that 
the Langmuir circulations arise from a nonlinear interaction between surface 
waves and the frictional wind drift current. In  turn, the development of the wind 
drift should be strongly influenced by Langmuir circulations, when they are 
present, and the two current systems are therefore treated here as a single 
inseparable system driven by a prescribed wind stress and surface wave field. 
Mixing by the vertical motions in the Langmuir circulations is shown to yield 
solutions for the wind drift, obtained both analytically and numerically, which 
are consistent with experiments and with field observations. The model yields a 
streaky flow pattern with a mean motion much like a turbulent wall layer, 
although the model is deterministic. In  particular, it is found that a ‘viscous 
sublayer’ joins surface water to  a logarithmic ‘inertial subIayer ’ below. The 
scaling rules that emerge from the theory allow the surface speed of the wind 
drift to reach nearly full development in a matter of minutes. 

1. Introduction 
The application‘of a wind stress to the surface of a lake or ocean gives rise to a 

drift current in a thin layer near the surface. Part of the drift arises from a second- 
order streaming due to the wave motion that is concurrently created, but, a t  
least for short fetches (Wu 1975), the major part of the drift is due to direct 
momentum transfer from the wind to the water mass. The wind stress is com- 
municated to the larger body of water below by tractions transmitted across this 
‘ wind-driven drift current ’. The importance of this thin layer to  dynamical 
processes of the air-sea interface, and to the fate of pollutants introduced at  the 
surface, has been emphasized by Wu (1969, 1975). 

Observations of the wind drift current in lakes (Bye 1965) and in laboratory 
experiments (Wu 1975; Shemdin 1972) indicate that the mean drift current defect 
(the difference between the surface and local values of the mean current) closely 
resembles the flow in a turbulent wall-bounded shear flow. In particular, a very 
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thin viscous sublayer (Wu 1975) connects the surface to a logarithmic friction 
law (Wu 1976; Bye 1965; Shemdin 1972). 

A different set of observations has been made that suggests another similarity 
between turbulent wall boundary layers and the upper layers of the wind-driven 
sea. Both display a surprisingly coherent feature of streaks oriented in the stream- 
wise direction. When the wind drift is observed relative to its average surface 
value, the streaks contain slowly moving fluid; analogous behaviour to this has 
been reported in the turbulent wall boundary layer (cf. Kline et al. 1967). In  the 
ocean, these streaks have been attributed to subsurface vortex motions known 
as Langmuir circulations (see Craik & Leibovich (1976) or Faller (1971) for 
references), although the connexion has been disputed a t  times in the past. 

The importance of the Langmuir circulations, when they exist, to the vertical 
transfer of momentum to the water below was brought out by Gordon (1970); it 
was also stressed by Leibovich & Ulrich (1972) and re-emphasized by Craik & 
Leibovich (1976). A method for analysing the Langmuir circulations was 
developed by Craik & Leibovich; it allowed the circulations to be comparable in 
magnitude with the wind-directed currents. In  their formulation, the Langmuir 
circulations and the wind drift current were treated as components of a single 
interdependent current system. This is in accordance with observations which 
show (Scott et al. 1969) that the maximum vertical speeds in the Langmuir 
circulations are of the same order ($-+ as large) as the surface drift speeds 
(including the wave drift). Craik & Leibovich (1976) concentrated on the quasi- 
steady Langmuir circulations and did not attempt to calculate the wind drift 
current. (Inrgtead, the wind drift was assumed to the logarithmic profile reported 
by Bye 1965.) 

In  this paper, the focus is on the mean wind drift current. The theory of 
Craik & Leibovich is extended to allow calculation of the evolution of the wind 
drift from a state of rest in an ocean of infinite depth and constant density. There 
is no steady state for the problem in the (assumed) absence of Coriolis accelera- 
tions, and the total momentum imparted to the water by a constant wind stress 
grows linearly with time in proportion to the applied stress. 

The nature of the theory and the results obtained may be sumarized as follows: 
The instability of the air-water interface under an applied wind stress gives rise 
to  water waves with a directional spectrum symmetric about the wind. The 
theory does not consider the growth phase of the wave motion, which is assumed 
to be given and invariant with time. Under circumstances detailed by Craik & 
Leibovich (1976), a surface wave field with directional propagation characteristics 
that are symmetric with respect to the wind direction can produce a wave drift 
which is independent of the wind direction and of time and which is periodic in the 
cross-wind direction. Although the wave drift usually rises in a Langrangian 
context, here it emerges in a purely Eulerian framework. The wave drift rotates 
and stretches vortex lines and results in a production of streamwise vorticity, and 
the consequent mixing enhances the development of the wind drift current. 
A conceptual sketch is given in figure 1. 

Under assumptions explained in the paper, a theory that includes all of these 
effects is developed. The result is a set of nonlinear time-dependent equations 
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FIGURE 1. A sketch illustrating the ooncept of the theory. The wave pattern advances in the 
wind direction, creating a drift that is second order in wave slope. The drift is larger where 
the excursion of the water from the mean surface is greater, creating the possibility of an 
undulating wave drift. Vortex lines in the frictional current are distorted producing a 
streamwise vorticity component and mixing due to the induced vertical motions. This mixing 
causes a feedback, and alters the frictional current. 

bearing a strong resemblance to those governing thermal convection in two space 
dimensions. These equations are solved analytically for small time, and numeri- 
cally for arbitrary time. The behaviour of the mean wind drift is then extracted 
from the complete solution. Here the ‘mean’ drift refers to an average across the 
wind of the wind-directed drift profle, which is periodic in the cross-wind 
direction. 

The formulation of the problem in terms of an initial-value problem is much 
more satisfactory than the earIier work by Craik & Leibovich: the resulting theory 
is simpler, and the input parameters are more directly related to the physical 
problem. The final equations are shown to depend upon only two dimensionless 
parameters. One parameter, which I propose should be called the ‘Langmuir 
number’ La, is like an Ekman (or inverse Reyholds) number and the other is 
an angle 8 describing the directional characteristics of the waves. The periodic 
wind drift in the theory is proportional to u$/v,K, where u* is the water friction 
velocity determined by the applied wind stress, vT is an eddy viscosity due to 
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turbulent motions on scales smaller than the wavelength of the surface waves, 
which is ~ ? T / K .  The cross-plane velocities are proportional to 

€U* 0- * -&) ’ 

where B is a parameter proportional to the wave slope, and CT = (g/c)& is the wave 
angular frequency. The motions develop on a time scale with unit Td given by 

Td = rT-l(VTCT)*/€U*. 

