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Abstract

wIn this paper, following the procedure outlined by Copeland Copeland, G.J.M., 1985. A
xpractical alternative to the mild-slope wave equation. Coastal Eng. 9, 125–149. the elliptic

wextended refraction–diffraction equation of Massel Massel, S.R., 1993. Extended refraction–dif-
xfraction equation for surface waves. Coastal Eng. 19, 97–126. is recasted into the form of a pair

of first-order equations, which constitute a hyperbolic system. The resultant model, which includes
higher-order bottom effect terms proportional to the square of bottom slope and to the bottom
curvature, is merely an extension of the Copeland’s model to account for a rapidly varying
topography. The importance of the higher-order bottom effect terms is examined in terms of
relative water depth. The model developed is verified against other numerical or experimental
results related to wave reflection from a plane slope with different inclination, from a patch of
periodic ripples, and from an arc-shaped bar with different front angle. The relative importance of
the higher-order bottom effect terms is also examined for these problems. q 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The prediction of water wave transformation over an irregular topography is impor-
tant to coastal engineers who plan, design, construct, and maintain various coastal
facilities. In a linear dispersive system, the combined effect of water wave transforma-
tions such as refraction, diffraction, shoaling, and reflection can be predicted by the

Ž .mild-slope equation which was first developed by Berkhoff 1972 without restriction on
the water depth. In the derivation of this equation, he assumed a mild slope of the

< < Žbottom, i.e., = h rkh<1 where =shorizontal gradient operator, kswavenumber,
.and hswater depth , and thus neglected the terms of second-order bottom effect

Ž .2 2 Ž .proportional to = h and = h. Booij 1983 compared the mild-slope equation with a
finite element model in terms of the reflection coefficient for the case of monochromatic
waves propagating over a plane slope, concluding that the mild-slope equation is
sufficiently accurate up to the bottom slope of 1:3.

Recently, the inclusion of the second-order bottom effect terms in the mild-slope
equation has been found to yield a more accurate solution, in particular, for a rapidly

Ž .varying topography such as a steep slope or an undulatory bottom. Massel 1993 and
Ž .Chamberlain and Porter 1995 used the Galerkin-eigenfunction method to develop an

Ž .elliptic equation for monochromatic waves. Suh et al. 1997 used the Green’s second
identity and Lagrangian formula to develop two ultimately equivalent hyperbolic
equations for random waves. Without the second-order bottom effect terms, Suh et al.’s
equations reduce to the hyperbolic mild-slope equations developed by Smith and Sprinks
Ž . Ž .1975 and Radder and Dingemans 1985 , respectively. For a monochromatic wave, the
equation of Suh et al. reduces to that of Massel or Chamberlain and Porter, which in
turn, without the second-order bottom effect terms, reduces to the mild-slope equation of
Berkhoff.

Compared to an elliptic model, a hyperbolic model offers the advantage of reduced
computing time, particularly in a two-dimensional domain, and is able to incorporate the
boundaries of arbitrary reflecting intensity as well as refraction and diffraction mecha-

Ž .nisms. Nishimura et al. 1983 derived hyperbolic mild-slope equations by vertically
integrating the continuity equation and the equation of motion for linear waves. On the

Ž .other hand, starting from the time-dependent mild-slope equation of Booij 1981 ,
Ž .Copeland 1985 derived similar hyperbolic equations using the characteristics of linear

waves and the defined volume flux. The equations of Nishimura et al. and Copeland are
mathematically equivalent to each other and also to the elliptic mild-slope equation of
Berkhoff.

