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Wind and Wave Measurements Using Complex
ERS-2 SAR Wave Mode Data

Susanne Lehner, Johannes Schulz-Stellenfleth, Birgit Schättler, Helko Breit, and Jochen Horstmann

Abstract—A global dataset of complex synthetic aperture (SAR)
images is processed from wave mode raw data acquired by the
ERS-2 satellite. Using these data, different algorithms for wind and
wave measurements recently developed in view of future ENVISAT
ASAR data are analyzed on a statistical basis.

Different aspects of complex SAR wave mode processing with
the DLR processor BSAR are discussed and global statistics of pro-
cessing parameters are presented.

Single-look complex (SLC) imagettes give the opportunity
to apply multilook techniques in range as well as in azimuth.
Such methods are used to reduce speckle noise or to analyze the
time evolution of the ocean surface cross section during SAR
integration time. A global analysis of different new algorithms
for wind and ocean wave measurements, taking advantage of
SLC data, is given. Wind speed is estimated with the azimuthal
cross-correlation algorithm (CCA). As a modification of the
existing CCA, range multilooking is used to deal with the speckle
bias. Homogeneity of the imagettes is considered. Wind speed is
derived from mean SAR image intensities taking into account
wind direction (CMOD algorithm). Comparison with collocated
ERS-2 scatterometer data shows reasonable agreement with the
CCA and good agreement for the CMOD approach.

Using imagettes instead of image power spectra allows us to
study ocean surface features caused by natural slicks, sea ice, or
atmospheric processes. The impact of these phenomena on SCAT
measurements is considered.

Cross spectral methods are used to derive the ocean wave
propagation direction from complex imagettes on a global basis.
Comparison with model data provided by the European Center
for Medium Range Weather Forecast (ECMWF), Reading, U.K.,
shows good agreement.

Index Terms—ERS wave mode, ocean waves, SAR, wind speed
estimation.

I. INTRODUCTION

SINCE the launch of the ERS-1 and ERS-2 satellites in
1991 and 1995, synthetic aperture radar (SAR) images

have been acquired over the oceans on a continuous basis. Full
swath scenes of 100 100 km size are taken where receiving
stations are in line of sight (image mode), whereas 610
km images (imagettes) are acquired every 200 km along the
orbit (wave mode). Due to their all-weather capability and high
resolution, SAR systems have become a valuable measurement
tool for wind speed and ocean waves [1]–[3].
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It is clear that SAR imaging of the sea surface is a complex
mechanism influenced by many different processes, e.g., wind,
currents, slicks, or rain. However, the basic imaging mecha-
nisms are well understood by now [2]–[7].

Quite a few studies were published about the use of ERS
wave mode data for wind and wave measurements. These are
mostly concerned with the analysis of user wave (UWA) spectra,
which are the standard European Space Agency (ESA), Noord-
wijk, The Netherlands, product [1], [8]–[10]. UWA spectra are
coarsely gridded image power spectra derived from imagettes
with a directional resolution of 15and 10 wavenumber bins log-
arithmically spaced between 66–660 m (recently changed from
100 m to 1000 m) [11]. The complex imagettes themselves are
so far not available from ESA as a standard product. An analysis
of imagette intensities has been performed by Kerbaol [12].

Recently, new algorithms were developed to derive wind
speed and ocean wave spectra from complex SAR images [13],
making use of the additional phase information contained in
these data. Up to now, these algorithms were only tested using
image mode data [14], which are not suited for global statistical
analysis, as they can be acquired over the open ocean only
when in line of sight of an antenna station.

This paper aims at testing and improving different SAR wind
and wave measurement methods using a global complex ERS-2
SAR wave mode dataset. The study is a preparation for the new
data products available from the ASAR (advanced SAR) of the
ENVISAT satellite to be launched in the year 2001. As EN-
VISAT will not carry a scatterometer (SCAT), the development
of ASAR wind measurement techniques is of special interest. As
the ERS SAR, the ASAR will operate at C-band and collect data
in image mode and wave mode. The ENVISAT ASAR wave
mode will have some advanced features, as shown in Table I.

To prepare for ENVISAT data, ERS-2 wave mode raw data
were processed to single-look complex imagettes using the
BSAR processor developed at the German Remote Sensing
Data Center (DFD), Oberpfaffenhofen, Germany. An example
of an imagette quicklook from this dataset showing ocean
waves is given in Fig. 1.

