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Abstract

A time-dependent extended mild-slope equation is derived from the elliptic equation of Chamberlain and Porter [J. Fluid

Mech. 291 (1995) 393] using the Taylor series technique. Numerical tests are made on a horizontally one-dimensional case for

regular waves over sloping beds and for both regular and irregular waves over a ripple patch. Numerical results prove that the

proposed model gives accurate results for both regular and irregular waves over rapidly varying topography.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction equation using Green’s formula. Radder and Dinge-
Waves generated in deep water propagate to shal-

low water undergoing various forms of transforma-

tions, like shoaling, refraction, diffraction, and re-

flection, etc. Since the development of a mild-slope

equation by Berkhoff (1972), many mathematical

models have been developed to analyze the combined

refraction and diffraction of waves. In order to model

the propagation of random waves, time-dependent

mild-slope equations have also been developed. Smith

and Sprinks (1975) developed a hyperbolic mild-slope
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mans (1985) proposed a canonical form of the time-

dependent mild-slope equations based on the Hamil-

tonian theory of surface waves. Kubo et al. (1992)

also developed another type of time-dependent mild-

slope equation using the Taylor series expansion

technique for waves with local frequencies different

from the carrier frequency. Lee and Kirby (1994)

analyzed the mild-slope equations developed by

Smith and Sprinks, and Kubo et al. in terms of the

dispersion relation and energy transport. Considering

the dispersion relation, Smith and Sprinks’ model is

more accurate in shallower water (khV 0.2p), whereas
Kubo et al.’s model is more accurate in deeper water

(kh>0.2p). Kubo et al.’s model is more accurate for

energy transport but has a singularity problem in the

higher frequency range.
d.
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Nishimura et al. (1983) developed hyperbolic

mild-slope equations by vertically integrating the

continuity and momentum equations for linear

waves. Starting from the time-dependent mild-slope

equation of Smith and Sprinks, Copeland (1985)

developed similar hyperbolic equations using the

characteristics of linear waves and the defined vol-

ume flux. The two models of Nishimura et al. and

Copeland predict the transformation of regular

waves.

In the derivation of the mild-slope equations, an

assumption of AjhA/khb1 (where j = horizontal

gradient operator, k =wave number, and h =water

depth) was made so that the terms of the second-

order bottom effect related to the bottom curvature

and the square of the slope were neglected. To

account for the effect of a steeply sloping and rapidly

varying bottom topography, Massel (1993) and

Chamberlain and Porter (1995) derived the extended

mild-slope equation using the Galerkin-eigenfunction

method. Chandrasekera and Cheung (1997) provided

an alternative derivation of the extended equation

based on the approach of Berkhoff. Suh et al.

(1997) used the Green’s second identity and Lagrang-

ian formula to develop two ultimately equivalent

hyperbolic equations for random waves. Lee et al.

(1998) recast the elliptic formulation of Massel into a

hyperbolic formulation, following the technique of

Copeland.