When the bottom topography is simple, the transformation of water waves can be
predicted with high accuracy even for the case of abrupt depth change. The first way,

Ž .which was presented by Booij 1983 , is to use the finite element method in solving the
Laplace equation with proper boundary conditions. The second way is to assume the
bottom topography as a succession of horizontal shelves separated by vertical steps and
then match the boundary conditions for continuity of both pressure and horizontal flux at
each step discontinuity. The resulting matrix equation can be solved by using the

Ž . Ž .eigenfunction expansion method Takano, 1960 , the variational principle Miles, 1967 ,
Ž .the boundary integral equation method Yeung, 1975 , or the conservation of wave
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Ž .action Smith, 1983 . In this study, the finite element method or the eigenfunction
expansion method is employed where appropriate in order to examine the accuracy of
the model we develop and the existing Copeland’s model.

Ž .In the following, we first recast the elliptic formulation of Massel 1993 and
Ž .Chamberlain and Porter 1995 into a hyperbolic one following the technique of

Ž .Copeland 1985 . Second, we investigate the terms of second-order bottom effect which
are included in the present model. Third, in order to verify the better accuracy of the
present model compared to the Copeland’s model in cases of rapidly varying topogra-
phy, the two models are applied to the problems of wave reflection from a plane slope

Ž . Žwith different inclination Booij, 1983 , from a ripple patch Davies and Heathershaw,
.1984 , and from an arc-shaped bar with different front angle. The relative importance of

the second-order bottom effect terms is also examined for these problems. Finally, major
conclusions follow.

2. Development of model equations

Ž .The extended refraction–diffraction equation of Massel 1993 with the evanescent
modes neglected is given by

Cg 22 2˜ ˜=P CC =f qv yR = h yR = h fs0 1Ž . Ž .ž /g 1 2½ 5C

˜where f is the velocity potential at mean water level, C and C are the phase speed andg

group velocity, respectively, of a wave with the angular frequency, v, and wavenumber,
k, and the parameters R and R determining the second-order bottom effects are given1 2

by

1
R s W I qW I qW I qW I qW I qW 2Ž . Ž .1 1 1 2 2 3 3 4 4 5 5 62cosh kh

1
R s U I qU I qU I . 3Ž . Ž .2 1 1 2 2 3 32cosh kh

Ž .The expressions of W , U , and I are given in the appendix of Suh et al. 1997 , whoi i i

found that there are minor algebraic errors in W and W of the Massel’s equations. The1 2

wavenumber, k, is determined from the dispersion relation given by

v 2 sgk tanh kh. 4Ž .
Ž .Eq. 1 is the same as the modified mild-slope equation developed by Chamberlain and

Ž .Porter 1995 . When the second-order bottom effect terms proportional to squared
Ž .2 2 Ž .bottom slope, = h , and bottom curvature, = h, are neglected in Eq. 1 , it reduces to

Ž .the mild-slope equation developed by Berkhoff 1972 .
The linear wave theory gives the following relation between the velocity potential at

˜mean water level, f, and the water surface elevation, h, as

ig g Eh
f̃sy hs 5Ž .2v E tv
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'where is y1 and g is the acceleration due to gravity. The volume flux Q defined by
Ž .Copeland 1985 is given by

CCg ˜Qs =f . 6Ž .
g

Ž . Ž . Ž .Substitution of Eqs. 5 and 6 into the model Eq. 1 gives

Eh 1
q =PQs0. 7Ž .CE t g 2 2yR = h yR = hŽ .1 2C

Ž . Ž .Taking the spatial and temporal derivatives of Eq. 5 , with the use of Eq. 6 , yields

E Q
qCC =hs0. 8Ž .gE t

Ž . Ž .Eqs. 7 and 8 constitute a hyperbolic model which includes the terms of second-order
bottom effects as an alternative to the elliptic model of Massel. Without the second-order

Ž . Ž .bottom effect terms, Eqs. 7 and 8 reduce to the hyperbolic equations developed by
Ž . Ž . Ž .Copeland 1985 . Elimination of Q in Eqs. 7 and 8 yields

E 2h 1
y =P CC =h s0. 9Ž .Ž .g2 CE t g 2 2yR = h yR = hŽ .1 2C

Ž .which, if R sR s0, reduces to the hyperbolic equation of Copeland 1985 for a1 2

steady-state, harmonic solution.