In this study, three main points are investigated.

1) It is demonstrated how complex imagettes can be used
to derive additional information on wind speed, sea state,
and surface features as compared to UWA spectra.

2) As wave mode is available at the same time and location
within the larger SCAT pixels (50 50 km), the imagettes
are used to test the SCAT flagging for land and sea ice. We
show that seemingly wrong SCAT measurements of wind
speed can be explained by surface features.
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TABLE I
COMPARISON OF DIFFERENT ENVISAT

ASAR AND ERS SAR WAVE MODE PARAMETERS

Fig. 1. Amplitude of a complex 10� 6 km ERS-2 SAR imagette acquired on
June 1, 1997, 05:00 UTC. The corresponding complex data were processed with
the DLR processor BSAR.

3) Several new algorithms have been developed to derive
wind speed and ocean wave spectra from complex SAR
images by using cross-spectral methods. We use this
dataset for a first global evaluation of these algorithms.
The results are compared to ECMWF model and collo-
cated SCAT data.

The paper is organized as follows. In the first section, SAR
wave mode processing is discussed and global image statistics
are given for a new dataset. Wind speed is evaluated globally,
and the influence of surface features on wind speed is exam-
ined. The results are compared to SCAT wind measurements,
and the quality of SCAT flagging for sea ice is evaluated. Fi-
nally, cross spectra are calculated to derive sea state and ocean
wave propagation direction by multilook techniques.

II. SAR WAVE MODE PROCESSING

In this section, some general features of complex SAR data
are discussed. Based on this, problems encountered in complex
wave mode processing are analyzed.

A SAR achieves its high azimuthal resolution by recording
the Doppler history of the returned signals [15]. Consider a
single stationary point scatterer located at Doppler zero time

0. As shown in Fig. 2(a), the corresponding SAR raw data
are then given by a quadratic chirp (neglecting range migration)
with envelope maximum located at Doppler centroid time.

Rather than focusing the entire chirp to a single image, subin-
tervals of the integration time are often used to process looks
with lower azimuthal resolution. In the case of the ERS SAR,
the integration time is about 0.8 s. In this study, two looks with
nonoverlapping frequency bands are used, each of which has an
integration time of about 0.4 s and a separation time of the same
order.

SAR processing is performed by matched filtering, which
corresponds to a multiplication operation in the Fourier domain.
Fig. 2(b) shows the phase of the raw data spectrum (solid),
which is again a quadratic chirp. This spectrum is multiplied
with the complex conjugate matched filter spectrum, removing
the quadratic phase component. The dashed line in Fig. 2(b) is
the phase of the complex image spectrum obtained after this
processing step. Fig. 2(c) shows the resulting point scatterer re-
sponse in the SAR intensity image using the entire bandwidth
(solid) and the half bandwidth (dashed).

However, SAR imaging of a moving water surface is more
complex. Considering again a single backscattering facette on
the ocean surface, the following effects must be taken into ac-
count.

1) A velocity component of the facette in slant range di-
rection leads to a Doppler shift and therefore to a shift
of the corresponding image point in azimuth (velocity
bunching, [16]).

2) Similarly, acceleration of the facette in slant range di-
rection causes azimuthal smearing of the SAR image re-
sponse (acceleration smearing, [4]).

3) Internal movement of the cross section pattern, e.g.,
caused by propagating ocean waves, leads to degraded
resolution of the corresponding pattern in the SAR
image. The movement can be analyzed using azimuth
multilooking [13].

4) A lifetime of the facette shorter than the SAR integra-
tion time causes degraded azimuthal resolution. (coher-
ence time, [17]).

A geometrical depiction of the velocity bunching and accel-
eration smearing effect is given in Fig. 3.

As SAR data are sampled with a finite pulse repetition fre-
quency (PRF), only a limited bandwidth can be used for the
matched filter. In order to maximize the SNR, it is important
[18] to center the filter pass band at the Doppler centroid fre-
quency [see Fig. 2(b)]. For this reason, an accuratees-
timation is a necessary step in SAR processing. This implies in
particular Doppler ambiguity resolving. Fig. 4 shows that some
care must be taken in this respect. Doppler centroid estimates
are given in baseband for a global ERS-2 imagette dataset. As
one can see, is passing through adjacent PRF bands at sev-
eral locations. Wrong selection of the PRF band would lead to
inaccurate range migration correction and defocusing of the im-
agettes.

