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Abstract

The extended mild-slope equations of Suh et al. [Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equations for wave propagation on

rapidly varying topography. Coastal Eng., 32, 91–117] and Lee et al. [Lee, C., Kim, G., Suh, K.D., 2003. Extended mild-slope equation for

random waves. Coastal Eng., 48, 277–287] are compared analytically and numerically to determine their applicability to random wave

transformation. The geometric optics approach is used to compare the two models analytically. In the model of Suh et al., the wave number of the

component wave with a local angular frequency x is approximated with an accuracy of O(x� x̄) at a constant water depth, where x̄ is the carrier

frequency of random waves. In the model of Suh et al., however, the diffraction effects and higher-order bottom effects are considered only for

monochromatic waves, and the shoaling coefficient of random waves is not accurately approximated. This inaccuracy arises because the model of

Suh et al. was derived for regular waves. In the model of Lee et al., all the parameters of random waves such as wave number, shoaling coefficient,

diffraction effects, and higher-order bottom effects are approximated with an accuracy of O(x� x̄). This approximation is because the model of

Lee et al. was developed using the Taylor series expansion technique for random waves. The result of dispersion relation analysis suggests the use

of the peak and weighted-average frequencies as a carrier frequency for Suh et al. and Lee et al. models, respectively. All the analytical results are

verified by numerical experiments of shoaling of random waves over a slightly inclined bed and diffraction of random waves through a breakwater

gap on a flat bottom.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Since the development of a mild-slope equation by Berkhoff

(1972), many coastal engineers have developed wave models

to analyze the combined refraction and diffraction of water

wave s. In order to predi ct the propaga tion of random wave s

with a narrow frequency band, time-dependent mild-slope

equations were developed. A time-dependent mild-slope

equati on was develo ped by Smith and Sprink s (1975) using

the Gre en’s formula. A canoni cal form of the tim e-depen dent

mild-slope equations was developed by Radder and Dingemans

(1985) using the Hamiltonian theory of surface waves. Another
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type of time-dependent mild-slope equation was developed by

Kubo et al. (1992) using the Taylor series expansion technique

for waves with local frequencies different from the carrier

frequency. Lee and Kirby (1994) analyzed the mild-slope

equations developed by Smith and Sprinks and Kubo et al. in

terms of the dispersion relation and energy transport. Consid-

ering the dispersion relation, Smith and Sprinks’ model was

found to be more accurate for analysis in shallower water

(kh�0.2k), where k is the wave number and h is the still water

depth, wher eas the model of Kubo et al. was more accurate in

deeper water (kh >0.2k). Considering the energy transport, the

model of Kubo et al. was more accurate but has a singularity

problem in the higher frequency ranges.

Nishimura et al. (1983) developed hyperbolic mild-slope

equations by vertically integrating the continuity and momen-

tum equations for linear waves. Starting from the time-
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dependent mild-slope equation of Smith and Sprinks, Copeland

(1985) developed similar hyperbolic equations using the

characteristics of linear waves and the associated volume flux.

These two hyperbolic equation models predict the transforma-

tion of regular waves.

The mild-slope equations were derived based on the

assumption of |lh| /khb1 (where l is the horizontal

gradient operator) to neglect the terms of the second-order

bottom effect such as bottom curvature and squared bottom

slope. To account for the effect of rapidly varying bottom

topography, Massel (1993) and Chamberlain and Porter (1995)

derived the extended mild-slope equations using the Galerkin-

eigenfunction method. Chandrasekera and Cheung (1997)

provided an alternative derivation of the extended equation

using the approach of Berkhoff (1972). Suh et al. (1997) used

the Green’s second identity and Lagrangian formula to develop

two ultimately equivalent hyperbolic equations for random

waves. Lee et al. (1998) recast the elliptic formulation of

Massel into a hyperbolic formulation, following the technique

of Copeland (1985). More recently, Lee et al. (2003) developed

another type of time-dependent extended mild-slope equation

for random waves, following the technique of Kubo et al.

(1992).

There are two methods to predict the transformation of

random waves using the time-dependent mild-slope equations.