3. Terms of second-order bottom effect

Ž .2 2The terms of second-order bottom effects proportional to = h and = h are included
Ž .in the present model differently from the Copeland’s model. The model Eq. 1 can be

rewritten as

E222 2˜ ˜=P CC =f qk CC 1qE = h q = h fs0. 10Ž . Ž .ž /g g 1½ 5ko

where k sv 2rg is the deep-water wave number and the nondimensional values, Eo 1

and E , are2

C
E sy R 11Ž .1 1Cg

k Co
E sy R . 12Ž .2 2Cg
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Fig. 1. Variations of E and E with kh; s E , - - -s E .1 2 1 2

As shown in Fig. 1, the effect of squared bottom slope expressed by E is negligible in1
Ž .deep water kh)p , but it is non-negligible in intermediate-depth water and remains

Ž .significant in shallow water kh-0.1p . The effect of bottom curvature expressed by
E is negligible in both deep and shallow waters, but it is non-negligible in2

intermediate-depth water, being the most significant around khs0.4p . It is noticeable
Ž .that E is about zero when the effect of E becomes maximum kh,0.4p , while E1 2 2

Ž .approaches zero as E exhibits the maximum effect kh-0.1p .1

4. Numerical tests

In order to examine the accuracy of the present model, we conduct numerical
experiments with both the present model and the Copeland’s model for monochromatic

Ž .waves propagating over the plane slope with different inclination of Booij 1983 . The
reflection coefficients calculated by the models are compared against those by the finite

Ž .element method Suh et al., 1997 . The two models are also tested for the case of waves
Ž .propagating over the ripple patch of Davies and Heathershaw 1984 . The calculated

reflection coefficients are compared against the experimental data. Finally, the two
models are tested for waves propagating over an arc-shaped bar with different angle at
its front edge. The calculated reflection coefficients are compared against those by the
eigenfunction expansion method.
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4.1. Finite difference method

Waves are generated internally inside the model boundaries, while the waves
propagating toward the wave generation point are permitted to freely pass across the
point so that unwanted addition of wave energy in the model domain can be avoided.
This technique, the so-called internal generation of waves, has been used by several

Ž Ž .coastal engineers Larsen and Dancy 1983 for the Boussinesq equations; Madsen and
Ž . Ž . Ž .Larsen 1987 and Yoon et al. 1996 for the model of Copeland 1985 ; Lee and Suh

Ž . Ž . .1998 for the models of Radder and Dingemans 1985 and Copeland . In the present
model and the Copeland’s model, the value h ) added to the surface elevation at the
wave generation point at each time step would be

C= t
) Ih s2h 13Ž .

Dx

where h I is the water surface elevation of the incident wave, and Dx and Dt are the
grid size and time step, respectively.

Sponge layers are placed at the outside boundaries to minimize wave reflection from
the boundaries by dissipating wave energy inside the sponge layers. The thickness of the
sponge layer, S, is taken as 2.5= the local wavelength, which is found to reduce the
magnitude of the incident wave to almost zero at the boundaries. In order to model the

Ž .waves inside and outside the sponge layer continuously, Eq. 8 is modified as

E Q
qCC =hqv D Qs0. 14Ž .g sE t

The damping coefficient, D , is given bys

0, outside sponge layer°
d r S~e y1D s 15Ž .s

, inside sponge layer¢
ey1

where d is the distance from the starting point of the sponge layer.
� Ž .2 2 4 Ž .If the value of C rCyR = h yR = h becomes non-positive, Eq. 9 would beg 1 2

no longer of the type of wave equation and thus would not produce the phenomenon of
wave propagation. Where the variation of the bottom topography is large, the magni-

Ž .2 2 � Ž .2 2 4tudes of = h and = h can be large, and thus the value of C rCyR = h yR = hg 1 2

can be non-positive. For example, at a sharp-cornered point, the magnitude of = 2 h is
infinitely large, which, in intermediate-depth water, may make the solution of the
present model invalid. In order to avoid such a troublesome case in the solution, we