Although several Doppler ambiguity resolving algorithms
exist that deal with low contrast scenes [18]–[20], they usually
require a significant amount of SAR signal samples to be ana-
lyzed exceeding by far the ERS wave mode cell size of about
2400 range lines with 528 range-compressed samples each.
Thus, the Doppler ambiguity resolving still must be regarded as
an open issue for ERS and ASAR wave mode data processing.
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Fig. 2. (a) Azimuth chirp of single point scatterer in SAR raw data. Rather than using the entire integration time for processing a single image, subintervals
can be selected to generate different looks with lower azimuth resolution. (b) Phase of raw data azimuth spectrum (solid) and complex image azimuth spectrum
(dashed). Frequency bands of looks are indicated. The processed bandwidth is limited by the pulse repetition frequency (PRF). (c) Azimuth impulse response in
SAR intensity image using the entire bandwidth (solid) and half bandwidth (dashed).

Fig. 3. Illustration of the velocity bunching and acceleration smearing effect.
Two backscattering facettes on the ocean surface moving toward the radar and
moving away from the radar are shown. The corresponding SAR image points
are shifted and smeared in flight direction. The upper facette is assumed to have
a smaller velocity and higher acceleration than the lower facette.

Fig. 4. Base band estimates of Doppler centroid for a global ERS-2 imagette
data set acquired on June 1, 1997.

An analysis of about 25 000 ERS-1 and 6000 ERS-2 SAR
image mode products produced at the German PAF showed that
the ERS image mode Doppler values obtained during the nom-
inal ERS operation in yaw-steering mode (i.e., maneuver sit-
uations excluded) follow a nominal behavior around an orbit.
Therefore, a Doppler prediction table containing the expected
Doppler value as a function of the geographical latitude for as-
cending and descending orbits is incorporated into BSAR and
used for the Doppler ambiguity resolving.

An important extension to BSAR to complex wave mode data
processing consists of the incorporation of a range-expansion
step. Since BSAR uses the chirp scaling algorithm [21], [22], the
onboard range-compressed wave mode data must be expanded
into chirp raw data required as input for the chirp scaling algo-
rithm.

Moreover, the ERS onboard range compression, achieved by
a dispersive surface acoustic wave delay line (SAW), causes an
additional range time delay with respect to the ERS image mode.
This value is reported by ESA as 43.5 ms. A first measurement
of this time delay is done using the corner reflector of the ERS-2
wave validation scene acquired on July 29, 1995, 21:46:44 UTC,
kindly provided by ESA.

Since the Doppler frequency rate is range-time dependent, a
wrong value for the electronic time delay leads to the assump-
tion of a wrong range time and thus a degradation in the mea-
sured azimuth resolution of the corner reflector. The best az-
imuth resolution is obtained for an assumed additional SAW
delay of 44.0 ms.

Also, the cross-correlation method described in Section V in-
corporates the possibility of determining time delay, since again,
a wrong value for the range time leads to a wrong Doppler fre-
quency rate and thus to a measured movement of the corner re-
flector. This measurement confirms the value of 44.0 ms.

III. GLOBAL IMAGE STATISTICS

A. Moments of Intensity Images

In this chapter, some statistical properties of complex SAR
images relevant for wind and wave measurements are given.
Furthermore it is explained how azimuth and range multilook
techniques can improve the estimation of statistical parameters
of the underlying radar cross section.

Radar signals returned from different scatterers within a SAR
resolution cell add up coherently as in a random walk. As there
are many scatterers with uncorrelated complex reflectivities
contributing, real and imaginary parts of a complex SAR image
are independent Gaussian distributed. Hence, the intensity
of a single look complex pixel follows a negative exponential
distribution [15]. A basic property of this distribution is that
the variance equals the squared mean . SAR image
statistics is commonly explained using a multiplicative noise
model. SAR image intensity is expressed as the product of
a negative exponential distributed speckle processwith unit
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Fig. 5. Global distribution of mean imagette intensities for June 1–2, 1997.

mean and a process carrying the cross section information
[23]. Both processes are assumed to be independent

(1)

For a SAR image acquired over the ocean,is modulated by
the underlying radar cross section of the sea surface. To gain in-
formation about the sea surface requires estimation of statistical
parameters of the process. Therefore, it must be investigated
how these parameters are related to the speckled measurement.
The mean of , which is, for example, relevant for wind speed
measurements, is simply given by

