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ABSTRACT

Nonlinear momentum transfer from wind to wave has been studied on the basis of a perturbati9n expan-
sion procedure. Two nonlinear effects are presented, namely the generation of higher harmqmcs of the
disturbances and the mean wind profile modification by Reynolds stress. The second harmonic Reynolds
stress is found to be 2(ka)? times the first harmonic Reynolds stress, where & is the wavenumber and a the
wave amplitude. To the order of a2, the wind profile is modified by the Reynolds stress of the first harmonic.

1. Introduction

When a turbulent air stream blows over water, it
generates waves that grow with time and fetch. These
wind waves are able to extract energy from the mean
wind field, provided that the Reynolds stresses in the
airflow associated with the wind wave are positive. The
energy can then be passed on to the sea wave by the
action of pressure forces at the oscillating surface.

Studies of wind-wave interaction are accumulating
on both theoretical and experimental fronts: notably
the works by Phillips (1957) and Miles (1957) on the
theoretical side; and Stewart (1970), Shemdin (1969),
and Dobson (1971) on laboratory experiments and open
sea measurements. Both laboratory experiments and
open sea measurements suggest that Miles’ inviscid
theory substantially underpredicts the energy transfer.
More recently, Revnolds (1968) formulated the problem
by introducing an eddy viscosity coefficient to relate the
turbulent stresses perturbed by wave motion to the
perturbation strain rates. Calculations were carried out
for the wind profile with wavenumber and wave speeds
corresponding to four sets of Stewart’s experiment. The
phases of # and w (;measured with respect to the surface
wave crests) are in good agreement, while the measured
amplitudes are low by significant factors. Stewart finds
that the energetic content of the second harmonic is
approximately half that of the fundamental, and the
calculations made by Reynolds suggest that nonlinear
effects may account for the striking differences hetween
the linear theory and the measurements.
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It is the purpose of this study to assess the nonlinear
effects. The model under consideration is an extension
of Reynolds’ linear model to the nonlinear domain by
taking account of the higher order terms. The net
contribution of momentum transfer to a propagating
sinusoidal wave will be investigated by considering
wave-related perturbation stresses in the airflow pre-
dicted by this model. The water surface is, therefore,
assumed to respond to turbulent eddies impinging on it.

2. Formulation

The turbulent velocity field was decomposed into a
mean component U, a wave-induced component U,
and a random component %’ representing background
turbulence:

a= U404+ (1)

Quantities® will be presumed normalized on suitable
reference velocity and length scales (U, and 8). The
equations will be restricted to incompressible low with
constant viscosity, and to flows that are statistically
periodic in time. The water surface will be assumed to
respond to turbulent eddies impinging on it. The net
contribution of the turbulent eddies on momentum
transfer to a propagating sinusoidal wave will be
investigated. The water surface will be assumed to be
composed of a sinusoidal component

¢ =a cosk(x—Ct). (2)

The velocity field will be considered in a frame of
reference traveling with speed C in the positive x
direction. The wave-induced velocity components
become stationary and sinusoidal in x. The velocity

® A list of svrabols is given in the Appendix.
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field is specified by

u=U()—C+U(x,z)+u (x,y,z,t)]
V' (%,9,%8) ©)
W(x,Z)—!-W'(x,y,Z,t)f

9=
W=

Turbulence is homogeneous in the v direction and the
wave grows in the x direction. In order to extract the
organized motion from a background field of turbulent
motion, we introduce a time average

1 00
Uk)= lTl_r)Ialo —]? / u(Z,t)dt,
0

and a phase average

1 »

Wep)=lim — 5 i, tno),

where 7 is the period of the wave. The organized wave is
defined by U=(U(,t))—U(%). By making use of the
time and phase averages, one may develop the equations

the mean field, the organized wave, and the
turbulence as follows:
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Averaging in the x direction yields the linearized
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disturbance equations
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All wave-induced perturbation quantities are assumed
to have the form

q=q(z)eik(x—01). (N

The equations of motion (6) become

LU ik
ik(U_C) U+ W—a‘"z—“‘?*ik(fu‘f‘fu)
% p
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With the introduction of a streamfunction ¢ defined by
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we may combine the two equations of motion into a
single equation
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where 7;; are stress terms perturbed by wave-induced
motion and s;; are stress terms perturbed by turbulent
motion. Reynolds (1968) assumed that all 7;; terms were
small compared to s;; terms. Then Reynolds related the
perturbation stresses s;; to the perturbation strains S;;

S,,'j:—ZESU, (11)