The first method is to superpose the solutions of wave energy

which are calculated in more than scores of frequency

components by the models for either regular or multi-

directional random waves. The second method is to directly

predict the transformation of multi-directional random waves

by the models for random waves using the coefficients such as

k̄ and C̄ which are the wave number and the phase speed,

respectively, for the carrier angular frequency x̄. Generally, the

first method of superposition needs higher-loaded computa-

tional efforts such as a large disk memory and a long CPU time

compared to the second method. Even for random waves with a

broad frequency band, the second method needs lower-loaded

computational efforts because accurate results can be obtained

by dividing the frequency range into a few bands and modeling

each of them with a representative carrier frequency. The

model of Suh et al. (1997) has been used to predict accurately

the transmission of broad-banded random waves over a ripple

patch by superposing three solutions with narrow frequency

bands. It was also proved that Radder and Dingemans’ (1985)

model can directly simulate the transformation of multi-

directional random waves (Lee and Suh, 1998).

For regular waves, the equations of Suh et al. (1997) and

Lee et al. (2003) show the same accuracy in terms of the

higher-order bottom effects. The two equations, however, have

not been compared yet for random waves. In this study, the two

models are compared for random waves by analytical methods

and numerical simulations. First, the dispersion relation and the

shoaling coefficient corresponding to random waves are

compared. Second, the shoaling of random waves over a

slightly inclined bed is tested. Third, the diffraction of random

waves with a local frequency different from the carrier one is

tested. Finally, conclusions are presented.
2. Dispersion relations and shoaling coefficients of the

models

2.1. Governing equations

The extended mild-slope equations of Suh et al. (1997) are

given by
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where g is the surface elevation, C̄ and C̄g are the phase speed

and the group velocity, respectively, g is the gravitational

acceleration, the over bar indicates the variables associated

with the carrier angular frequency x̄, and /̃ is the velocity

potential at mean water level, which is related to the velocity

potential / by

/ ¼ coshk hþ zð Þ
coshkh

/̃ ð3Þ

In Eq. (1), the coefficients R̄1 and R̄2 are related to higher-order

bottom effects, which are functions of the water depth and

carrier angular frequency (Suh et al., 1997). When R̄1= R̄2=0,

Eqs. (1) and (2) reduce to the equations of Radder and

Dingemans (1985).

The equation of Lee et al. (2003) is given by
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where ĝ is related to g by g = ĝ exp(� ix̄t), i ¼
ffiffiffiffiffiffiffiffiffi
� 1

p
, and the

coefficients ū1 and ū2 are related to higher-order bottom

effects, which are functions of the water depth and carrier

angular frequency. When ū1= ū2=0, Eq. (4) reduces to the

equation of Kubo et al. (1992). The higher-order bottom effects

of x̄2R̄1 and x̄2R̄2 in Eq. (1) are mathematically equivalent to

�gū2 and �gū1, respectively, in Eq. (4).

2.2. Eikonal equation and energy transport equation

The geometric optics approach to the governing equation

yields the eikonal equation and the transport equation for

wave energy, and further, the dispersion relation and the

shoaling coefficients can be obtained from the eikonal

equation and the transport equation, respectively. In order to

get the eikonal equation and transport equation for the models

of Suh et al. and Lee et al., we use the same approach as Lee

and Kirby (1994).
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Combining Eqs. (1) and (2) of Suh et al. in terms of /̃ and

using the relation of fl/̃ /flt =�gg give the following equation:

B
2g
Bt2
�lI CCglg

� �
þ x2 � k

2
CCg

� 	
g

þ x2 R1 lhð Þ2 þ R2l
2h

� 	
g ¼ 0 ð5Þ

The surface elevation may be defined as

g ¼ a x; yð Þexp iwð Þ ð6Þ

where a(x,y) is the complex amplitude and w is the phase

function. The phase function w has the following relations with

the local wave number vector k and angular frequency x:

k ¼lw; x ¼ � Bw
Bt

ð7Þ

Substituting Eq. (6) into Eq. (5) of Suh et al., the real part

yields the eikonal equation given by
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The third and last groups of terms in the right hand of Eq. (8)