(2)

Fig. 5 shows the global distribution of the (relatively calibrated)
mean derived from ERS-2 imagettes acquired on June 1,
1997. Low mean values occur over ice and on imagettes with
low wind speed that may be contaminated by surface slicks (see
Fig. 7). High mean values occur for imagettes taken in the strong
storms near Antarctica. One commonly used algorithm to de-
rive wind speed over the open ocean from mean backscatter is
the so-called CMOD4, discussed in the next section. For accu-
rate derivation of wind speed from mean backscatter, wind di-
rection is needed as an additional input though. For the second
moments, which are, e.g., used for ocean wave measurements,
the situation is more complex. In this context, it is useful to in-
troduce the modulation of

(3)

It is convenient to use as basis for wind or wave measure-
ments [4], because no calibration of the SAR data is needed in

this approach. In order to derive information on sea state, the co-
variance function is considered The covariance functions
of and are connected by the following expression [12]:

(4)

The corresponding variance spectrumthen follows by taking
the Fourier transform of (4).

(5)

Here, denotes the convolution operator. The last two equations
show that due to speckle contribution, it is not straightforward
to derive the second moments offrom the measurement. In
particular, this requires some knowledge about the spectrum of
the speckle process.

However, being only interested in the variance of m
[ ], the speckle problem becomes more
straightforward. In the case of a single look image, is
related to the coefficient of variance (CVAR), often used in
SAR image analysis [12] by

(6)

In practice, can be estimated by using (6). Fig. 6 shows
the global distribution of derived from ERS-2 imagettes
acquired on June 1, 1997. It can be observed that is close
to zero almost all over the ocean, showing maximum values of
up to 0.1 in areas of strong wind, e.g., near Antarctica. Larger
values are found for images that show surface features. It seems
that could be a good measure for sea ice type, showing
strong variance between zero and 0.2 in the sea ice region. Near
Antarctica, imagettes showing either the ocean surface in strong
wind speed or sea ice have similar values of , so that
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Fig. 6. Variance of the modulation ofX calculated for a global dataset of complex imagettes acquired on June 1–2, 1997.

more sophisticated parameters are needed to discriminate be-
tween them.

B. Derivation of Second Moments Using Complex Data

To overcome the problems encountered above in the compu-
tation of the second moments of, complex SAR images are
very useful. The idea is to use two looks extracted from
the range or azimuth spectrum of the complex image. Due to the
reduced bandwidth, looks have a degraded resolution in range or
azimuth. In the case of nonoverlapping frequency bands (com-
pare Fig. 2), the looks are affected by uncorrelated speckle pro-
cesses and . This means

(7)

for the range look case and

(8)

when using azimuth looks. The difference is made because on
the time scale relevant for ocean wave measurements range
looks can be regarded as simultaneous (the ERS chirp has a
time span of about 40 s). Azimuth looks on the other hand
are about 0.4 s apart, so that the change of cross section taking
place during look acquisitions is not negligible. The range look
cross-covariance function is related to the covariance function
of by

(9)

For azimuth looks, the corresponding relation is given by

(10)

Fig. 7. Amplitude of a complex ERS-2 imagette acquired on June 1, 1997,
showing slicks on the ocean surface.

Both equations show that the speckle contribution cancels out.
The multilook technique thus offers a straightforward way to
estimate parameters of the process. As an illustration, Fig. 8
shows the azimuthal autocorrelation function of an ERS-2 im-
agette (dashed). The function shows a strong peak in the center
caused by speckle. The solid line represents the cross-corre-
lation function (CCF) of two range looks computed from the
complex imagette. As one can see the speckle bias is removed,
leaving the smoother autocorrelation function of the underlying
cross section pattern . A comparison between the azimuth
CCF derived from range (solid) and azimuth (dashed-dotted)
looks is given in Fig. 9. Both correlation functions show an
ocean wave system of about 150 m wavelength travelling in az-
imuth direction. The CCF of the azimuth looks indicates a small
phase shift of the ocean waves taking place in about 0.5 s. Apart
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Fig. 8. Azimuth autocorrelation function of single look ERS-2 imagette
(dashed) and cross-correlation function of two range looks (solid).