By appeal to experimental findings, it is shown in 8 7 that the product VT K can 
be estimated by kyu,, where k is von Kkmhn’s constant and y is a numerical 
factor which depends upon the Langmuir number and 8. For two cases calculated 
in this paper, y w 0-1. When vT is eliminated in this way, 

Td - r-le-’(kyc/u,)*, 
where c is a typical phase speed of the waves. Assuming plausible values for E and 
c/u*,  it  is shown in Q 7 that To is of the order of minutes. 

Details of the numerical procedure and computed features of the associated 
Langmuir convection cells will be described in another paper (Leibovich & 
Radhakrishnan 1977). The calculations for the horizontally averaged mean wind 
drift are presented here, and they show that, after a short time (about 10 units), 
the mean drift at the surface approaches an asymptotic value and the subsurface 
behaviour approaches a simple invariant pattern. A ‘viscous sublayer ’ develops 
very near the surface. Below this a clearly defined logarithmic region occurs. 
Below the logarithmic region is a ‘wake’ region of nearly constant mean velocity, 
and a diffusion kind of cut-off exists at  greater depths which brings the current to 
rest. As time progresses, this pattern remains essentially fixed, the only apparent 
changes being a progressive advance of the diffusion front and ‘wake ’ region. The 
continually increasing momentum imparted by the wind goes into a steadily 
deepening current below the near surface equilibrium layer. This should be 
contrasted with the solution of the associated Rayleigh problem, in which the 
required momentum increase is partly accomplished by continually increasing 
both surface and subsurface speeds (in proportion to t 4 ) .  

The correspondance between the features predicted by the theory and pheno- 
mena actually observed in the field is remarkable. That such features also are 
seen in turbulent wall layers may be coincidental. Convective cells are well known 
to be possible, presumably owing to wave growth in unstable boundary layers 
(cf. Benney & Lin (1960) for the classical treatment of that problem), and should 
distort the flow in the way described in the present problem. Whether a similar 
sequence of events describes the streaks in a turbulent boundary layer is not 
known. The present problem is very much easier to analyse, yet it does contain 
the vortex stretching effects that presumably must be present in order for the 
streaky pattern found in the turbulent boundary layer to be produced. 
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2. Equations governing the time evolution 
We consider an unlimited ocean of infinite depth which is at rest for times 

T < 0. At time T = 0, a uniform wind stress is applied at the surface, the mean 
position of which is described by the plane x = 0. The x axis is taken to be in the 
direction of the applied stress, the x axis is directed vertically upwards and the 
y axis is chosen to complete a right-handed co-ordinate system. 

The wind stress will begin to generate both water waves and a water current 
and, of the two effects, the disturbance due to the water waves is dominant. The 
vorticity in the water current interacts only weakly with the water-wave motion, 
which may therefore be taken to be irrotational with a velocity potential #. 

The wind stress applied at the surface can be thought of as divided into two 
parts (cf. Stewart 1967). One portion may be assigned to wave drag, which leads 
to wave growth; the rest may be thought of as driving the wind-driven current 
(which is taken here to  exclude the Lagrangian wave, or Stokes, drift). A precise 
and unambiguous division of the momentum transfer from wind to water is not 
simple and may be impossible in principle, but we nevertheless adopt the concept 
as a starting point. 

Although we are interested in the response of initially quiescent water to the 
sudden application of a constant wind stress, we shall not consider the period of 
wave growth. Instead, we assume that surface gravity waves instantaneously 
form when the wind stress is applied, and that these waves have properties 
(directional energy spectrum) which do not change in time. The surface wave 
field will be assumed to be given, and is therefore an input to the problem. 

The wind stress directly associated with current formation is therefore the only 
stress contribution considered, and so further reference to ‘wind stress ’ should 
be understood to refer only to this portion of the applied stress. We characterize 
the wind stress 7, by a water friction velocity u*, so 

pu;, T 2 0, ( 0, T < 0, 
where p is the water density and T is time. 

A key step in the analysis is the assumption that various components of the 
motion are associated with widely disparate time scales. In  particular, it is 
assumed that, if 2na-1 is a typical period for surface waves, and T, is a slow time 
scale required to set up the wind drift current (to be determined from theformula- 
tion), and is a time scale for fluctuations small in scale compared with the 
wavelength of surface waves, then 

T,g2;rrcr1 < T,. 
The prescribed surface wave field is assumed to have a characteristic wave- 

number K ( = g-la2 for deep water, where g is the acceleration due to gravity), and 
all lengths in the problem will be measured in units of K-1. The phase speed of the 
‘typical wave ’ is G/K. If e is defined as K times the amplitude of this wave, making E 

a measure of wave slope, then W K - ~  is representative of the water particle speed 
in the characteristic wave. This particular speed is taken as the unit of velocity. 
If time is referred to c-1, the assumptions of the previous paragraph may be 
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restated by asserting that the velocity vector may be represented in the mnltiple- 
time-scale form 

q = smC-'[u,(x, 7) + Sv(x, 7,, 7, Tj)], (1) 

where u,(x, 7 )  = C$(X, 7 )  (2) 

is the irrotational flow corresponding to the input wave field, 

TS = sc7, 7f  = €;I7 

are slow and fast times defined by the small parameters 

8 c -  - u-'TF', st = cT,. 

In  (2), V is the gradient with respect to the dimensionless space co-ordinates x. 
The parameters 8, proportional to wave slope, and Sare both assumed to be small. 
Thus the motions set up by surface waves are assumed to dominate. The motion 
represented by the dimensionless velocity vector v includes everything else, 
including currents, the fluctuating interaction between currents and surface 
waves, and high-frequency turbulence. 

Time averages are introduced, one for the 'fast ' time rj  and one for the inter- 
mediate time 7 characteristic of wave fluctuations. These are defined by 

and 

This defines the separation of q into means and fluctuations over the various time 
scales, i.e. 

v = V + V" = (P(x, 7,)) + v'(x, T,, T )  + v"(x, 7,, T ,  r j ) ,  

and it is assumed that (u,) = 0. 
The dimensionless vorticity w is defined by 

Ssaw = curl q = saV x {uw + Sv] 

or w = v x v .  

Accounting for the multiple time scales, one obtains the vorticity equation as 

E C O T J  + 0, + spwTj = sv x [(u, + Sv) x a] + (."/a) v2w. 

Applying the rf average defined earlier to this equation produces the result 

€c07J + w, = sv x {(u, x a) + S(V x 0)} + ssv x (v" x w") + (K2V/Cr) V2O. 