In this study, by applying Kubo et al.’s method to

the equation of Chamberlain and Porter, we devel-

oped a time-dependent version of the extended mild-

slope equation, which may be able to predict the

transformation of random waves on rapidly varying

topography. In order to verify the improved accuracy

of our equation compared to the equation of Kubo et

al. in the case of a rapidly varying topography, the

two models were initially applied to the problem of

wave reflection from a planar slope with different

inclinations (Booij, 1983). Subsequently, the equa-

tion was applied to the problem of the resonant

Bragg reflection of monochromatic waves from a

ripple patch (Davies and Heathershaw, 1984). Final-

ly, to investigate the applicability of the proposed

equation to random waves, numerical tests were

performed on the transmission of unidirectional

random waves normally incident to a finite ripple

patch.
2. Development of governing equation

The extended mild-slope equation of Chamberlain

and Porter (1995) is given by

j�ðCCgjgÞþfk2CCgþgu1j
2hþgu2ðjhÞ2gg ¼ 0

ð1Þ

where the coefficients u1 and u2 determining the

second-order bottom effects are given by

u1 ¼
sech2kh

4ð2khþ sinh2khÞ ðsinh2kh� 2khcosh2khÞ ð2Þ

u2 ¼
ksech2kh

12ð2khþ sinh2khÞ3
fð2khÞ4 þ 4ð2khÞ3sinh2kh

�9sinh2kh sinh4khþ 6khð2khþ 2sinh2khÞ

	ðcosh22kh� 2cosh2khþ 3Þg ð3Þ

and g is the water surface elevation, C and Cg are the

phase speed and group velocity, respectively, of a

wave with an angular frequency x, and g is the

gravitational acceleration. The wave number k is

determined from the linear dispersion relation for

Stokes waves.

For random waves, the surface elevation is defined

as the superposition of component waves

g ¼ Re
Xl
m¼1

gme
�ixmt

" #
ð4Þ

where xm and gm are the angular frequency and

complex amplitude, respectively, of the mth compo-

nent wave. In order to apply the extended mild-

slope equation to random waves, we define a variable

ĝ as

g ¼ Re½ĝe�ix̄t� ð5Þ
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where x̄ is a carrier angular frequency of the random

waves. From Eqs. (4) and (5), we have

Bĝm
Bt

¼ �iDxmĝm ð6Þ

where Dxm =xm� x̄. The variable of component

wave, ĝm, is a solution of Eq. (1), as well as gm.
Therefore, Eq. (1) can be rewritten in terms of ĝm. If
we expand the quantities (CCg)m, (k

2CCg)m, (u1)m,

and (u2)m into the Taylor series of Dxm and use Eq.

(6), we can obtain an equation in which all the

variables can be determined by the coefficients of

the carrier frequency only. Superposition of the

resulting equations for all the component waves

yields the following equation

j � ðC̄C̄gjĝÞ þ fk̄2C̄C̄g þ gū1j
2hþ gū2ðjhÞ2gĝ

þ ij � BðCCgÞ
Bx

j
Bĝ
Bt

( )
þ i

Bðk2CCgÞ
Bx

(

þ g
Bu1

Bx
j2hþ g

Bu2

Bx
jhð Þ2

)
Bĝ
Bt

¼ 0 ð7Þ

where the over bar indicates the variables associated

with the carrier angular frequency x̄ and the coef-

ficients are given by

BðCCgÞ
Bx

¼ x̄

k̄2
2ðn̄� 1Þ þ 2n̄� 1

2n̄

�

	 f1� ð2n̄� 1Þcosh2k̄hg
�

ð8Þ

Bðk2CCgÞ
Bx

¼ x̄ 2n̄þ 2n̄� 1

2n̄
f1� ð2n̄� 1Þcosh2k̄hg

� �
ð9Þ

Bu1

Bx
¼ � k̄hsech2k̄h

2x̄n̄ð2k̄hþ sinh2k̄hÞ
2k̄hsinh2k̄h

(

þ tanhk̄hþ 1þ cosh2k̄h

2k̄hþ sinh2k̄h

� 	

	 ðsinh2k̄h� 2k̄hcosh2k̄hÞ
)

ð10Þ
Bu2

Bx
¼ k̄sech2k̄h

12x̄n̄ð2k̄hþ sinh2k̄hÞ3

	 1� 2k̄htanhk̄h� 6k̄hð1þ cosh2k̄hÞ
ð2k̄hþ sinh2k̄hÞ

( )"

	fð2k̄hÞ4 þ 4ð2k̄hÞ3sinh2k̄h
� 9sinh2k̄h sinh4k̄hþ 12k̄h k̄hþ sinh2k̄h


 �
	 cosh22k̄h�2cosh2k̄hþ 3

 �gþ k̄h

n
8ð2k̄hÞ3

þ 24ð2k̄hÞ2sinh2k̄hþ 8ð2k̄hÞ3cosh2k̄h
� 18cosh2k̄h sinh4k̄h� 36sinh2k̄h cosh4k̄h

þ 12ð2k̄hþ sinh2k̄hþ 2k̄hcosh2k̄hÞðcosh22k̄h
� cosh2k̄hþ 3Þþ48k̄hsinh2k̄hðk̄hþ sinh2k̄hÞ