Fig. 9. Cross-correlation function of two looks extracted from the range
spectrum (solid) and azimuth spectrum (dashed-dotted) of a complex ERS-2
imagette. The dashed line represents a Gaussian fitted to the range look
cross-correlation function.

from that, it can be observed that due to the lower azimuthal res-
olution, the CCF is smoother for the azimuth look case.

In the following sections, different wind and wave measure-
ment algorithms are presented, which take advantage of multi-
looking techniques.

IV. WIND SPEEDMEASUREMENTS

A. CMOD Approach

In this section, the relation between single look imagette
brightness and wind speed is analyzed. A similar analysis was
carried out for three look averaged imagettes by Kerbaol [12].

Wind speeds from ERS SAR images of the ocean surface have
been derived by Alpers and Brümmer [24], Chapronet al. [25],
Rosenthalet al. [26], Horstmannet al. [27] and Scoonet al.
[28].

The model of Wright [29] explains backscatter from the
rough ocean surface for moderate incidence angles (20–60) by
resonant Bragg scattering. The backscatter signal is dominated
by the ocean wave component in resonance with the incidence
radiation. More precisely, the radar cross sectionis related
to the energy contained in the ocean wave component,
which lies in the incident plane and obeys the Bragg condition

(11)

Here, is the incidence angle of the radar beam, andis
the electromagnetic wavenumber of the radar. In case of the
ERS SAR, operating at C-band with incidence angles between

Fig. 10. Low-pass filtered 2-D autocorrelation function of ERS-2 imagette
acquired on June 1, 1997, 05:00 UTC (compare Fig. 1). Wavelength shorter
than 2 km are removed. The arrow indicates the wind direction determined by
the ERS-2 SCAT. The measured wind speed is 16.4 m/s.

20–26 , Bragg waves have length in the range of 6.5–8.3 cm.
Therefore, backscatter can be used to evaluate parameters which
influence the small scale roughness, like the wind speed.

Grey levels of SAR images are converted into normalized cal-
ibrated radar cross-section (NCRS) using the ESA calibration
algorithm [30]. For SAR image mode, some calibration prob-
lems occurred due to saturation of the ADC converter that oc-
curred mainly over bright areas like inland ice or sea surface
under strong wind conditions. These problems were solved by
a recalibration procedure.

After calibration, wind speed is derived from the images
using the semi-empirical CMOD4 algorithm [31], which was
originally derived to retrieve wind speed and direction from
scatterometer measurements. CMOD was developed for the
ERS scatterometer, but as the ERS SCAT and the ERS SAR are
both operating at C-Band, it can be used on SAR data as well
[32]. As SAR images only yield one backscatter measurement
for each pixel (contrary to the three measurements from the
three SCAT antennas), some additional information on wind
direction is needed for the SAR. Usually, SAR images show
distinct features like wind streaks or shadowing behind coasts,
from which the wind direction can be derived.

On wave mode images, not as many distinct stripes show up
as on near coastal images, which is probably due to higher tur-
bulence in coastal areas. More sophisticated analysis is needed
than the Fourier analysis used in [32] to derive wind direction.
As an illustration, Fig. 10 shows the two-dimensional (2-D) au-
tocorrelation function computed from the imagette shown in
Fig. 1. To focus on large scale image structures, which are not
due to ocean waves, wavelengths below 2000 m were removed.
The arrow indicates the wind direction derived from the collo-
cated SCAT measurement. As can be seen, there is a good cor-
respondence between the orientation of the large scale image
structures and the measured wind direction. Visual inspection
showed that this kind of agreement can be found in about 40%
of the cases.

Up to now, BSAR wave mode is only relatively calibrated. As
ERS wave mode is even more severely affected by ADC satura-
tion than image mode, absolute calibration for very strong wind
conditions will be difficult to achieve for ERS SAR. However,
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(a) (b)

Fig. 11. (a) Mean intensity versus ERS SCAT wind speed for homogeneous imagettes (+) and imagettes affected by slicks, sea ice, or atmospheric phenomena
(4). (b) Mean intensity versus ERS SCAT wind speed for up/down wind (+) and cross wind (4).

for the next generation of data from the ENVISAT satellite, sat-
uration will be no longer a problem.