mean the diffraction effect and higher-order bottom effects,

respectively. These effects are considered only for monochro-

matic waves with the carrier angular frequency x̄ because all of

these terms have over bars. Neglecting these terms yields the

dispersion relation as

k

k
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For monochromatic waves with a carrier frequency, the model

exactly satisfies the dispersion relation of the linear Stokes

waves. For waves with a local frequency different from the

carrier one, the dispersion relation of the model is approximate

to an accuracy of O(x� x̄). Substituting Eq. (6) into Eq. (5) of

Suh et al., the imaginary part yields the energy transport

equation given by

lI kCCga
2

� �
¼ 0 ð10Þ

The shoaling coefficient is obtained from Eq. (10) as

Ks ¼
a

a0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kCCg

� �
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where the subscript 0 denotes the reference point and the wave

number k is determined by the eikonal Eq. (8). For

monochromatic waves with a carrier angular frequency, the

shoaling coefficient of the model of Suh et al. is equal to the

shoaling coefficient of the linear Stokes waves. For random

waves with a local angular frequency different from the carrier

frequency, the wave number k in the shoaling coefficient of the

model of Suh et al. is approximate to an accuracy of O(x� x̄),

but the phase velocity C̄ and group velocity C̄g in the shoaling

coefficient are not approximate to this accuracy.
The function ĝ in Eq. (4) of Lee et al. may be defined as

ĝg ¼ a x; yð Þexp i wþ xtð Þ½ � ð12Þ

Substituting Eq. (12) into Eq. (4) of Lee et al., the real part

gives the eikonal equation given by
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The second and third groups of terms in the angle bracket

represent the diffraction effects and higher-order bottom

effects, respectively. For monochromatic waves, these effects

are exact. For random waves, these effects are approximate to

an accuracy of O(x� x̄). Neglecting these terms yields the

dispersion relation of the model of Lee et al. as
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Substituting Eq. (12) into Eq. (4) of Lee et al., the imaginary

part gives the energy transport equation given by
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The shoaling coefficient is obtained from Eq. (15) as
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where the wave number k is determined by the eikonal Eq. (13).

For monochromatic waves, the shoaling coefficient of the model

of Lee et al. is equal to the shoaling coefficient of the linear

Stokes waves. For random waves with a local angular frequency

different from the carrier one, the shoaling coefficient of the

model of Lee et al. is approximate to an accuracy of O(x� x̄).

In conclusion, for random waves, the linear dispersion of the

model of Suh et al. is approximate to an accuracy of O(x� x̄).

However, other effects such as wave diffraction and higher-

order bottom variations are considered only for monochromatic

waves, and the shoaling coefficient of the model is approximate

to an accuracy of less than O(x� x̄). On the other hand, in the

model of Lee et al., all of the dispersion relations, the effects of

wave diffraction and higher-order bottom variations, and

shoaling coefficient are approximate to an accuracy of

O(x� x̄). The dispersion relations of the two models have

been compared against the exact solution in detail by Lee et al.
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(2003). Therefore, only shoaling and diffraction are compared

in the following section.

3. Numerical experiments

To test the applicability of the extended mild-slope equations

of Suh et al. (1997) andLee et al. (2003), we conducted numerical

experiments for various cases. First, the two models were tested

to simulate the shoaling of random waves over a planar slope.

The shoaling spectra calculated by the models were compared

against the spectra calculated by the shoaling coefficient of linear

Stokeswaves. Second, the twomodels were tested to simulate the

diffraction of random waves through a breakwater gap on a flat

bottom. The two numerical solutions were compared against the

analytical solutions of Penney and Price (1952).

3.1. Numerical methods

We adopted a source function method of Wei et al. (1999) to

generate waves. Sponge layers were placed at the outside

boundaries to remove wave reflection from the boundaries by

dissipating wave energy inside the sponge layers. Therefore,

Eqs. (1) and (2) of Suh et al. are modified to
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where fs(x,y, t) is a source function for the model of Suh et al.

and the damping coefficient D is given by

D ¼
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exp d=Sð Þ � 1
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(
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where d is the distance from the starting point of the sponge

layer and S is the thickness of the sponge layer. On the other

hand, Eq. (4) of Lee et al. is modified to
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Fig. 1. Computational dom
where fL(x,y, t) is a source function for the model of Lee et al.

and n̄ = C̄g / C̄. The use of the source function method in

the models of Suh et al. and Lee et al. is explained in detail in

Kim et al. (2004).