The correlation of the srnall-scale high-frequency motion given by sSV x (v" x 0") 

is the curl of the force transmitted by Reynolds stresses due to the small scales. 
We represent the effect of this term through a constant eddy viscosity ve by 
making the assumption that 

€6v X (V" X 63")  = (K2V,/a) v2G. 
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It is convenient to introduce the turbulent wave Reynolds number 

R, = c / K % ~ ,  

where vT = ve + v. In  cases of practical interest, it  is expected that vT E ve. Our 
(quasi-laminar) vorticity equation is now 

ECQTg +Q, = EV x (u, x 8)  +€s(V x Q) +R,'V23. 

We assume that eC and R;1 are O ( E )  as E -+ O t ,  and therefore write 

Q = wo + ewl + higher-order terms, 

i; = vo + ev1 + higher-order terms. 

To lowest order the vorticity equation shows that wo is independent of 7, or 

0 0  = wo(x, 7,L 

and the next order shows that 

w l = v x  [ ~ T u , d 7 x w o  I . 
Evidently (Q) = W , + O ( E )  

and Q' = € 0 ' + 0 ( € ) .  

equation 

Applying the 7-average to the vorticity equation gives the slow-time evolution 

ECeOTs = s2v x (u, x wl) + ssv x (vo x wo) 

+ .R;L~V~W, + O(es, e28, E R ; ~ ) .  (3) 

Craik & Leibovich (1976) show that for any u, that satisfies the assumptions 
already stated 

v x (u, x 0') = wo. vv, - v,. vwo, 

where v, -((jtu,d7) .Vuu). (4) 

This expression may be identified (cf. Phillips 1966) as the Stokes wave drift, as 
found by Longuet-Higgins (1953). Although the wave drift is a Lagrangian 
concept, it arises here in a purely Eulerian framework. We shall nevertheless 
refer to v, as the wave drift. 

We shall now assume that ec, €2, €8, and R;;1 areof comparable magnitude, and 
that the error term indicated in (3) is negligible when compared with them, so that 
it may be omitted. Without loss of generality, we shall set 

Ec = €8, 

which is equivalent to  identifying the slow time scale with the convective time 
scale corresponding to current motions in the plane perpendicular to the wind. 

t A self-consistent and rational development is sought. The assumptions made at this 
point link the small parameters in one particular way and are appropriate under a set of 
physical conditions. Other developments appropriate to other physical circumstances may 
also be possible. 

46 FLM 79 
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Incorporating (4) and the remarks above into (3) and then dividing by ec gives 
the equation for wo as 

~ w , / ~ T , + v , . V W ~ - O ~ . V V ,  = (E~R,)-~V~W~+(E/~)(W~.VV,-V~ .VO,). (5) 

It is assumed that the wave field leads to a wave drift that is unidirectional and 
oriented in the direction of the applied wind stress (x). Since V.V, = 0, we have 

v, = (zc,(y, Z ) , O , O ) .  

Furthermore, the symmetry of the problem requires vo to be independent of x. 
Let the v, and wo components be designated by 

vo = (U,V,W), a 0  = (t,r,C). 
As a consequence of the x independence, 

oo .vu  = 0 

and 7 = aulaz, g = - atqay. 

The x component of the vorticity equation is therefore 

The term involving the wave drift does not appear in the other two components 
of the vorticity equation. Upon noting that continuity demands 

v*+w, = 0, 

r2/ + 6 = 0, 
and that because coo is solenoidal 

(7) 

the y and z components of the vorticity equation may be integrated to produce 
the x-momentum equation 

(8) urS + V U ~  + W U ~  = (ecRW)-' V'U. 

Equation (7) may be dispensed with by introducing a st,ream function for the 
y, z plane with 

2) = $z, w = -$ u. (9) 

Then 

and (6), (8), (9) and (10) govern the current system, subject to the specification 
of u, and boundary conditions. 

Under the assumptions adopted here, Craik & Leibovich (1976) show that the 

are appropriate. The surface stress boundary condition can be expressed in a form 
that is consistent with the employment of an eddy viscosity as follows : 

VT a8cruz(y, 0, t )  = u2,, 

u,(y, 0, t )  = Ui/VT (re&. or 
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The applied stress is the primary driving force in the problem, and we recognize 
this by selecting 6 so that 

u,(y, 0, t )  = 1. (12 )  

Thus 6 = ui/vTUC. (13)  

This identification of 6 determines the current speed scale in terms of para- 
meters that are assumed to be given. The time scale for current formation is also 
determined by the choice of 6, since on using (13)  we have 

8, = 86 = u ; / V T f l .  (14)  

The problem has now been reduced to solving the governing equations (6), (8) ,  
(9) and (10) subject to the boundary conditions (11 )  and (12) .  The differential 
equations depend upon the two parameters 

u; cl 8 e2UVT 
CcRw = -- and $=-. 

The number of independent parameters can be reduced to one by redefining 6 and 
rs as 

and, since the velocity components and stream function in the cross-plane are 
determined by E ,  we redefine them in the same way : 

VT fl K2VT ,4 

6 = (€/6)+ Q, 7s = (6/€)4t, (15% b )  

(v, w, $1 = ( E / W  ( V ,  w, (15c)  

Since B and 6 are assumed to be of comparable order, this rescaling does not change 
the asymptotic characteristics of the problem. With the transformations (15)  
introduced, the governing equations are modified as follows: 

Ut + vu, + wu, = LaV2u, 

at + VQZ, + waZ, = LaV2Q + uzus, - uyu,,, 

(16a)  

(16b)  

V2Y = -Q, (16c)  

V = Y 2 ,  w = - Y  Y' ( 1 6 4  

(16e)  

(u ,V,W)+O as x - + - - c o ,  (17a)  

(176)  

(17c)  

L a  = (a/€)* (c, Rw)-' = (u*/c) (avT)-& K~v$/u;,  

with boundary conditions 

Y(y, 078)  = ~ & ,  0, t )  = Q(y, 034 = 0, 

%(Y, 0, $1 = 1, 

and the initial conditions u ( y ,  z, 0) = Y ( y ,  z, 0) = 0. The one parameter remaining 
explicitly, L a ,  is defined in (16 e ) .  

Retracing the sequences of scaling transformations used to arrive at  (14)-(16), 
we note that the velocity vector U, of the current is given in terms of u, V ,  W ,  by 

u, = SUK-'dV = ( U i / V T K )  (U,  0,o) + (€U*/VrK) ( f l V , ) +  (0, v, w), (18)  
~ 6 - 2  
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the unit of time in (15), in dimensional terms, is the convective time (based on 
velocities in the y, z plane) 

e~-'@-*u-' = a-'(vT U)*/e?h*, (19a) 

and the unit of length is K-'. 