Fig. 11(a) shows a scatter plot of mean intensity (log scale)
versus scatterometer wind speeds. Triangles indicate imagettes
on which sea ice, slicks, or atmospheric effects were found by
inspection. As can be seen, these imagettes are characterized
by relatively low intensities. In addition, it can be observed
that most of the corresponding SCAT wind speeds are also on
the lower level, suggesting that the phenomena seen on the
imagettes correspond to low wind speed. Slicks are empirically
modeled in CMOD4 since the occurrence of slicks in the
ERS scatterometer footprint is strongly correlated with the
wind speed magnitude (i.e., slicks disappear at moderate wind
speeds). The other geophysical anomalies are flagged in the
ERS scatterometer processing [33]. The linear regression
line (dashed) was computed for the remaining homogeneous
imagettes. The corresponding correlation coefficient is 0.86.
Fig. 11(b) shows mean imagette intensity versus SCAT wind
speed for cross wind () and up/down wind ( ) respectively,
where wind direction is also taken from the ERS-2 SCAT. Only
wind directions with a maximum deviation of 25from range
and azimuth direction, respectively, are used in this plot. As
predicted by the CMOD model, it clearly shows up that the
imagette intensities are higher for up/downwind than cross
wind given the same wind speed.

In a next step, the wave mode will be calibrated and the wind
streak algorithm refined. The above results strongly suggest that
CMOD applied to the ERS wave mode will yield a reliable and
stable wind speed algorithm as well.

B. Cross-Correlation Algorithm

In this section, a new cross-correlation wind speed algorithm
is derived using range multilooking. The azimuthal cross-cor-
relation algorithm (CCA), developed by [12], is applied to the
dataset of the complex imagettes also. The CCA algorithm is
based on the azimuthal low pass character of the SAR ocean
wave imaging process, which is caused by sea surface motion.
The basic mechanism is an azimuthal shift and smearing of SAR
image points due to slant range velocity and acceleration com-
ponents of the backscattering facettes (compare Fig. 3).

In the spectral domain, SAR ocean wave imaging can be de-
scribed to first order by a quasilinear model for the variance
spectrum of the modulation [4]

(12)
Here, is the ocean wave spectrum, a transfer function,
and is the azimuthal wavenumber component. For the defi-
nition of , see (3). The width of the exponential factor is con-
trolled by the variance of the azimuthal image point shift .
Assuming small incidence angles, can (to first order) be
expressed in terms of the ocean wave frequency spectrum,
slant range , and platform velocity

(13)

The idea of the CCA algorithm is to use the dependence of
and hence, on wind speed. As other parameters like wave
age or swell wave height have an impact, too [6], the CCA algo-
rithm should not be applied under fetch-limited or swell-dom-
inated conditions. To estimate , a strong simplification is
made, namely, that the second factor in (12) (in brackets) can be
regarded as constant. In that case, the azimuthal auto covariance
function is Gaussian as well

(14)

Here, is defined as the cutoff wavelength in the spatial do-
main. Other techniques have been proposed, which estimate the
cutoff wavelength in the spectral domain fitting more sophisti-
cated models [6].

Fig. 12 shows the performance of the CCA algorithm applied
to the complex imagette data set using multilooks in range. To
get rid of the speckle peak in the CCA algorithm and to obtain
a better performance of the fit procedure, it was proposed in
[12] to use the cross correlation between different looks having
uncorrelated speckle noise. However, in contrast to the proposed
method, which uses azimuth multilooking, in this study, looks
extracted from the range chirp spectrum are used. This approach
has two advantages: the azimuth resolution is not degraded and
the cross-correlation function is not distorted by the phase shift
of long azimuth ocean waves.
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Fig. 12. (a) Azimuth cross-correlation function of two ERS-2 imagettes acquired on June 1, 1996, at�54.311� lat, 65.577� lon and�23.048� lat, 262.061� lon,
respectively. Fitted Gaussians indicating 336 m and 166 m cutoff wavelength are plotted in dashes. (b) Scatter plot of cutoff wavelength versus SCAT wind speed,
with regression plotted in dashes. (c) Scatter plot of look cross-correlation coefficient versus cutoff standard deviation. Triangles mark imagettes with detected
sea ice, slicks, or atmospheric phenomena. Crosses indicate homogeneous imagette. (d) Scatter plot of cross-correlation coefficient versus cutoff wavelength with
regression line plotted in dashes.

The Gaussian fit procedure for the range CCA model given by
(14) is demonstrated in Fig. 12(a). The cross-correlation func-
tions of two imagettes are shown together with fitted Gaussians,
indicating 336 m and 166 m cutoff wavelength, respectively.
The interval [ 200 m, 200 m] of the azimuth axis was used for
the fit procedure.