	 ðcosh2k̄h� 1Þ
o#

ð11Þ

n̄ ¼ C̄g

C̄
¼ 1

2

�
1þ 2k̄h

sinh2k̄h

	
ð12Þ

Eq. (7) is a time-dependent extended mild-slope

equation for random waves. If ū1 = ū2 = 0, Eq. (7)

reduces to the equation of Kubo et al. (1992).
3. Comparison of the proposed equation with Suh

et al.’s equation

The proposed equation and Suh et al.’s (1997)

equation are known to accurately predict waves on

rapidly varying topography. The accuracy of the equa-

tions is due to the inclusion of the second-order bottom

effect terms. In this section, the terms of higher-order

bottom effect are compared between the two equa-

tions. The two equations are also known to be capable

of predicting transformation of random waves with a

narrow frequency band. So, the applicability of the two

models to random waves is investigated in terms of the

dispersion relation following the geometric optics

approach of Lee and Kirby (1994).

Using the relation of B/̃/Bt=� gg, where /̃ is the

velocity potential at the mean water level, the equation

of Suh et al. can be written in terms of g as:

B
2g
Bt2

�j � ðC̄C̄gjgÞ þ ðx̄2 � k̄2C̄C̄gÞg

þ x̄2ðR̄1ðjhÞ2 þ R̄2j
2hÞg ¼ 0 ð13Þ



 
 

 
 

Fig. 1. Dispersion relation for (a) k̄h= 0.05p and (b) k̄h= 2.0p; solid
line = exact, dashed line = proposed model, dash-dotted line = Suh

et al.’s model.
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where the parameters x̄2R̄1 and x̄2R̄2 determining the

second-order bottom effects are mathematically

equivalent to � gū2 and � gū1, respectively, of the

proposed Eq. (7). These higher-order bottom effects

were studied in detail by Lee et al. (1998).

The geometric optics approach is used to get the

dispersion relations of the proposed equation and Suh

et al.’s equation. Let the surface elevation g be

g ¼ aðx; yÞexpðiwÞ ð14Þ

where a(x,y) is a complex amplitude which modulates

in space, and the phase function w has the following

relation with the local wave number k and angular

frequency x as:

k ¼ jw; x ¼ � Bw
Bt

ð15Þ

Then the variable ĝ in Eq. (7) may be written as:

ĝ ¼ aðx; yÞexp½iðw þ x̄tÞ� ð16Þ

Substituting Eq. (16) into Eq. (7) and neglecting both

the higher-order bottom effects and diffraction effects,

the real part gives the dispersion relation:

k

k̄
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2
x
x̄
� 1

� �
C̄g

C̄
þ x

x̄
� 1

� � x̄

C̄2

B

Bx
ðCCgÞ

vuuuut ð17Þ

On the other hand, substituting Eq. (14) into the Suh

et al.’s Eq. (13) and again neglecting those effects, the

real part gives the dispersion relation:

k

k̄
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C̄

C̄g

x
x̄

� �2

�1

� �s
ð18Þ

These dispersion relations can be compared with the

exact one for a linear wave:

k

k̄
¼ x

x̄

� �2 tanhk̄h

tanhkh
ð19Þ

These dispersion relations are dependent on the rela-

tive wave depth (k̄h) corresponding to the carrier

frequency. Fig. 1 shows the dispersion relations in a

shallow water (k̄h = 0.05p) and in a deep water

(k̄h = 2p). In the case of shallow water, the dispersion
relation of the proposed model is close to the exact

one at higher frequencies but diverges at lower fre-

quencies. However, the agreement between the dis-

persion relation of Suh et al.’s model and the exact

one is excellent. For deep water, the dispersion

relation of the proposed model is closer to the exact
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one than Suh et al.’s model at lower frequencies.