170U;: aU;
L
2\ dx; dx;

where

and E is a function of z. If the eddy viscosity E is set
equal to zero and the Reynolds number Re is set equal
to infinity, Eq. (10) reduces to a Rayleigh equation,
which was the basis considered by Miles. With all the
terms expressed in terms of ¢, by expansion in terms of
perturbation ka, ¢ =¢,+kaps=+- - -, we have

d, 42U
(U-@(m——w@)—@-—
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1 d? 2
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2 dE d3¢1 (i(f)l
)
ik Re dz \ dz® dz
AL/ dz2/d%py
- <~——+k2¢1>, (12)
ik Re

dz?

where ¢; refers to first-order streamfunction. Similarly,
we obtain the equation governing the second harmonics
b2 by

d? a0
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dZZ 2
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e
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In order to simplify the boundary conditions, we adopt
the curvilinear coordinates suggested by Benjamin
(1959),

g= x'_i&e_'k (z—x)
i 19

n=z—aqe k")
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Fic. 1. Undisturbed velocity profiles as it would appear
to an observer moving with the wave.

shown in Fig. 1. The wind-wave interaction problem
can finally be formulated in terms of the following
boundary value problems:

First order
(U—C) g1 —k%p)— Ullgy
=(14-E)(tk Re)™!
X[¢IIV—2132¢111+k4¢1+a(U[V—ZkUIIl)e_kq]
+F(ELEY ¢ gt),  (15)
where Roman superscripts refer to differentiation with

respect to curvilinear coordinate n normal to wave
surface, with boundary conditions

$1(0) =aC

: 16
¢1'(0) = —alU'(0) e

Second order

(U—=C) (g1 —4kpy) — Ullgp,
(PG — dp 1) Fo(gho, ULV, Ulil)e—r
=(14E)(2tk Re)™!
X [2"V —8kps' 1 4-16k*py+F 52, U)e 7]

+F4<E11E117¢I;¢1H)7 (17)

with boundary conditions
$2(0) =ka’C }

(18)
$21(0) = ~ka?U(0) — L k2a?C
It may be noted that the second-order equation is
almost of the same type as the first-order equation with
wavenumber £ replaced by 2k. In addition, there is a
forcing term 3 (1" —dip1'!) due to self-interaction
of the first-order solution. The boundary condition in
the second-order problem is proportional to that of the
first-order problem by a factor ka. The term —(11/2)
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X (k%a*C) appearing in the second-order problem is
usually a small quantity compared to the first term
—ka?U0). The terms F; to Fy are found to be rela-
tively unimportant during the calculations. Thus, the
basic governing equation remains of the Orr-Sommerfeld
type. One of the important physical quantities in wind-
generated waves is the Reynolds stresses. Because the
interface cannot support a stress discontinuity, this
implies momentum transfer between wind and waves.
If the Reynolds stress (—#w) is positive, the wave is
receiving momentum from the wind.
On the basis of the expansion procedure, we have

%=ik(¢1‘¢1*—¢1¢11*+ 2(pa' o™ ~agpt)+ - - +). (19)

The term associated with ¢, is the Reynolds stress of
the first harmonic, and the term associated with ¢, is
the Reynolds stress of the second harmonic. Discussions
of the Reynolds stresses distribution with respect to
various parameters will be presented.

3. Method of solution

When the coefficients of the governing equation (15)
vary in the range of interest, no closed form solution
exists. However, a numerical integration is possible over
the interval, by treating the boundary value problem
as an initial value problem with two free parameters to
be determined by the boundary conditions. The Kutta-
Runge fourth-order scheme has been used to integrate

1.2
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Fic. 2a. Eddy viscosity E vs height Z.

the differential equation. A detailed description of the
technique with application to hydrodynamic stability
is given by Brown and Lee (1972).

In order to integrate the Orr-Sommerfeld equation,
the mean turbulent wind profile U(z) must be specified.
The profile used in this work made use of the eddy
viscosity model of Cess (1958):

1 k? ReZR
E(z) =5{ 1-{————9——(22—22)2(3 — 45+ 222)2

Rev/R\H1t 1
e )4
K 2

(20)

T r[r1f||[ T 1 lll\Il] T LR
1.0 | -
0.8

Y

25000
0.6 } \
-
10700
3000
0.4 |
0.2
0 ilLlllll 1 lJIll_LL‘ H | T TR T N
[ év(ZSDOO)*‘ ‘.J
fe————— 6,(10700)
6v(3000)
.001 .01 2 .1 1

I'16. 2b. Mean wind velocity U vs height Z (3, viscous sublayer thickness).
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where « is the von Kérmén constant having a value
of 0.4, K is an empirical constant that was determined
to have a value of 21, and R=(0.346/8)V2 Ret is the
average shear stress given by Cohen (1964). The wind
velocity profile is then given by

z 1 .
U(z) =ReR / ——idz (21)

The velocity profile is then bent to follow the wave
profile, that is, z is replaced by 7 everywhere in the
expression.