To analyze the wind speed dependence of, simultaneous
measurements of the ERS-2 scatterometer are used. To check
for the homogeneity of the imagette and the stability of the fit
procedure, was not only estimated for the area of the entire
imagette, but also for quarter subimages. Fig. 12(c) shows the
respective standard deviation ofcalculated for each imagette
versus the look cross-correlation coefficient. Triangles corre-
spond to imagettes on which sea ice, slicks, or atmospheric phe-
nomena were found by inspection, whereas crosses mark homo-
geneous imagettes. It seems that these parameters allow a con-
siderably good discrimination of the two imagette classes.

Fig. 12(b) shows a scatter plot of the cutoff wavelength
versus SCAT wind speed with regression line plotted by a
dashed line. Only imagettes with standard deviationsmaller
than 50 m were used for the plot. The correlation coefficient
of 0.63 indicates a reasonably close relationship. However, the
CCA method must be further improved to obtain sufficient
accuracy. This implies in particular a better understanding
of the shape of the SAR spectrum and its dependence on
wind speed. Fig. 12(d) shows an interesting relation between
cross-correlation coefficient and cutoff wavenumber. As can
be seen, the cutoff increases with higher cross-correlation
values. In the spectral domain, this simply means that SAR

image spectra with high energy are more strongly affected by
azimuthal low pass filtering. This relation can be explained
using the quasi-linear model given in (12). High energies in the
SAR spectrum are due to high sea states, which in turn lead to
long azimuthal image point shifts and hence short cutoff
wavelengths .

V. SAR CROSSSPECTRA

In this section, the SAR cross-spectrum technique is used
to derive the ocean wave propagation direction. As explained
in Section III, this method has the advantage of removing the
speckle bias. In addition, the cross-spectrum of azimuth looks
can be used to detect the phase shift of ocean waves taking place
between look acquisitions [13].

As in the ordinary SAR power spectrum, the cross-spectrum
is affected by a nonlinear imaging mechanism too. Derivation
of ocean wave spectra from cross spectra therefore requires in-
version techniques using some kind ofa priori knowledge [13].
In this study, a first assessment of the statistical properties of a
global set of cross spectra is presented. Inversion techniques are
not analyzed here but are the subject of a separate paper.

For first order, the cross-spectrum can be ex-
pressed by the following quasilinear model:

(15)
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Fig. 13. (a) Complex part of cross-spectrum computed from complex ERS-2 imagette acquired on June 1, 1997 06:27 UTC at latitude�8.8� longitude 56.51�

(b) ECMWF ocean wave spectrum with 2.6 m significant wave height computed for June 1, 1997 06:00,�9� lat 56.63� lon.

Fig. 14. (a) Average cross-spectrum energy derived fromn = 1089 ERS-2 imagettes. (b) Average ocean wave spectrum derived fromn = 1089 imagette
collocated ECMWF spectra.

Here, is the look separation time, which is of the order of 0.4
s in this analysis, and is the ocean wave frequency, which is
related to the wavenumberby the dispersion relationship

(16)

with water depth and constant of gravity.
Fig. 13(a) shows an example of the cross-spectrum method.

Fig. 13(b) shows the imaginary part of the azimuth look cross-
spectrum derived from an ERS-2 imagette acquired on June 1,
1997, 06 : 27 UTC, indicating a wavesystem of about 200 m
length propagating to the right. In Fig. 13(b), the collocated
ECMWF wave spectrum with 2.6 m significant wave height is
plotted, confirming the SAR observation.

The imagette cross spectra were analyzed on a statistical basis
using all imagettes with collocated ECMWF ocean wave spectra
( 1089). The time gap between SAR observations and model
spectra is less than 3 h, and the spatial distance is less than 100
km. Fig. 14(a) shows the average cross-spectrum energy com-
puted as

(17)

Fig. 15. Distribution of energy of the cross-spectrum in the range
wavenumber/phase plane. The dashed lines represent the theoretical phase for
ocean waves propagating in deep water.