However, the dispersion relation of Suh et al.’s model

is closer to the exact one at higher frequencies.

The relative water depth is obtained such that there

is a minimal squared relative error in the dispersion

relation of the proposed model compared to Suh et al.’s

model. The squared relative error is defined as:

Eðk̄hÞ ¼
Z 1:8

x
x̄¼0:2

ks � kp

ks

� 	2

d
x
x̄

� �
ð20Þ

where ks is the wave number obtained by Eq. (18) and

kp is the wave number obtained by Eq. (17). The

squared relative errors are found in the depth range

of k̄h = 0.05p–1.00p. At the relative water depth of

k̄h = 0.247p, the squared relative error is minimized,

i.e. the dispersion relations of the two models are

almost equal to each other. Fig. 2 shows the dispersion

relations when the relative water depth is 0.247p. The
two dispersion relations are almost equal to each other

except in the higher frequency range.

For a linear dispersion, Suh et al.’s model is more

accurate than the proposed model when the relative

water depth is shallower than 0.247p. When the

relative water depth is deeper than 0.247p, the pro-

posed model shows better accuracy at lower frequen-
Fig. 2. Dispersion relation for k̄h= 0.247p; solid line = exact, dashed
line = proposed model, dash-dotted line = Suh et al.’s model.
cies, and Suh et al.’s model is more accurate at higher

frequencies.

In shallow water, the nonlinearity of waves

becomes prominent and thus both the proposed model

and Suh et al.’s model, which are linear, cannot yield

accurate solutions for the dispersion relation. In real-

ity, the incident wave spectrum has little energy at

higher frequencies, and most of the wave energy is in

the lower frequency range. Therefore, the accuracy of

the dispersion relation at lower frequencies determines

the accuracy of the major change of a wave energy

spectrum. This tendency gives an advantage to the

proposed model compared to Suh et al.’s model.
4. Numerical experiments

To examine the accuracy of the proposed model,

we conducted numerical experiments with both the

proposed model and Kubo et al.’s (1992) model for

monochromatic waves propagating over a planar

slope using different inclinations of Booij (1983).

The reflection coefficients calculated by the models

were compared against those calculated by the finite

element method (Suh et al., 1997). The two models

were also applied to the case of a wave propagating

over the ripple patch of Davies and Heathershaw

(1984). The calculated reflection coefficients were

compared against the experimental data. Finally, the

two models and the model of Suh et al. (1997) were

tested for random waves propagating over the ripple

patch. The solutions were compared against the finite

element model solution, which can be regarded as an

exact solution for linear random waves.

4.1. Finite difference method

Internal generation of waves has been used widely

in generating waves in time-dependent wave equa-

tions. Using the viewpoint of mass transport, Larsen

and Dancy (1983) employed a line source to generate

waves in the staggered grid solution of the Boussinesq

equations. Lee and Suh (1998), and Lee et al. (2001)

found that the internal generation of waves would be

more accurate using the viewpoint of energy transport.

However, the line source method may cause a prob-

lem for unstaggered grid systems. For this reason, Wei

et al. (1999) generated waves using the source func-



C. Lee et al. / Coastal Engineering 48 (2003) 277–287282
tion method in the unstaggered grid solution of the

Boussinesq equations. It is not possible to get a

staggered grid solution for the proposed model.

Therefore, we adopted a source function method to

generate the waves.

Sponge layers were placed at the outside bound-

aries to remove wave reflection from the boundaries

by dissipating wave energy inside the sponge layers.