The dimensionless problem for u, V ,  W thus has been reduced to one depending 
on the parameter La and whatever parameters might appear in the 'wave drift ' 
speed us. In  the simplest case, the one to be considered in this paper, us will be 
seen to depend only on an angle describing the orientation of two wavenumber 
vectors of the surface waves. All other information governing the problem resides 
in La, which might appropriately be called the 'Langmuir number' in view of the 
history of the problem. The Langmuir number is related to wave properties, stress, 
etc., as follows: 

Noting that the convective velocity scale is (uv,))cu,/v~K, we see that the 
Langmuir number has the usual interpretation of an inverse Reynolds number 
as a ratio of 'viscous' force to inertial forces, or 

(puT ~2 x velocity)/(pK(uv,)* ( E U * / U ~ K )  x velocity). 

Another interpretation of La is as the ratio of the rate of diffusion of vorticity to 
the rate of production of streamwise vorticity by vortex stretching accomplished 
solely by the wave drift. Since the dimensional wave drift is of order e2u/K,  the 
rate of production of streamwise vorticiby is 

La = (uTK'/u*) (uu~)* /EcT.  (19b) 

while the rate of diffusion of streamwise vorticity is 

and the ratio of the latter to the former is La. By comparing the two interpreta- 
tions it is seen that the convective velocity scale has been chosen so as to balance 
inertial effects against vortex stretching. 

3. Forcing by monochromatic waves 
In  order to complete the statement of the mathematical problem, boundary 

conditions on two boundaries y = constant are required. The irrotational wave 
field is assumed to be given, and the wave drift us@, x )  is therefore determined. 
If us is periodic in y, it  is natural to impose the condition that the flow be periodic 
in y with the same period as us. The y boundary conditions are prescribed by the 
periodicity condition, and the setting of the problem posed by (15) and (16) is 
therefore completed. 

The superposition of two monochromatic wave trains is perhaps the simplest 
wave drift that is periodic in y. If the wave trains each have the same amplitude a, 
frequency u and wavenumber K ,  and propagate at  equal and opposite angles 0 to 
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the wind direction, then the combined wave field has the (dimensional) velocity 
potential 

( 2 a a / ~ )  e K z  cos (KY sin 8) cos (KX cos 8 - at). 

2 a a 2 ~  cos 8 e%z[l + cos2 8 cos ( 2 ~ y  sin 41. 
The (again dimensional) wave drift corresponding to this velocity potential is 

( 2 W  

We take the dimensionless wave-slope parameter e to be 6 = a ~ .  For a mono- 
chromatic wave of amplitude a, the wave slope is +. Note that the observed wave 
amplitudes will be twice a, so that the wave slopes that occur with the postulated 
wave system will be (2e/7r) cos 8. 

Since us is periodic with period m/(Ksin O ) ,  we require the motion to be periodic 
in y with the same period. If y = 0 corresponds to a cell boundary, then the 
motion is symmetric in u and antisymmetric inY! about y = 0 and y = a/( 2~ sin 8). 
Consequently we may confme attention to the single cell 0 < y < ~ / ( 2 ~ s i n  8). If 
we take L = n/(2 sin O), then, in dimensionless variables, a single cell is located 
in 0 < y < L, and the dimensionless conditions that mtst  be imposed on the 
lateral cell boundaries to supplement (16 )  are 

au au 

aY aY 
Y(o,z, t)=Y!(L,x,t)=n(o,x,t)= n(L ,z , t )=-(o , z , t )=-(L ,z , t )=O.  

The dimensionless form of the wave drift ( 2 0 a )  is 

us = 2 cos 8 e%[ 1 + cos2 8 cos (2y sin 8)] . (20b)  

The remainder of the paper is devoted to motions produced by the action of wave 
drift currents of the form (20). 

4. The horizontally averaged drift current 
A solution U, for the Langmuir current system (see ( 1 8 ) )  will be a periodic 

function of y. After U, has been obtained, its average over one period in y can be 
computed to yield the horizontally averaged drift current (one y period is 2 L  and 
comprises two counter-rotating cells defined in the last section). By the symmetry 
of the problem, the only nonzero component of this average is in the wind 
direction, and is given by 

The mean velocity component U(z ,  t )  satisfies the equation , 

where - 

is the Reynolds stress due to the y fluctuations. The mean velocity ii is dealt with 
here in two ways. First, the complete set of equations for the wind drift currents 
and Langmuir circulations is solved numerically, and the resulting u component 
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is averaged over a cell; the Reynolds stress is found at the same time, for reference 
purposes, Second, an approximate solution is found for (hut)+ small; a Reynolds 
stress - T u  is calculated and substituted into (21), which is then solved for 5. 

Motion for small time 
The initial condition is a state of rest, and the motion for small time is therefore 
described by the linearized version of (16). An approximate solution valid for 
small time is sought that can describe the first effects of convection on the 
horizontally averaged current. 

An artificial small parameter 2 and a new time 7 are introduced to order the 
perturbation through the relation 

t = 2(La)-l7. (22) 

The initial disturbances are transmitted by diffusion, and the leading approxi- 
mation to u(y, z, t )  is determined by a Rayleigh problem with unit applied stress. 
As a result, the vertical co-ordinate should be scaled by 2 as well, so we introduce 
the vertical co-ordinate Z by 

2 = 242, 

and let +j = 2 / 2 ( h t ) +  = 2/2(7)4. 
The boundary condition 

[ a u / a ~ ] ~ , ~  = 1 = 2-4 [au/az],=, 

shows that u is O(84) for small 2; the vorticity equation shows that C2 is O(2) for 
small 2, and it follows that '3! is 0(a2). Therefore we set 

u = 2 h 0 ( y ,  Z,7) + A,($) ul(y, Z,7) +A&?) u,(y, Z,7) + . . . , 
Q = Q(y, Z,7) + g1(2) Q,(y, Z,7) + . . *, 
'3! = 22'3!o(Y, z,7) + .?g,(cl") '3!Ep,(y, z,~) + . . . . 

When these expansions are substituted into (lfi), the equation for uo is 

with boundary conditions 
au,/aT - a2uOlaz2 = 0, 

au0 
az - (y, 0,r) = 1 and uo --+ 0 as Z .+ co, 

and tho initial condition 
UO(Y, Z,O)  = 0. 

This is a Rayleigh problem, and it has the solution 

where 

We note that the equation satisfied byfo is 

f o ( i j )  = n-4 exp ( - q 2 )  + i j  erfc ( - i j ) .  

fo" + 2qf ;  - 2f0 = 0, 
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and the boundary conditions are 

&(O) = 1, fo(-co) = 0. 