The azimuthal low pass filtering of the cross spectra (15) is
clearly visible. In addition, the average spectrum is nearly
symmetric, indicating wavesystems of about 300 m wavelength
propagating in approximate range direction. The corresponding
average ECMWF ocean wave spectrum is given in Fig. 14(b),
showing reasonable agreement with the observed cross spectra.
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Fig. 16. Global map of ERS-2 imagette derived wave propagation directions on June 1, 1997. Arrow length corresponds to maximum of cross-spectrum imaginary
part.

To study the phase of the measured cross spectrum, the energy
distribution over the interval [0, 2 ] was analyzed. To avoid
distortions caused by velocity bunching effects, the analysis is
concentrated on the phase observed along the range axis of the
cross spectrum. Fig. 15 shows the distribution of the cross-spec-
trum energy in the range wavenumber/phase plane.
The dashed lines represents the phase expected for ocean waves
propagating in very deep water (16). The phases scatter con-
siderably, showing four weak local maxima at a wavenumber
of 0.025 rad/m and phase values of1 rad and 0.8 rad, re-
spectively. The location of the local maxima with respect to the
dashed line shows that the phase shift of range waves derived
from the ERS imagettes tends to be smaller than predicted by
the deep water dispersion relation.

This leads to the question of whether, despite of the strong
scattering in the phase of the cross-spectrum phase, a reason-
able resolution of wave propagation ambiguity can be achieved.
The problem is analyzed by studying the cross correlation of
the cross-spectrum imaginary part (0) and the collocated
ECMWF spectrum from the WAM model [34]. Only one-di-
mensional (1-D) spectra obtained by averaging over range and
azimuth respectively are considered. Fig. 17 shows the analysis
of the cross-spectrum for one day of complex data. The global
distribution of detected wave propagation directions for June
1, 1997, is shown in Fig. 16(a). The directions were derived
by determination of the maximum in the cross-spectrum
imaginary part. The arrow lengths correspond to the respective
maximum values. Fig. 17(a) shows a contour plot of the cross
correlation between the range cross-spectrum imaginary part
( 0), and the corresponding range wave spectrum. It can be
seen that the highest correlations are found along the diagonal
plotted in dashed, while negative correlations are found in
the upper left and bottom right quarter. Although the absolute
correlation values are relatively small, showing a maximum
of about 0.6, this pattern indicates a reasonable propagation
direction ambiguity resolution for waves travelling in range
direction. For the azimuth case, Fig. 17(b) shows a similar
behavior, although the correlation pattern is more stretched in
the azimuth direction of the ECMWF wave spectrum. This is
due to the velocity bunching mechanism, which causes short

Fig. 17. (a) Cross correlation in range direction between cross-spectrum
imaginary part (> 0) and collocated ECMWF ocean wave spectrum. (b) Cross
correlation in azimuth direction between cross-spectrum imaginary part (>0)
and collocated ECMWF ocean wave spectrum.

wave systems traveling in the azimuth direction to be shifted
toward lower azimuth wavenumbers in the SAR spectrum.

VI. SUMMARY AND CONCLUSIONS

In the present study, a first statistical analysis of wind and
wave measurement techniques using complex ERS-2 imagette
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data is given. The study shows both the potential as well as the
limitations of these methods.

Two techniques were applied to derive wind speed from im-
agettes. The CMOD technique relies on the mean image inten-
sity and shows good results. The performance of the technique
will become even better if some prior information about the
wind vector is used and the imagettes is properly calibrated. The
impact of phenomena like slicks, sea ice, or atmospheric pro-
cesses on the CMOD method was analyzed. There is some evi-
dence that collocated ERS SCAT measurements are affected by
these phenomena. These effects are taken into account in scat-
terometer processing and quality control.

The CCA method is based on the analysis of the azimuth
correlation function. Range multilooking is used to remove the
speckle bias. Inhomogeneities detected on imagettes are taken
into account. The correlation between the measured image
smearing in azimuth and collocated SCAT wind measurements
is reasonable. However, the method does not seem to be able to
compete with the CMOD algorithm.

Ocean waves are studied using the cross-spectrum technique.
A good agreement is found between wave propagation direc-
tions derived from complex imagettes and collocated ECMWF
wave spectra. Considerable scattering of the cross-spectrum
phase was observed, showing small agreement with theoretical
predictions. It must be further investigated whether this be-
havior is a natural limitation of the cross-spectrum technique
or if the performance can be improved by applying more
sophisticated processing techniques.

The present study is one preparation step for the planned op-
erational use of ENVISAT imagettes at meteorological centers
like ECMWF.
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