The proposed model Eq. (7) is therefore modified as:

j � ðC̄C̄gjĝÞ þ k̄2C̄C̄g þ gū1j
2hþ gū2ðjhÞ2

n o

	 1þ i
Ds

n̄

� 	
ĝ þ ij � BðCCgÞ

Bx
j

Bĝ
Bt

( )

þ i
Bðk2CCgÞ

Bx
þ g

Bu1

Bx
j2hþ g

Bu2

Bx
jhð Þ2

( )

	 1þ i
Ds

n̄

� 	
Bĝ
Bt

¼ f ðx; y; tÞ ð21Þ

where f(x,y,t) is a source function and the damping

coefficient Ds is given by

Ds ¼
0; outside sponge layer

expðd=SÞ � 1

expð1Þ � 1
; inside sponge layer

8><
>:

ð22Þ

where d is the distance from the starting point of the

sponge layer and S is the thickness of the sponge

layer. In a one-dimensional domain, the modified

model is discretized by the Crank–Nicolson method
Fig. 3. Computational domain for numerical test
in time and space. Initially, surface elevations are set

to zero. In order to generate waves gradually, the

source function is multiplied by tanh(t/pT̄) where T̄ is

the carrier wave period and p is a parameter

corresponding to the rate of slow wave generation.

Since the sponge layer reduces the incoming wave

energy effectively, the reflective condition at the

boundaries can be used.

4.2. Wave reflection of monochromatic waves from a

planar slope

We conducted numerical experiments with both the

proposed model and Kubo et al.’s model for mono-

chromatic waves propagating over a planar slope,

each end of which was connected to a constant-depth

region, as tested by Booij (1983), who investigated

the accuracy of the mild-slope equation with respect

to bottom slope. Since Booij’s tests, many researchers

have adopted this numerical experiment to demon-

strate accuracy of their model. The computational

domain for the numerical test is shown in Fig. 3.

The water depths on the up-wave and down-wave

sides of the slope are h1 = 0.6 m and h2 = 0.2 m,

respectively, and the width of the slope, b, is varied

so that the inclination of the slope varies. The wave

period is 2 s. The grid size used is Dx = 0.05 m, and

the time step is Dt= 0.05 s.

Fig. 4 shows the reflection coefficients calculated

by the proposed equation, the Kubo et al.’s equation,

and the finite element model of Suh et al. The finite

element model solution may be regarded as an exact

solution. It is shown that the proposed model gives

very close answers to those of the finite element
of waves propagating over a planar slope.



Fig. 4. Reflection coefficient vs. width of a plane slope; dashed

line =Kubo et al.’s model, solid line = proposed model, circle =

finite element model.
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model and the reflection coefficient becomes stable

even for very steep slopes. Conversely, Kubo et al.’s

model under-predicts the reflection coefficient for

steeper slopes. Even for very mild slopes, the pro-

posed model, and Kubo et al.’s model show some

differences and the results of the finite element model

coincide with those of the proposed model rather than

the Kubo et al.’s model.

Recently, Lee et al. (1998) indicated that bed

topography is not sufficient to determine the accuracy

of a wave equation with respect to the bottom slope,

because the water depth tested is only in water of

immediate depth and the two slope discontinuities

affect the solution. The slope discontinuities are taken

into account in the extended mild-slope equation

through the bottom curvature terms.

4.3. Bragg reflection of monochromatic waves from a

ripple patch

When surface waves are normally incident over a

ripple patch, a significant portion of the wave energy

is reflected from the ripple patch if the wavelength of

the surface wave is twice that of the ripple. This

wave reflection is called the resonant Bragg reflec-

tion.
Davies and Heathershaw reported a series of exper-

imental data for different numbers of ripples and water

depths. In their experiment, the ripple wavelength and

amplitude were 1 m and 5 cm, respectively, and the

numbers of ripples were 2, 4, and 10. The water depth

in the constant-depth region was 15.6 cm for the case

of 2 and 4 ripples and 31.3 cm for the case of 10

ripples. These experimental data have been used for

comparison with various numerical models by a num-

ber of researchers. All of them showed that the mild-

slope equation gives a good agreement with the exper-

imental data for the cases of 2 and 4 ripples, but for the

case of 10 ripples, it fails to predict the magnitude of

the Bragg reflection. Therefore, in this study, a numer-

ical test was made only for the case of 10 ripples. The

water depth in the computational domain is given by

hðxÞ ¼

hc; xVxr

hc � Asin½Kðx� xrÞ�; xrVxVxr þ nLr

hc; xzxr þ nLr

8>>>><
>>>>:

ð23Þ

where A is the ripple amplitude, Lr ( = 2p/K) is the

ripple wavelength, n is the number of ripples, hc is the

water depth in the constant-depth region, K is the wave

number of the ripple, and xr is the x-coordinate of the

starting point of the ripple patch. The grid size used is

Dx = L/30 and Dt= T/30, where L is the wavelength

and T is the period, respectively, of the surface waves.