Primes denote derivatives with respect to i j .  
The equation satisfied by Qo is 

where we have set 
r = COSO, s = sin@. 

I n  deriving (26), we have expanded the factor exp (2x) = 
in the Stokes drift us, in powers of 84, and only the lowest-order term appears in 
(26). Set 

no = (4r3s/La) (sin 2sy) Go(Z, r ) ,  ( 2 7 )  

(26) 

exp (284Z), which occurs 

then Go satisfies homogeneous boundary conditions at Z = 0 and Z = - 00, and 
vanishes at t = 0 for all 2. The solution is readily found to be 

Go = &ZUO(Z,T) = 27ijf0(ij). 
The equation for Yo is 

a2Yo/aZ2 = - Qo = - (8r3s/La) (sin 2sy) 7qf0(q). (29) 

Yo can be set equal to 

and (29) will be satisfied provided 

Yo = -(32r%/La) (sin2sy) 72h0(q), 

h” - 
0 - ijfOCijt, 

or 

The boundary conditions require ho(0) = ho( -00) = 0, but it is not possible to 
satisfy both conditions, and the boundary condition at infinity must be corrected 
by the construction of an outer solution. We take C, = 0 to prevent an unmatch- 
able limit, and choose C, to satisfy the surface boundary condition. The integrals 
in (31) may be shown to yield 

h, = c, +&{( - 1 +W) dfo/dij ++i j (  - 1 + 249) fo). ( 3 2 )  

( 3 3 )  

Recalling that dfo/dij = 1 a t  i j  = 0, the constant C, must be chosen to be 

c 1 -J-. - 16 

To satisfy the boundary condition at infinity, we must correct the solution 
above in the sense of matched asymptotic expansions. The inner solution that 
we have constructed has the limit 

Y -+ - P(2r%/La) (sin 2sy) 72 

as a:--+ 0, x fixed. Since the vorticity Q -+ 0 exponentially for fixed z as ? +- 0, the 
outer solution Y satisfies Laplace’s equation 

Yzz + YUU = 0. 
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The boundary condition on Y(y, 2, t )  required to  match the inner solution is 

Y(y, 0 ,7 )  = - 282~2(r3s/La) sin 2sy. 

The required outer solution is then 

Y(y, x ,  7) = - 2%-2(r3s/La) eaz sin 2sy. (34) 

Consideration of the equation for u1 shows that A,@) = 83, and that 

By reference to (23) and (30), it is seen that if we take u1 to be 

then fl satisfies the equation 

and the boundary conditions 

f; -k 2qf; - 12f1 = ahof; 

fl(0) = 0 =fl( -03). (37 b )  

The approximation already found for Y, together with the solution (36) for ul, 
is sufficient to evaluate the lowest-order non-zero contribution to the Reynolds 
stress -wzl in (211, 

- WU = u1 (av?,/ay) = - 4 ( 4 ~ ) 6 ~ 4  ~~-3(27)5f,(ij) ho(q). (38) 

If (38) is substituted into (21), the resulting equation in 7 ,  Z co-ordinates is 

The horizontally averaged current ii to order 8? satisfies (39), which may be 
solved by setting 

(40) 

The function f2 is the solution to the problem 

(41a) 

(41 b )  

ii = (&)1[2f0(r”) + (a7)5(4r)6s4La-y2(q)]. 

.G + 2r”f; - 22f2 = (fl ho)’, 

fL(0) = f 2 (  -03)  = 0. 

The functions fi and f2 may readily be found by the method of variation of 
parameters : 

fl(9) = - ($6(O) e5(0))-1 ($6(r“) SF e6(v) exp (v2)  dv 
- -m 

+e6(l)~-0~6(v)R1(u)exp 1 (v2)dv} ,  (42a) 

Rl(l?) = 4h0f;, (42 b )  

f 2 ( %  = ( A O ( 0 )  41(0))-1!4,1(~) ci M v )  M y )  exP (v2)dv 
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Figure 2 I + -3.0 

FIGURE 2. Functions arising in the small time solution. 

The functions #m and em, m = 5,  6, 10, 11, are independent solutions of the 
homogeneous equation 

g; + 2q.g; - 2mgm = 0. (44) 

The solution for fl was found by numerically evaluating the formal solution (42). 
To avoid the need to differentiate to find Rz(ij), (43) was integrated once by parts 
before fz was numerically evaluated. The formula used to computef, was then 

f z  = - 24[#1~(o) 011(0)1-1 ($il(l?j) 81zB3exp(v2) dv 
--m 

0 

+ ell($) [IGO $1&3 exP (v2) d v - 1  --m &2B3 exp (v2) 4) f ( 4 5 4  

R3(5) = hO(l?i)fl(q.)* (45b) 

I n  deriving (45), the properties of the #*& and em, and the fact that ho(0) = 0 were 
used. The numerical method used to evaluate (43) and (45), together with the 
necessary information concerning the functions #Ta, Om, is given in the appendix. 

The functions fo, h,, fl, and f, are displayed in figure 2. The redistribution of 
momentum due to vertical mixing accomplished by the Langmuir cells can be 
inferred from the curves for!, andf,. It should be remembered that u,, represented 
by fo, is the velocity profile that would obtain in the absence of vertical mixing. 
From the form of f,, it  is seen that the mixing lowers the surface speed and 
increases the speed at greater depth. 

Finite-difference solutions for larger time 
A series of calculations using fmite-difference approximations to the full non- 
linear equations (16) has been carried out for e = 30" and e = 16' with La = 0.1 
and 0.01. The finite-difference approximations are explicit, employ second 
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FIUURE 3. Development of the (dimensionless) mean current profiles as a. function of time as 

obtained from the kite-difference solution for 0 = 30°, La = 0.01. 
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FIGURE 5. Reynolds stress for the case depicted in figure 3. 

upwind differencing for the advection terms, forward time differences, and 
central differences for the Laplacian operator. The Poisson equation for Y is 
solved by successive over-relaxation. The algorithms are now standard and are 
described, for example, in the book by Roache (1972). Spatial differencesrequired 
for the vortex-stretching term that acts as a forcing function for the vorticity 
equation employ a combination of forward and backward differences. We shall 
not discuss the numerical procedures here; a full account will be given in Leibovich 
& Radhakrishnan (1977). 

The initial-value problem posed in §$2  and 3 with the wave drift (20) was 
solved, and the detailed results for the Langmuir cells will be described in 
Leibovich & Radhakrishnan (1977). After a solution for u(y,  z, t )  was obtained, 
a numerical integration was carried out across the Langmuir cell, and the 
horizontally averaged wind drift Z(x, t )  was calculated according to (21 a).  The 
Reynolds stress (21 c )  was also calculated by averaging the product - W u  in the 
same fashion. The evaluation of the wind drift current and the instantaneous 
Reynolds stresses that resulted from these calculations are presented here. 