Ždiscretize the values of the squared bottom slope and the bottom curvature in a
.one-dimensional domain as

22dh h yhiq j iyj
s 16Ž .ž / ž /dx 2 jDx

i

2d h h y2h qhiq j i iyj
s 17Ž .2 2dx jDxŽ .i
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where the subscript i denotes the spatial grid point where the above quantities are
evaluated and j is selected as the minimum positive integer which guarantees a positive

� Ž .2 2 4value of C rCyR = h yR = h .g 1 2
Ž . Ž .In a one-dimensional domain, the modified models Eqs. 7 and 14 are discretized

by a leap-frog method in a staggered grid in time and space, which yields

h nq1 yh n 1 Qn yQn
i i iq1 i

q s0. 18Ž .2 2Dt DxC dh d hg
yR yR1 2 2ž /C dx dx

i

Qnq1 yQn h nq1 yh nq1
i i i iy1 nw xq CC qv D Q s0. 19Ž .iy1r2g s iiy1r2Dt Dx

where the superscript n denotes the time step. All the values of h and Q at the initial
time step are set to be zero. For the slow start of wave generation, the left-hand side of

Ž . Ž .Eq. 13 is multiplied by tanh 0.5trT where T is the wave period. At outside
boundaries, perfect reflection is assumed, but the reflected wave becomes negligible
inside the domain because the sponge layer significantly reduces the incoming wave
energy. The time step is chosen for the minimum Courant number C sCDtrDx to ber

0.2 so that a stable solution is guaranteed.

4.2. WaÕe reflection from a plane slope

The models are tested for the case of waves propagating over a plane slope, each end
Žof which is connected to a constant-depth region see Fig. 2 for the computational

.domain for the numerical test . The constant water depths on the upwave and downwave
sides of the slope are h s0.6 m and h s0.2 m, respectively, and the width of the1 2

slope, b, is varied so that the inclination of the slope varies. The wave period is 2 s. The
grid spacing Dx is chosen for the minimum ratio of local wavelength to grid size to be
60 so that a spatial resolution is guaranteed. After a time of 30 T has elapsed since the
initiation of wave generation, wave amplitudes in the region between xsL and1

Ž .xs2 L L swavelength at depth h are measured to calculate the reflection coeffi-1 1 1

cient.

Fig. 2. Computational domain for numerical test of waves propagating over a plane slope.
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Fig. 3 compares the present model, the Copeland’s model, and the finite element
Ž .model Suh et al., 1997 results with respect to the slope width, b. It is shown that the

present model gives reflection coefficients very close to those of the finite element
model and the reflection coefficient becomes stable even for very steep slopes, while the
Copeland’s model underpredicts the reflection coefficient for steeper slopes. Even for
very mild slopes, the present model and the Copeland’s model show some difference,
and the results of the finite element model coincide with those of the present model
rather than the Copeland’s model, though the reflection coefficients are very small there.

In order to examine the relative importance of the bottom slope square term and the
bottom curvature term, additional calculations are made by including only the slope
square term or the bottom curvature term to the Copeland’s model. Each result is shown
in Fig. 3 by a dashed line and dash–dotted line, respectively. As expected, the inclusion
of the slope square term gives some difference from the Copeland’s model for very
steep slopes, but its effect is minor. On the other hand, the inclusion of the bottom
curvature term improves significantly the Copeland’s model so that the result follows
closely that of the finite element model which is considered to be exact. Minor
difference from the present model, which includes both the slope square term and the
bottom curvature term, is observed only for very steep slopes where the effect of the

Fig. 3. Reflection coefficient vs. width of a plane slope; PPPsCopeland’s model, - - -sCopeland’s model
plus bottom slope square term, -P-P-sCopeland’s model plus bottom curvature term, spresent
model, `s finite element solution.
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slope square term becomes significant. As a result, the bottom curvature term is much
more important than the bottom slope square term in this problem.