The computational domain for the numerical test is

shown in Fig. 5, where Lmax is the wavelength on a flat

bottom satisfying 2k/K = 0.5.

Reflection coefficients calculated according to the

proposed model and Kubo et al.’s model are given in

Fig. 6 along with the experimental data. The result of

the proposed model describes the resonant peak very

well. However, the model of Kubo et al., while

correctly positioning the resonant reflection, com-

pletely fails to predict its magnitude.

4.4. Transmission of random waves over a ripple

patch

Linear dispersion properties of the type of the pro-

posed model were verified by Kubo et al. (1992), who

simulated the propagation of wave groups using their



Fig. 5. Computational domain for numerical test of waves propagating over a ripple patch.
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equation. Suh et al. (1997) made numerical tests for the

transmission of unidirectional random waves over the

ripple patch of Davies and Heathershaw (1984). In this

study, we also conducted the same numerical tests.

The TMA shallow-water spectrum was used as a

target spectrum (Bouws et al., 1985):

Sðf Þ ¼ ag2ð2pÞ�4
f �5exp½�1:25 ðf =fpÞ�4�

	 cexp½�ðf =fp�1Þ2=2r2�/kðf ; hÞ ð24Þ

where a is a spectral parameter, c is the peak

enhancement factor, r is the spectral width parame-
Fig. 6. Comparison of solutions of proposed model and Kubo et al.’s

model, against experimental data of Davies and Heathershaw (1984);

solid line = proposed model, dashed line =Kubo et al.’s model, filled

circle = experimental data.
ter, and the Kitaigordskii shape function, /k( f,h)

incorporates the effect of the finite water depth.

Two cases of numerical tests were conducted: one

with a narrow frequency spectrum (c = 20) and the

other with a broad frequency spectrum (c = 2).

a = 7.57	 10� 4, and the peak frequency of input

wave, fp = 0.767 Hz were used in both cases. The

computational domain was same as Fig. 5, where

Lmax was selected as the wavelength corresponding

to the lowest frequency, and the width of sponge

layer was 2.5Lmax. At the peak frequency of

fp = 0.767 Hz, 2kp/K is 1.0 and thus significant wave

reflection from the ripple was expected near the peak

frequency.

For the narrow spectrum case, the input spectrum

was confined between 0.67 and 1.00 Hz, and for the

broad spectrum case, the input spectrum was con-

fined between 0.59 and 1.63 Hz. The carrier fre-

quency f̄ was selected as 0.79 Hz for the narrow-

banded spectrum and 0.98 Hz for the broad-banded

spectrum by weight-averaging the input spectrum. In

solving Eq. (7), the wave parameters were chosen to

be the values corresponding to the carrier frequency.

The water surface elevation was recorded at a dis-

tance 1.5Lmax down-wave from the end of the ripple

patch.

Fig. 7 shows a comparison of the transmitted

wave spectra calculated by the proposed model and

Kubo et al.’s model, against the finite element

solution for the case of a narrow-banded frequency

spectrum. As expected, the transmitted wave spec-

trum shows a significant reduction compared with

the input spectrum near the Bragg resonant peak,

whereas most of the wave energy is transmitted



Fig. 8. Same as Fig. 7, but for broad-banded spectrum.

Fig. 9. Incident broad-banded spectrum and transmitted spectra

calculated by time-dependent equations with weight-averaged

carrier frequency; short dashed line = incident wave, solid line =

finite element model, long dashed line = proposed model, dash-

dotted line = Suh et al.’s model.