The wind drifts U ( z ,  t )  are plotted in figure 3 for the case La = 0.01,8 = 30' and 
in figure 4 for 8 = 1 5 O ,  La = 0.01; the corresponding Reynolds stresses -m, 
calculated from the finite-difference solutions, are presented in figures 5 and 6. 
Our calculations for larger values of La have not been carried out for a sufficiently 
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FIGURE 6. Reynolds stress for the case depicted in figure 4. 

long time period to discern a clear pattern and will not be described. To facilitate 
the discussion, a streamline plot for 8 = 15", t = 30 is presented in figure 7. 
(Additional streamline plots will be given in Leibovich & Radhakrishnan 1977.) 

The effect of mixing on the profiles shown in figures 3 and 4 is pronounced. The 
relative minimum in u that occurs at a depth x = z, is one feature that arises 
from the convective action of the Langmuir cells. The solution shows that z,, is 
independent of time (z, M - 1) and seems to correspond to the effective extent of 
the 2 vorticity generation. This region is determined by the wavelength of the 
surface waves, since generation of x vorticity is accomplished by vortex-line 
stretching due to wave effects. 

Some insight into the minimum in ii may be gained by considering the averaged 
equation (21 6 )  in conjunction with the curves of Reynolds stress givenin figures 5 
and 6. Near the peakin Reynolds stress, which corresponds closely to the location 
of the minimum of ii, the net force exerted by the Reynolds stress will be small. 
Consequently, the rate of growth of ii will be determined by 'viscous ' stresses, 
which are weak for small La. Thus the minimum of 'il will grow slowly. At depths 
greater than z,, - a( %)/ax > 0 and La a2'il/ax2 is negligible: therefore (21 b )  may 
be approximated by a q a t  = - a K / a z  > 0, 

so U grows for z < z,, and the bulge in the U profile is formed. 
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FIUURE 7. Streamline pattern for 0 = 15', t = 30 and La = 0.01. The motion is clockwise. 

0, Y = 0.02; 8,  Y = 0.04; +, Y = 0.06; x , Y = 0.08. 

To explore further the origin of the minimum in 5, sections of the u(y,z, t)  
profile are presentedin figures 8 (a-c) . Figure 8 (a) showsuat a section through the 
upwelling cell boundary y = 0, figure 8 (b )  shows u a t  asection through the centre 
of the cell at y = +A, and figure 8 (c) shows zc at the downwelling eel1 boundary 
y = L. The upwelling fluid transports low-momentum fluid upwards, this effect 
being clearly seen in figure 8 (a) ,  where u is very small except in the layer of fluid 
near the surface, which is forced directly by the applied stress. The effect of a 
strong downward transport of highx-momentum fluid is clear from figure 8 (c)  . The 
origin of the bulges in the 5 profiles is revealed in figure 8 (b )  . They arise from the 
fact that most of the transport in the centre sections of the cell is horizontal, with 
relatively high x-momentum fluid originating from the downwelling jet entering 
the centre regions of the cell at depths below the cell centre. Close to the surface, 
slower moving fluid moves toward the centre from the vicinity of the upwelling 
cell boundary. 

Presumably, if the diffusion represented by the quasi-viscous term La%,, is 
aIlowed a sufficiently long time to act, the jet and the bulge it creates will be 
smoothed out, and a more conventional-looking boundary-layer profile would 
replace %. The dimensionless diffusion time based upon cell width L is L2/La. 
For 8 = 30°, this diffusion time is 989, while for 8 = 15", the diffusion time is 
3683. Therefore, in our calculations the lateral smoothing which presumably will 
eventually take place is not yet effective. 

The motion near the surface rapidly develops a quasi-equilibrium structure 
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FIGURE 8 (a). For legend see facing page. 

that changes only slowly with time. One measure of this process is the rapid 
approach of U ( 0 ,  t )  to an asymptotic value. Figure 9 illustrates this point. For all 
practical purposes, ;il( 0, t )  reaches its asymptotic value within ten dimensionless 
time units. 

Interesting features of the near-surface equilibrium structure are brought 
out by replotting figures 3 and 4 on semi-log paper. This has been done in 
iigures 10 and 11, which show the velocity defects U ( 0 ,  t )  -U(z ,  t ) .  These figures 
show that, a portion of the profile is linear in log / X I .  By analogy with the turbulent 
boundary layer, this might be called an inertial sublayer; it clearly arises 
because the Reynolds stress has much the same shape as it does in a turbulent 
boundary layer. A thin ‘viscous sublayer’ joins the surface to the inertial 
sublayer. 

To display this feature more clearly, we have indicated the velocity defect for 
all computed interior z points up to its local maximum. Beyond the local maxi- 
mum, a smooth curve connects the remaining computed points, which are not 
individually marked. Straight lines pass precisely through all points in the inter- 
val between - z  = 0.12 and - z  = 0.30 in figure 10 for each instant of time. The 
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FIGURE 8. Velocity profiles for 8 = 15O; note that the velocity scales are not identical. 
(a) At the upwelling cell boundary y = 0, (b) a t  a section through the centre of a Langmuir 
cell y = @, (c)  at the downwelling cell boundary y = L. 0, t = 30.34; A,  t = 60.69; 
+, t = 91.03; x , t = 121.37. La = 0.01. 
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FIUURE 9. Surface current values for the cases in figures 3 ttnd 4. 
--- , e = 300; - , e = 15". 

calculations that we have carried out for 0 = 30" used a vertical mesh size of 
Az = 0.02 for 0 < t < 35, and then a coarse mesh of Az = 0.1 was used to continue 
the calculations beyond t = 36. The calculations for 6 = 15" were more time 
consuming, and the coarse mesh (Az = 0.1) was therefore used for all calculations 
shown in figures 4 and 11. The logarithmic region seems to be equally apparent in 
figure 11, although the small number of points makes its identification less 
compelling. The inertial sublayers in figures 10 and 11 cover approximately the 
same depth region, and are about 3 times the thickness of the viscous sublayers. 
Although this ratio is not large for La = 0.01, it  may be expected to increase as 
La -+ 0, since the thickness of the viscous sublayer and La decrease together. In  
any event, the extent of the inertial sublayer obtained here is not inconsistent 
with that occurring in low-Reynolds-number turbulent boundary layers (cf. 
Kline et al. 1967, figure 9a).  The important point to be made is that figure 10 
shows that the log region is very distinct: each curve is remarkably straight in the 
interval designated as the inertial sublayer. 