The time derivative terms of the modified Eqs. (17) and (18)

of Suh et al. are discretized by the Adams–Moulton predictor–

corrector method (Kirby et al., 1992). The spatial derivative

terms in the equations are discretized by a three-point

symmetric formula. The modified Eq. (20) of Lee et al. is

numerically solved by the Crank–Nicolson method in a

horizontally one-dimensional domain and by the finite element

method in a horizontally two-dimensional domain.

Initially, surface elevations are set to zero. In order to

generate waves gradually, the source function is multiplied by

tanh(t /pT̄), where T̄ is the carrier wave period and p is a

parameter corresponding to the rate of slow wave generation.

Since the sponge layer reduces the incoming wave energy

effectively, the reflective condition at the boundaries can be

used.

3.2. Shoaling of random waves over a planar slope

To test the shoaling of random waves calculated by the two

models, we simulated random waves shoaling over a plane

with the slope of 1 :100. The computational domain is shown

in Fig. 1. The shoaling wave spectrum was obtained from the

time series data of the surface elevation at a point on the

shallow flat region. The TMA shallow-water spectrum was

used as a target spectrum:

S fð Þ ¼ ag2 2kð Þ�4f �5exp � 1:25 f =fp
� ��4h i

cexp � f =fp�1ð Þ2=2r2
� �

� /k f ; hð Þ ð21Þ

where a is a spectral parameter, fp is the peak frequency, c is

the peak enhancement factor, r is the spectral width parameter

(r =ra if f� fp and r =rb if f> fp, ra=0.07 and rb=0.09 were

used), and finally the Kitaigordskii shape function, /k( f,h)

incorporates the effect of the finite water depth as

/k f ; hð Þ ¼
0:5x2

h; xh < 1

1� 0:5 2� xhð Þ2; 1VxhV2

1; xh > 2

8<
: ð22Þ

where xh = 2kf(h / g)
1/2. In this study, a = 7.57�10�4,

fp=0.767 Hz, and c =2 were used. The frequency range was

confined between 0.6 and 1.4 Hz so that the weighted-average

frequency was 0.929 Hz.
ain for shoaling test.



Fig. 3. Input spectrum and shoaling spectra calculated by the model of Lee et

al.; dashed line = exact solution, solid line = numerical solution of the model of

Lee et al., dash-dotted line = analytic solution of the model of Lee et al., dash-

double-dotted line = input spectrum.
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For the model of Suh et al., the peak frequency should be

selected as a carrier frequency rather than the weighted-average

frequency. The peak frequency is usually lower than the

weighted-average one. And, the dispersion relation of the model

of Suh et al. is accurate in the high frequency range regardless of

the relative depth (Lee et al., 2003). For the model of Lee et al.,

however, it is better to use the weighted-average frequency as a

carrier frequency. One reason is that, at lower frequencies, where

the energy density is significant, the dispersion relation is

accurate unless the frequency is too small. The other reason is

that the model of Lee et al. may produce waves shorter than the

exact ones in the higher frequency range and thus a smaller grid

size is required for the solution, leading to increased computa-

tional costs and data storage requirements. This problem can be

overcome by selecting the weighted-average frequency as a

carrier frequency and by cutting off the higher frequency range

where the wave energy is relatively small.

Numerical tests were conducted with the better carrier

frequency of each model. With the peak frequency, which is

the carrier frequency for the model of Suh et al., the relative

water depth was 2k on the deep flat side and 0.1k on the

shallow side. With the weighted-average frequency, which is the

carrier frequency for the model of Lee et al., the relative water

depth was 2.98k on the deep side and 0.12k on the shallow side.

Figs. 2 and 3 show comparisons of the shoaling wave

spectra of the models against the exact solution. The input

spectrum is also shown in the figures. The shoaling wave

spectrum by the model of Lee et al. is closer to the exact one

than that by the model of Suh et al. This is because the

shoaling coefficient of the model of Lee et al. given by Eq.