By comparison between the mild-slope equation and a finite element model for the
Ž .aforementioned problem, Booij 1983 concluded that the mild-slope equation is suffi-

ciently accurate up to the bottom slope of 1:3 without providing the finite element model
results for the slopes milder than 1:3. This conclusion does not seem to be persuasive in
terms of the bottom slope because of the following two reasons. First, it must be noticed

Ž .that the slope tested is in water of intermediate depth 0.15p-kh-0.28p so that it
does not cover the entire range of water depth from deep to shallow water. The accuracy
of the mild-slope equation would vary with not only bottom slope but also water depth.
Second, the slope tested includes two slope discontinuities, i.e., starting and end points
of the slope, whose effect can be taken into account in the present equation by the
bottom curvature term, which has been shown to significantly affect the solution.
However, the mild-slope equation cannot take into account the effect of slope disconti-
nuity.

4.3. Bragg reflection of waÕes from a sinusoidally Õarying topography

When waves propagate over a ripple patch, a significant portion of the wave energy
is reflected from the ripple patch if the wavelength of the surface wave is around twice
that of the ripple. This phenomenon is called the resonant Bragg reflection. The Bragg
reflection becomes intensive with decreasing water depth, increasing ripple amplitude,
and increasing number of ripples.

Ž .Davies and Heathershaw 1984 conducted a series of experiments with different
numbers of ripples and water depths. In their experiment, the ripple wavelength and
amplitude were 1 m and 5 cm, respectively, and the number of ripples was 2, 4, and 10.
The water depth at the constant-depth region was 15.6 cm for the cases of 2 and 4
ripples and 31.3 cm for the case of 10 ripples. This experimental data has been used for
comparison with various numerical models by a number of researchers including Kirby
Ž . Ž . Ž . Ž .1986 , Massel 1993 , Chamberlain and Porter 1995 , and Suh et al. 1997 . All of
them showed that the mild-slope equation gives a good agreement with the experimental
data for the cases of 2 and 4 ripples, but, for the case of 10 ripples, it fails to predict the
magnitude of Bragg reflection. Therefore, in the present study, a numerical test is made
only for the case of 10 ripples.

The computational domain for the numerical test is shown in Fig. 4. The water depth
is given by

h , xyx F0° c s

~h yA sin K xyx , 0Fxyx FnlŽ .h x s 20Ž . Ž .c s s¢ h , xyx Gnlc s

where A is the ripple amplitude, l is the ripple wavelength, n is the number of ripples,
h is the water depth at the constant-depth region, K is the wavenumber of the ripple,c

and x is the x-coordinate of the starting point of the ripple patch. The grid size Dx iss

chosen to be lr30. The ratio, 2krK , is varied from 0.5 to 2.5 which, with the given
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Fig. 4. Computational domain for numerical test of waves propagating over a ripple patch.

ripple wavelength, determines the wavelength of surface waves. For the shortest wave to
Ž .be tested i.e., 2krKs2.5 , one wavelength contains 24Dx. After a time of 70 T has

elapsed since the initiation of wave generation, wave amplitudes in the region between
Ž .xsL and xs2 L L swavelength on the flat bottom with 2krKs0.5 aremax max max

measured to calculate the reflection coefficient.
Fig. 5 shows the reflection coefficients calculated by the present model and the

Copeland’s model along with the experimental data. Again, in order to examine the

Fig. 5. Reflection coefficient as function of 2krK from ripple bed; PPPsCopeland’s model, - - -sCopeland’s
model plus bottom slope square term, -P-P-sCopeland’s model plus bottom curvature term, s
present model, `sexperimental data.
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relative importance of the bottom slope square term and the bottom curvature term, the
results of the Copeland’s model including only the slope square term or the bottom
curvature term are also presented in Fig. 5. The results of the present model and the
Copeland’s model including only the bottom curvature term show some difference only
in the vicinity of 2krKs2.0, and for other values of 2krK they are almost identical so
that the difference is undistinguishable in the figure. Both the present model and the
Copeland’s model including only the bottom curvature term describe the resonant peak