The behaviour of the flow below the logarithmic region is complicated, but it 
appears to be approaching a form analogous to the wake region of the turbulent 
boundary layer. It shouId be remembered that all of the profiles shown are 
instantaneous, and, below the equilibrium zone a t  least, the flow is developing 
in time. 

Notice that, for each of figures 10 and 11, the slope y of the inertial sublayer 
profile is essentially independent of time. Thus, the computations show that the 
dimensional wind drift current uc (2 1 a) in the inertial sublayer is 

Uc = ( U ; / V ~ K )  ;iz = ( U " , I V ~ K )  ( ~ ( 0 ,  t )  - yln (Z/Z,,)). (46) 

According to Bye (1966) and to Wu (1975), observed wind drift currents exhibit 
an inertial sublayer of the form 
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FIGURE 10. (a) Two examples of instantaneous velocity-defect profiles plotted on semi-log 
paper for 0 = 30' and La = 0.0 1. The straight line connects points in the inertial sublayer. 
The computed points in the inertial and viscous sublayers, and a few adjacent points at 
greater depths are explicitly marked to demonstrate the precision of the straight line fit. 
+ , t = 20; x , t = 35. (b)  This plot is similar to (a), but for larger values oft. A coarse z-mesh 
was used for these calculations, and therefore the displayed points are more sparse. Never- 
theless, the log region remains clear. +, t = 60; x , t = 100. The inertial sublayer for these 
curves is roughly represented by y = 0.087 in (46). 

- 2  
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FIGURE 11. The same as figure 10, but for 8 = 15". The point spacing is the same as in 
figure 10 ( 6 ) .  Again, the inertial sublayer is distinct. All curves are described reasonably well 
in the log region by (46) with y -i: 0.12. 

where k = 0.41 is von K&rmm&n's constant and Usuri is the surface current speed. 
Since U ( 0 ,  t )  rapidly approaches a constant value (which depends upon O), Usurl 
might be interpreted as 

If we attempt to link the coefficients of the logarithmic terms in (46) and (47), we 
must suppose that 

so that the surface speed is 

q u r f  = (U2*/vTK) z(o, (48) 

YU*/vTK = ilk, (49) 

(50) G u r l  = (u*/4 U ( 0 ,  a). 
We shall return to speculations of this sort in the discussion in 5 6. 

5. Comment on the equilibrium structure in the limit La --f 0 

Although our problem, as posed, has no steady state, the results that we have 
presented show that the flow in the equilibrium region approaches a nearly 
steady state. It would be interesting to determine this quasi-steady motion in the 
limit La --f 0. 

The limit problem is singular, and the 'viscous sublayer ' must be matched to an 
inviscid and steady inertial sublayer, which must in turn be matched to an 
unsteady layer below. We are attempting to carry out this program. At the 
preseitt time we are in the preliminary stages, and we will only indicate here a 
simplifying reduction of the equations of the inertial sublayer. 
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As L a  -+ 0, the steady version of (16) is 

vu,+ wu, = 0, (51) 

(52) 

V2Y = - Q .  (53) 

vq/ + WQR, = usus, - uyusz, 

From (51), u = x(Y), where x is an undetermined function of Y, and from (52) 

= va (x’us)/ay+ wa(x’us)/az, 
which has the solution 

Q = Us(% 2) x ’ ( W  - Vu. 
Thus the set (51)-(53) governing the inertial sublayer is equivalent to the 

The two functions and x are arbitrary, as far as (51)-(53) are concerned, and 
must be made definite as part of the matching process. For example, since u, --f 0 
exponentially with - 2 ,  it would appear that r(Y) might be determined by 
matching vorticity with the unsteady motion at  large - 2 .  A vorticity match 
with the viscous sublayer should then determine x’(Y). 

6. Discussion, with emphasis on comparing theory with observation 
This paper advances a detailed theory of an extremely complex set of events. 

We shall now attempt to assess, in a preliminary way, the relation between the 
theory and nature. The results of this appraisal will prove to be encouraging, 
but is worthwhile to ask what expectations are reasonable for a detailed descrip- 
tion of a geophysical phenomenon. The position taken by Jeffreys (1962) in the 
preface to his book The  Earth is worth noting. Jeffreys writes on the question of 
confirming theoretical models of geophysical phenomena as follows: “ . . . though 
in some cases formally accurate solutions of related problems exist, or could be 
obtained, the problems actually so soluble differ so much from those that actually 
arise in geophysics that, in their actual application, they could at best be correct 
only as regards order of magnitude’’ and “ a  direct proof that a particular 
hypothesis will account for particular data is not very strong confirmation of the 
hypothesis when both the data and the consequences of the hypothesis are known 
only vaguely; but if it is shown that the results of the hypothesis agree with the 
facts as regards order of magnitude, while the results of denying it are in definite 
disagreement, the confirmation will be almost as strong as if close agreement had 
been obtained. The method of exhaustion of alternatives is specially useful in 
geophysics, because incorrect geophysical hypotheses usually fail by extremely 
large margins.” 

While the “consequences of the hypothesis” adopted here have been rather 
fully explored, the point of view propounded by Jeffreys seems a wise one. We are 
not in a position presently to make a fully adequate comparison between the 
results of the present theory and field or laboratory observations, but we can try 

47-2 
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to determine if the theory and observation are consistent in the orders of magni- 
tude of the more easily observed quantities. Among these observables are the 
surface drift speed, the general character of the near-surface motion, particularly 
the inertial sublayer, and the time scale for current development. 

The observed drift of surface water includes the wave drift and the Eulerian 
drift current gc which we have calculated here, and a proper comparison should 
include both effects. For now, however, we will neglect the contribution of the 
wave drift, but keep in mind that it can be comparable to uc. The theory of this 
paper predicts a surface value of Oc of 

q u r t  = ( u ~ * / Y T K )  c(O,a). 
The parameters vT and K are not easily determined. From $5, however, the near- 
surface motion in the inertial sublayer in theory and observation can be made to 
agree if (49) holds. This implies that 

usurf = (U*/kY) w m), 
so that the surface drift speed is proportional to the friction velocity. The air 
friction velocity can be estimated to be between & and & of the wind speed, and 
the water friction can be estimated by equating the wind and water stress. This 
procedure (which ignores that proportion of the wind stress supported by wave 
drag) yields 

where the subscripts a and w stand for air and water. This estimate is consistent 
with the data reported in figures 2 and 9 of Wu's (1975) paper. Laboratory and 
field studies indicate that the wind drift is directly proportional to (typically 
3 to 4 yo of) the wind speed, and therefore indirectly to the water friction velocity. 
Also, according to Wu, and to Phillips & Banner (1 974), the surface current speed 
is about 0*55(u,),. Using the relation between (u& and (u,,Jw presented above, 
the surface speeds are 16.5(u,),. Both of the finite-difference solutions that have 
been described in this paper produce values of G(0,oo) and y of 0.3 and 0-1 (when 
rounded to one significant figure). (Both U ( 0 , o o )  and y appear to depend upon the 
parameters 0 and La, although our calculations are not adequate to determine 
the dependence.) If we adopt these values and insert k = 0.4 for von KBrmBn's 
constant, our calculations yield a frictional surface wind drift 