(16) takes into account the random wave characteristics to

O(x� x̄) but the shoaling coefficient of the model of Suh et

al. given by Eq. (11) does not consider them properly. Such

an inaccuracy of the model of Suh et al. in predicting

shoaling of random waves may be attributed to the fact that

the model was developed for a monochromatic wave even
Fig. 2. Input spectrum and shoaling spectra calculated by the model of Suh et

al.; dashed line = exact solution, solid line = numerical solution of the model of

Suh et al., dash-dotted line = analytic solution of the model of Lee et al., dash-

double-dotted line = input spectrum.
though the model’s dispersion relation shows applicability to

random waves.

The models’ significant wave heights at a certain water

depth were calculated as

Hs ¼ 4:004

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Ss f ; hð Þdf

s
ð23Þ

where the shoaling spectrum Ss( f,h) was calculated by

multiplying the input spectrum by the square of the shoaling

coefficient, which is given as Eqs. (11) or (16). Fig. 4 shows

a comparison between the percent relative errors of the

models’ significant wave heights. As the relative water depth

becomes smaller, the error of the model of Suh et al. becomes

larger than that of the model of Lee et al. All the relative

errors are less than 8% in the entire water depth. Note that the

model of Suh et al. does not yield serious errors even though

the model fails to accurately predict shoaling spectra of
Fig. 4. Relative errors of significant wave heights of shoaling random waves;

dashed line = model of Suh et al., dash-dotted line = model of Lee et al.



Fig. 6. Computational domain for diffraction test.
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random waves. The reason can be found by looking at the

shoaling spectra shown in Fig. 2. At frequencies lower than

the peak, the model’s spectrum is underestimated. However,

at the higher frequencies, the model’s spectrum is over-

estimated. Therefore, the significant wave heights of the

model of Suh et al., which include all the solutions in whole

frequency range, are not so different from the exact heights.

This lucky coincidence may not defend the model of Suh et

al. The wave-related phenomena such as wave–structure

interaction and beach processes are analyzed more accurately

based on the spectral calculation method rather than the

significant wave representation. In this viewpoint, for random

waves on varying topography, the use of the model of Lee et

al. is more appropriate than the model of Suh et al.

3.3. Diffraction of random waves through a breakwater gap on

a flat bottom

To test the diffraction of random waves, we simulated

random waves propagating to a breakwater gap on a flat

bottom. A part of the incident waves propagating directly on

the breakwater was reflected from the structure while the

remainder passed through the breakwater gap. The diffraction

of waves may be seen between the geometric shadow and

illuminated zones in the down-wave region of the breakwater.

The diffraction theory for a large gap was developed by Penney

and Price (1952). They showed that the Sommerfeld solution of

the diffraction of light is also a solution of the water wave

diffraction phenomenon. And, they concluded from a mathe-

matical analysis that superposition of the solutions for each

breakwater gives a good approximation as long as the width of

the breakwater gap is greater than one wavelength.

The water depth is h =1 m and the period of the carrier wave

is T̄=2.33 s so that the relative water depth corresponding to

the carrier wave is k̄h =0.313k. The dispersion relations of the

models of Suh et al. and Lee et al. are given by Eqs. (9) and
Fig. 5. Comparison of dispersion relations with best carrier frequencies in the

diffraction test; solid line = linear Stokes waves (k̄h =0.313k), dashed line =

model of Suh et al. with a peak frequency (k̄h =0.313k), dash-dotted line =

model of Lee et al. with a weight-averaged frequency (k̄h =0.438k).

Fig. 7. Comparison of diffraction coefficients calculated by the model of Suh e

al. against the exact solutions; solid line = numerical solution, dashed line =

exact solution.
(14), respectively. The exact dispersion relation for linear

waves is given by

k

k
¼ x

x

� 	2 tanh kh

tanh kh
ð24Þ

In this case, a comparison of the dispersion relation of each

model against the exact one is shown in Fig. 5.