Žvery well. The Copeland’s model and that including only the slope square term shown
.to be almost identical in the figure , however, while correctly positioning the resonant

reflection, completely fail to predict its magnitude. Some of the researchers have
interpreted this failure to be attributed to the violation on the mild-slope assumption that
the depth must vary slowly over a wavelength. However the results shown in Fig. 5
suggest that this interpretation is not appropriate. The failure of the Copeland’s model
Ž .equivalently the mild-slope equation may be not because the depth varies rapidly but
because it does not include the effect of bottom curvature. It is also worthwhile to note
that, for this Bragg problem, the depth perturbation about the mean bed level is of the

Ž . Ž .2 Ž 2 . 2 2 Ž .form of A sin Kx so that dhrdx sO ´ and d hrdx sO ´ where ´sArl<

1. Therefore, as for the Bragg problem, the bottom curvature term may be much more
important than the slope square term.

4.4. WaÕe reflection from an arc-shaped bar

Finally, the two models are tested for waves propagating over an arc-shaped bar with
different angle at its front edge. Fig. 6 shows the computational domain for the test. The
water depth is given by

2° r r 2 < <h q y y xyx , xyx FrŽ .(c 0 0~ ž /h x s 21Ž . Ž .tanu sinu¢ < <h , xyx Grc 0

where the water depth on the flat bottom, h , is 85 cm, the half-width of the arc, r, is 80c

cm, and x is the x-coordinate at the center of the arc. The water depth on the bar can0

be deduced from the geometric relations given by h s h y z and z q zc 2 1 2
22(s R y xyx , where z srrtan u and Rsrrsin u . The angle at the front edgeŽ .0 1

of the bar, u , is varied from 08 to 908 and thus the water depth at the center of the bar is
varied from 85 cm to 5 cm. The wave period is chosen to be 1.716 s so that the relative
water depth at the flat bottom is kh s0.42p and thus the effect of bottom curvaturec

Ž .caused by the sharp-cornered front edge of the bar becomes prominent see Fig. 1 . The
Ž .2 Ž .2higher-order bottom effects can be analytically obtained as = h s xyx r0

�Ž .2 Ž .24 2 � Ž .2 Ž .24 �Ž .2 Žrrsin u y xyx and = hs 2 rrsin u y xyx r rrsin u y xy0 0
.243r2x both of which, at the edge of the bar, would increase infinitely as the front0

angle, u , increases up to 908. In this study, however, the terms of these two effects are
Ž . Ž .obtained by discretization as in Eqs. 16 and 17 in order to get a positive value of

� Ž .2 2 2 4C rCyR = h yR = h . The grid size, Dx, is taken to be 2.5 cm so that theg 1
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Fig. 6. Computational domain for numerical test of waves propagating over an arc-shaped bar.

minimum ratio of the local wavelength to the grid size becomes 47. After a time of 20 T
has elapsed since the initiation of wave generation, wave amplitudes in the region

Ž .between xsL and xs2 L L s the wavelength on the flat bottom are measured toc c c

calculate the reflection coefficient.
As mentioned in the introduction, when the bottom topography is simple, the

transformation of water waves can be predicted with high accuracy by using a finite
element method or an eigenfunction expansion method. For this problem of wave
reflection from an arc-shaped bar, the results of the present model and the Copeland’s
model are compared against that of the eigenfunction expansion method. Although the
eigenfunction expansion method can easily include not only the propagating wave mode
but also the evanescent modes generated at each discontinuity between neighboring
shelves, the evanescent modes are not included in this calculation for the purpose of
direct comparison with the present model and the Copeland’s model which do not
include the evanescent modes.