Fig. 7. Incident narrow-banded spectrum and transmitted spectra

calculated by time-dependent equations with weight-averaged

carrier frequency; short dashed line = incident wave, solid line =

finite element model, long dashed line = proposed model, dash-

dotted line =Kubo et al.’s model.
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over the ripples for the wave components whose

frequency is far from the Bragg resonant frequency.

Notably, the solution by Kubo et al.’s model is far

from the finite element solution, predicting a much

larger wave transmission than the solution of the pro-

posed model or the finite element solution. These

results are nearly the same as those of Suh et al.’s

model.

Fig. 8 shows a similar comparison for the case of a

broad-banded frequency spectrum. As with the case of

the narrow-banded spectrum, a reduction of the trans-

mitted spectrum is observable near the Bragg resonant

peak, and the transmitted spectrum is in good agree-

ment with the finite element solution. The solution of

the Kubo et al.’s model differs markedly from the

finite element solution.

Suh et al. (1997) reported that accurate results

could be obtained by dividing the frequency range

into several bands and by modeling each of them with

a representative carrier frequency. In particular, use of

a single carrier frequency in the case of a broad-

banded spectrum was not sufficient to obtain a rea-

sonably accurate result. Fig. 9 shows a comparison of
the transmitted wave spectra calculated by the pro-

posed model and the model of Suh et al. against the

finite element solution for the case of a broad-banded



 

Fig. 10. Dispersion relation for k̄h= 0.438p; solid line = exact,

dashed line = proposed model, dash-dotted line = Suh et al.’s model.
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frequency spectrum when a single band spectrum is

used. In contrast to the proposed model, the model of

Suh et al. was not able to predict the reduction of the

transmitted spectrum.

Fig. 10 shows the dispersion relations of Suh et al.’s

model and the proposed model against the linear wave

in the case of the broad-banded spectrum (k̄h =

0.438p). In the lower frequency range, the wave

number of the proposed model is close to the exact

one, whereas the wave number of Suh et al.’s model is

smaller than the exact one and even diverges to

negative infinity. On the other hand, in the higher

frequency range, the wave number of Suh et al.’s

model is more accurate than the proposed model and

the wave number of the proposed model diverges to

positive infinity. Because the dispersion relation of

Suh et al.’s model does not agree with the exact one in

lower frequency range, the Bragg reflection in lower

frequency range cannot be predicted accurately where-

as the proposed model does predict this reflection

accurately.
5. Conclusions

A time-dependent wave model has been developed

for waves propagating over rapidly varying topogra-
phy based on the extended mild-slope equation of

Chamberlain and Porter (1995). Without the higher-

order bottom effect terms, the resulting equation

reduces to the time-dependent mild-slope equation

developed by Kubo et al. (1992).

The proposed equation and Suh et al.’s (1997)

equation were compared analytically in terms of linear

dispersion. Suh et al.’s model is more accurate than

the proposed model at a relative water depth shallower

than 0.247p. When the relative water depth is deeper

than 0.247p, the proposed model is more accurate in

the lower frequency range, and Suh et al.’s model is

more accurate in the higher frequency range.

Tests were made for the monochromatic wave

reflections from a planar slope and periodic ripples.

The results of the proposed model and Kubo et al.’s

model were compared with those from the finite

element method or experimental data. Of all the cases

tested, the proposed model gave accurate results,

whereas Kubo et al.’s model failed to predict the

major characteristics of the phenomenon.

Tests were also made for the transmission of

unidirectional random waves normally incident on a

finite ripple patch. For both narrow and broad spectra,

the solutions of the proposed model and Kubo et al.’s

model were compared against the finite element

solution. The comparisons demonstrated an improved

accuracy of the proposed model than Kubo et al.’s

model. For a broad spectrum, comparisons were made

between the solutions of the proposed model and Suh

et al.’s model. Using a single weight-averaged fre-

quency as a carrier frequency, the proposed model

gave more accurate solutions.
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