The length of the domain behind the breakwater is 10L̄ in

both the x- and y-directions, where L̄=6.39 m. The width of the

breakwater gap is B =2L̄ (x =0, 4L̄�y�6L̄). Waves are

generated with the period of T=3.88 s on a line of 0.5L̄ up-

wave of the breakwater. See the computational domain shown

in Fig. 6.

The ratio of the local angular wave frequency to the carrier

one is x / x̄ =0.6. In this case, the wavelengths determined by

the linear Stokes waves, the model of Suh et al., and the model

of Lee et al. are L=11.61, 15.02, and 12.13 m, respectively.

That is, the wavelength by the model of Suh et al. is 29%
t



Fig. 8. Comparison of diffraction coefficients calculated by the model of Lee et

al. against the exact solutions; solid line = numerical solution, dashed line =

exact solution.
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longer than the exact one, while the wavelength by the model

of Lee et al. is only 4% longer. Therefore, the width of the gap,

B =2L̄, is seen as B =1.10L, 0.85L, and 1.05L, respectively, by

the linear Stokes waves, the model of Suh et al., and the model

of Lee et al.

Figs. 7 and 8 show comparisons of numerical solutions of

the diffraction coefficient against the exact solution for the

model of Suh et al. and the model of Lee et al., respectively.

The model of Lee et al. yields more accurate solutions of the

diffraction coefficient than the model of Suh et al. This is

because, in the model of Lee et al., the linear dispersion

relation gives more accurate solution for this case and

furthermore the effects of random wave diffraction are

approximate to an accuracy of O(x� x̄ ). However, in the

model of Suh et al., the effects of random wave diffraction are

approximate to an accuracy of less than O(x� x̄ ). It should be

noted that the accuracy of the dispersion relation of each model

depends on the relative water depth and the ratio of local to

carrier frequencies. In the solution of the model of Suh et al.,

the gap width is seen to be narrower than in the solution of Lee

et al. and thus the diffraction coefficients are more concentric

from the central point of the gap. The diffraction coefficients

along a line from (x =0, y =4L̄) to (x =4L̄, y =0) are larger in

the model solution of Suh et al. than in the solution of Lee et al.

This is because, compared to the model of Lee et al., the

wavelength determined by the model of Suh et al. is longer,

and the distance at a certain point from the tip of the breakwater

is seen shorter, and thus the diffraction coefficients become

larger. In conclusion, the diffraction coefficients of random

waves are related dominantly to the dispersion relation of each

model.

4. Conclusion

The extended mild-slope equations of Suh et al. (1997) and

Lee et al. (2003) for random wave transformation were com-

pared by both analytical methods and numerical simulations.
Using the method of geometric optics, the eikonal equation

and energy transport equation for each model were obtained

analytically. It was found from the eikonal equation that, in the

model of Suh et al., the diffraction effects and higher-order

bottom effects are considered only for monochromatic waves. It

was found from the energy transport equation that the shoaling

coefficient of the model of Suh et al. is not approximated with

good accuracy. This inaccuracy comes from the fact that the

model of Suh et al. was developed for regular waves. Luckily,

even with the assumption of regular waves, the wave number

was approximated with an accuracy of O(x� x̄) at a constant

water depth. In the model of Lee et al., however, all the

parameters such as the wave number, the shoaling coefficient,

diffraction effects, and higher-order bottom effects were

approximated with an accuracy of O(x� x̄). This is because

the model of Lee et al. was developed using the Taylor series

expansion technique for waves with local frequencies different

from the carrier frequency.

The better carrier frequency for each model was chosen in

view of the accuracy of the model’s dispersion. For the model

of Suh et al., the frequency was chosen as the carrier frequency.

For the model of Lee et al., the weighted-average frequency,

which is higher than the peak frequency, was chosen as the

carrier frequency. Using the two models, we conducted

numerical experiments to simulate the shoaling of random

waves over a planar slope. The better carrier frequencies were

selected for each model. The numerical solutions of shoaling

spectra by the model of Lee et al. are more accurate than those

by the model of Suh et al. Finally, numerical experiments were

conducted to simulate the diffraction of random wave at a

constant water depth. Numerical solutions of the diffraction

coefficient agreed with the analytical solutions to the accuracy

of the model’s dispersion relation.
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