Fig. 7 shows the comparison of the reflection coefficients calculated by the aforemen-
tioned models. Both the present model and the eigenfunction expansion method shows
that, as the angle at the front edge increases, the reflection coefficient increases up to
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Fig. 7. Reflection coefficient vs. front angle of an arc-shaped bar; PPPsCopeland’s model, - - -sCopeland’s
model plus bottom slope square term, -P-P-sCopeland’s model plus bottom curvature term, s
present model, `seigenfunction expansion method.

us758, and then decreases to almost zero till us878, and after that it increases again
till us908. This interesting phenomenon seems to resulted from the combined effects of
the magnitude and phase of the reflected wave at each point of depth change. The
significant reflection at us758 and zero reflection at us878 in this case would be
compared to the Bragg reflection and zero reflection, respectively, of waves by a ripple
patch. For the Copeland’s model, the reflection coefficient increases up to us828 and
then decreases to zero till us908. On the whole, the reflection coefficient calculated by
the present model closely follows that by the eigenfunction expansion method except a
slight difference around us758, while the reflection coefficient calculated by the
Copeland’s model is quite different from those by the other two models. This difference
may be resulted from the fact that the Copeland’s model does not include the
second-order bottom effect terms.

Again the Copeland’s model is tested by including only the bottom slope square term
or the bottom curvature term. The results are shown in Fig. 7. When the bottom
curvature term is included, the model result becomes much closer to those of the
eigenfunction expansion method than the present model, especially for smaller front
angles of the bar. The inclusion of the slope square term, however, rather deteriorates
the solution though it simulates the bounce of the reflection coefficient at a large u

somewhat incorrectly.



( )C. Lee et al.rCoastal Engineering 34 1998 243–257256

5. Conclusions

A hyperbolic wave equation model has been developed for waves propagating over a
rapidly varying topography based on the extended refraction–diffraction equation of

Ž .Massel 1993 , which is expressed in an elliptic form. The model developed is an
Ž .extension of the model of Copeland 1985 for the application to a rapidly varying

topography by the inclusion of the bottom slope square term and the bottom curvature
term. By examining these additional terms with respect to various relative water depths,
it has been shown that the bottom slope square term is negligible in deep water but it is
not in both intermediate-depth water and shallow water. On the other hand, the bottom
curvature term is negligible in both deep and shallow waters, while its effect is
significant in intermediate-depth water.

In order to examine the importance of these additional terms, the present model and
Ž .the model of Copeland 1985 were tested for the problems of wave reflection from a

plane slope, periodic ripples, and an arc-shaped bar. In addition, in order to compare the
relative importance of these terms, the Copeland’s model plus the bottom slope square
term or the bottom curvature term was tested for the same problems. The results of the
various models were compared with those of the finite element method or the eigenfunc-
tion expansion method which are considered to give a highly accurate solution. For all

Žthe problems tested, the present model including both the bottom slope square term and
.the bottom curvature term has been shown to give reasonably accurate results, while the

Copeland’s model fails to predict major characteristics of the problems. It has also been
shown that the bottom curvature term plays an important role in improving the model
results, while the effect of the bottom slope square term is minute.

In most practical problems, the Copeland’s model plus only the bottom curvature
term may give sufficiently accurate results. However, there is no reason for not using the
model developed in this study, which includes the bottom slope square term as well,
because its use may require only a little increase of computing time or effort.

One of the advantages of a hyperbolic model compared to an elliptic model may be
the reduction in computing time, especially in a two-dimensional domain. However,
appropriate experimental data in a two-dimensional domain for proving the superiority

Ž .of the present model are rare. Recently, Chandrasekera and Cheung 1997 have applied
a model in the same class as the present one to wave transformation over a circular shoal
with a relatively steep side slope for which experimental data were reported by Williams

Ž .et al. 1980 . However, these experimental data do not seem to be appropriate to
corroborate the effects of the additional terms in the present model. In this context, a
two-dimensional hydraulic model test may be necessary in the future.
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