Usurf = u*U(O, a ) / y k  NN 7 . 5 ~ , ,  

which is about half of the value observed for the frictional and wave drift currents 
combined. Smaller values of 0 should lead to increased 2(0, a), however, since 
mixing reduces surface current speeds and the effects of mixing are reduced as 
8 decreases. The relative magnitudes of the wave drift and the friction current 
are only poorly understood, and we do not have a definite principle to select a 
value for 8 in our model. Consequently, we think that the above comparison of 
Usuri with observation, being reasonable in numerical order of magnitude, is 
encouraging. 

The time scale for the development of the current (designated as Td) is, 
according to ( I ~ u ) ,  

('u*)a/(u*), = (Pw/Pa)* 30, (55) 

Td U-' (VTU)~/€U* .  
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The numerical calculations show (figure 9) that the surface current is essentially 
fully developed in a dimensionless time of under 10 units, so the time scale 
assumed in the theory is an appropriate one for the surface current. We shall 
attempt to estimate this time scale by adopting (49) to eliminate the most 
awkward term, v,. This yields 

Td = c ~ ( L ~ c / u , ) *  u - ~ ,  

where c is the wave phase speed a/.. A crude estimate of this can be arrived at  by 
adopting y = 0-1, by setting c equal to the wind speed, which is assumed to equal 
22(u,),, and by adopting (55) .  With these steps taken, 

Td N 5e-1 U-1. 

In  the formulation used in this paper 2e cos O/n is a measure of the wave slope 
(see 5 3). For a wave slope of & and small 0, B N 0.15, and 

Td N 330-l. 

Since r1 is generally of the order of seconds, Td is of the order of minutes. 

v,; this yields 
The range of interest for La can be estimated if we again use (49) to eliminate 

La = (ky) t  (u*/c)*/e. 

Using the values of E and y, and the replacement for c used in the estimate for Tar 
we arrive at La N 0.002. The precise value is not of importance, but it is of 
interest to know that La is small, for in our model small La indicates that the 
momentum transfer by the organized convective motions dominates that 
accomplished by the small-scale turbulent motions. 

7. Conclusion 
A comprehensive theoretical model has been presented for Langmuir circu- 

lations and the horizontally averaged frictional wind drift currents in the ocean. 
On the basis of arguments made previously by Craik & Leibovich, the model 
postulates that the Langmuir circulations and the wind drift are interconnected 
and form parts of an inseparable current system. 

Three assumptions are fundamental to the theory: (i) that surface waves can, 
because of their directional propagation characteristics, produce a wave drift in 
the wind direction that oscillates in magnitude across the wind; (ii) that the wave 
orbital speeds are much larger than the frictional drift that develops; and (iii) that 
the time scale for the development of the current is large compared with a wave 
period, so that a multipIe-time-scale analysis can be applied. Granted these 
assumptions, the model is constructed from first principles. Other assumptions 
are made to simplify the analysis, but do not appear to be essential to the theory. 

Despite the simplifications required to make the mathematics tractable, the 
predictions of the model agree well with experimental findings on the wind drift 
current. In particular, the current profiles are similar in form and the magnitudes 
of the currents are in acceptable agreement. More important, the scalings that 
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emerge from the model are internally consistent when semi-empirical correlations 
are used to estimate the input parameters. 

We note, finally, that  i t  seems possible to incorporate into the model slow 
changes in the wave parameters and in the wind stress. All that seems to be 
required is that these parameters should not vary rapidly compared with the 
time scale T,for development of the wind drift current and Langmuir circulations. 

This paper has been materially improved by the incorporation of helpful 
comments on earlier versions of the work by several people. Remarks by Professor 
G. 0. Roberts and a session with Professors S. Corrsin, S. H. Davis and 0. M. 
Phillips were particularly valuable. Questions raised by Dr A. D. D. Craik have 
led to clarification of the text on a number of important points. I would like also 
to acknowledge, with gratitude, the support provided by the National Science 
Foundation under Grants GA-43241 and DES74-13057801. 

Appendix 

The functionsf, andf, defined in (36) and (40) were constructed directly from 
the integral formulae (42) and (45). The functions 9, and 0, satisfy (44), and the 
relations 

9k+l(fj) = g,(fjL (A 1) 

(A 2) mgm(4) = qgm-l(q)  + &m-2(?). 

The recursion relation (A 2) was used to evaluate & and 0, numerically. The grn 
family was found by selecting the starting solutions $-, = 0, q$,(fj) = 1, and the 0, 
family was found by starting with 

O-,(fj) = 2n-texp (--q2), 0,(q) = erfc (-))"). 

It can be seen that for all integers n, 

92n+1(0) = 0, 

02n+l(o) = [2"(2n+ 1) (2%- 1 ) .  . .5.3.1.2/n]-l, 

$5,"(0) = 0,,(0) = (22%!)-1. while 

Provided the functions R, and R, in (42) and (45) do not grow as ij --f -m, all 

I n  the integration by parts used in going from (43) to (45), use has been made 
integrals in (42) and (45) converge. 

of the formula 

that is satisfied (in view of (44) and A 1) by the g,. 
With $, and 0, evaluated as described above, the integrals in (42) and (45) 

were evaluated using the subroutine DQSF described in the IBM Scientific 
Subroutine Package, using a step sizeof 0.05. Accuracy was assessed by repeating 
the calculation with the mesh reduced to 0.025. The computer program was also 
verified, and its accuracy determined, by calculating both (42) and (45) for 
examples of R, and R, that yield exactly known solutions. In  the case of (42), the 

d(exp (v2) gm(v)) /dv = 2(nb + 1) ~ X P  (v2) grn+,(v) 
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solution when R, = - 14exp (q2) is exp (-1”. Also, exp ( -qz) is the proper 
solution to (45) i fR ,  = - 12 Jnerfc (-q). The exact solutions were reproduced by 
the program to four significant figures with a step size of 0-05. 
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