4. Results

Three Reynolds numbers Re=3000, 10,700 and
25,000 have been selected to demonstrate the influence
of Reynolds number on wind-wave interaction. Both
the eddy viscosity and the velocity profiles are pre-
sented in Fig. 2. It is of interest to note that the maxi-
mum eddy viscous Reynolds number varies from 220
at Re=23000 to 280 at Re=25,000. The form of the eddy
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viscosity E(z) is prescribed such that a laminar layer is
allowed next to the interface. Subsequently, the velocity
gradient UY(0) is a linear function of the Reynolds
number Re. The mean velocity profile shown in Fig. 2
is similar to that observed by Stewart during times when
the waves were not present. It differs from the velocity
profiles observed by Stewart during times when the
waves were present. Such a discrepancy must exist if
there is to be transfer of momentum from the air to
wave because of a wave-induced Reynolds stress.

For wavenumber £=1, wave speed C=0.5, and wave
amplitude ¢=0.1 and 0.2, the Reynolds stresses of the
fundamental as a function of the vertical distance (Z)
are presented in Fig. 3. Three features of the curves are
of interest. First, at a fixed wave amplitude (¢=0.2),
the maximum Reynolds stresses increase as the Reyn-
olds numbers increase. This increase can be traced to
the increase in U'(0), which constitutes the viscous
boundary conditions. It turns out that the wviscous
boundary condition ¢;'(0) = —aU(0) is dominant over
the inviscid boundary condition ¢1(0)=aC. Second, at

1 T T IFITIT ]
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10700 (o= 0.1)
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_1 J
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~4 J
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F16. 3. Reynolds stresses vs height Z (first harmonic).
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Fic. 4. Reynolds stresses vs height Z (second harmonic).
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F16. 5. Wind profile modified by waves.
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a fixed Reynolds number (Re= 10,700), double in wave
amplitude @ means quadruple in maximum Reynolds
stresses. Justification of this behavior comes from the
boundary conditions. Both ¢; and ¢! are of the order
of the wave amplitude, O(a); then it follows that the
Reynolds stresses are of the order of the square of the
wave amplitude O(a?). Third, we have also indicated in
the figure the critical height variation for different

Reynolds numbers. Increase in the Reynolds number

implies lowering of the critical height and the maximum
Reynolds stresses appear to occur at slightly lower
height than the critical height.

The Reynolds stresses of the second harmonic are
presented in Fig. 4 for Re=10,700 and 25,000. Both of
them are of the same shape as the first harmonic, with
maximum about 8%, of the first harmonic. By com-
paring the boundary conditions given by (16) and (18),
we find that ¢2(0)/¢:(0) =ka and ¢.'(0)/$:(0) =ka. The
second equality is approximately valid because the
term (11/2) k%a*C which appeared in (18) is small com-
pared to the term ka?U(0). Thus, the ratio between the
second harmonic and the first harmonic will be approxi-
mately 2(ka)?=0.08. Agreements are found to be good
for Re=10,700. The ratio for Re=25,000 is about 10%,.

Modification of the wind profile by Reynolds stress
of the first harmonic is presented in Fig. 5. The modifica-
tion is rather slight and the shift in critical height is also
small. The change in the Reynolds stress due to the
change of the wind profile would be only a small percent.

5. Concluding remarks

It is concluded that nonlinear contributions are two-
fold, namely the generation of higher harmonics and
the modification of the wind profile. According to
Reynolds (1968), the energy content of the second
harmonic is about half that of the first harmonic
attributed to Stewart’s experiment. On the basis of the
present results, this would require the product ke to be
of the order of 509,. Certainly the perturbation proce-
dure is not expected to work with perturbations of this
magnitude. Therefore, the wind-wave interaction is an
even stronger interaction phenomenon than predicted
by the results of these perturbation analyses.

APPENDIX
List of Symbols

wave amplitude

wave speed

eddy viscosity coefficient applied to the gradient
of the perturbations

gravitational acceleration

wavenumber

an empirical constant

mean pressure

perturbation pressure

perturbed quantity
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ri; wave-induced perturbation stress tensor

an empirical constant

Reynolds number

turbulent stress tensor perturbed by wave motion

perturbation rate of strain tensor

time

total velocity in x direction

turbulent velocity fluctuation in x direction

perturbation velocity in « direction

mean velocity in x direction

turbulent velocity fluctuation in y direction

perturbation velocity in z direction

turbulent velocity fluctuation in z direction

distance along the direction of wave propagation

distance along wave crest normal to wave surface

distance normal to mean water surface

an empirical constant

curvilinear coordinate

water surface displacement from mean level

curvilinear coordinate tangent to wave surface

boundary layer thickness (turbulent)

von Karmén’s constant

air density

streamfunction coefficient which is dependent only
onZ

streamfunction

) denotes averaging along v direction

(over bar) denotes averaging along x direction

denotes perturbation coefficient which is depen-
dent only on Z

complex conjugate

R
Re

%
<
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