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Résumé

Les récentes parametrisations utilisées dans les modèles spectraux de vagues offrent des
résultats intéressants en termes de prévision et rejeux des états de mer. Cependant, de
nombreux phénomènes physiques présents dans ces modèles sont encore mal compris et
donc mal modélisés, notamment le terme de dissipation lié au déferlement des vagues. Le
travail présenté dans cette thèse vise dans un premier temps à analyser et critiquer les
paramétrisations existantes de la dissipation, au travers de la modélisation explicite des
propriétés du déferlement sous-jacentes. Du constat de l’échec de ces paramétrisations
à reproduire les observations in situ et satellite du déferlement, une nouvelle méthode
d’observation et d’analyse des déferlements est proposée à l’aide de systèmes de stéréo
vidéo. Cette méthode permet l’observation des déferlements sur des surfaces de mer re-
construites à haute résolution par stéréo triangulation. Ainsi, une méthode complète
de reconstruction des surfaces de mer en présence de vagues déferlantes est proposée et
validée. La détection des vagues déferlantes sur les images et leur reprojection sur les sur-
faces reconstruites est également discutée. Bien que peu d’acquisitions soient disponibles,
les différents paramètres observables grâce à l’utilisation de la stéréo vidéo sont mis en
avant. Ce travail montre l’intérêt des systèmes vidéo stéréo pour une meilleure observation
et compréhension du déferlement des vagues, pour le développement des parametrisations
de la dissipation dans les modèles spectraux de vague.
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Abstract

The recent parameterizations used in spectral wave models provide today interesting re-
sults in terms of forecast and hindcast of the sea states. Nevertheless, many physical
phenomena present in these models are still poorly understood and therefore poorly mod-
eled, in particular the dissipation source term due to breaking. First, the work presented
in this thesis is aimed at analyzing and criticizing the existing parameterizations of the
dissipation through the explicit modeling of the underlying properties of breaking. The
finding of the failure of these parameterizations to reproduce the in situ and satellite
observations, a new method for the observation and the analysis of breaking is proposed
using stereo video systems . This method allows the observation of breaking waves on the
high-resolution stereo-reconstructed sea surfaces. Therefore, a complete method for recon-
struction of the sea surfaces in the presence of breaking waves is proposed and validated.
The detection of breaking waves on the images and their reprojection on reconstructed
surface is also discussed. Although too few acquisitions are available to draw firm results,
an overview of the various observable parameters through the use of stereo video is given.
This work shows the importance of stereo video systems to a better observation and un-
derstanding of the breaking waves, required in order to improve dissipation source term
in spectral wave models.
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Chapter 1

Introduction

The breaking of surface gravity waves is an obvious phenomenon at the air-sea interface.
The main part of the energy transfered from the wind to surface waves is then dissipated
by wave breaking. Wave breaking therefore plays a major role in the limitation of the wave
height. The present thesis envisages breaking waves in the context of wave dissipation,
particularly with the objective to improve the accuracy of spectral wave models used to-
day for marine meteorology and other geophysical applications. After analyzing the actual
parameterizations of breaking-induced dissipation, the work presented here aims to pro-
pose a comprehensive method for the observation of the breaking wave with stereo-video
systems, as well as highlight its potential contribution to future improvements, calibra-
tions, and validations of the breaking parameterizations. We note that wave breaking
also draws attention from scientists as it has profound impacts on other marine and me-
teorological applications. It mixes the water surface layer by the induced near-surface
turbulence (Agrawal et al., 1992; Craig and Banner, 1994; Gemmrich and Farmer, 2004),
generates marine aerosols (Smith et al., 1993), enhances gases and heat transfers (Chan-
son and Cummings, 1992; Melville, 1994), increases the drag of the wing (Banner and
Melville, 1976; Kudryavtsev and Makin, 2001) and strongly affects the remote sensing of
ocean properties (Reul and Chapron, 2003).

Two approaches can then be used to analyze the evolution of the random waves. The
simplest approach is the wave-by-wave analysis, generally applied on sea surface elevation
time series on which individual waves are defined by two consecutive zero up-crossings
or down-crossings. Then, the height, H, and the period, T (or the wavelength, λ) can
be extracted for each individual wave (see Fig. 1.1). The individual wave steepness is
then defined with Hλ. This method is very largely used and numerous statistics can be
found in the literature. It takes note in particular that wave height distribution follows
a well-know Rayleigh distribution. Using wave-by-wave analysis, the global wave height,
H1/3, is usually defined as the average of the one-third of the highest individual waves.
The evolution of H1/3 depends on both the 10m-height wind speed, U10, (or wind stress,
u⋆, which is the shear stress exerted by the wind on the surface) and the wind fetch, D,
which is the distance, in the wind direction, that indicates how far the wind affects the
sea surface (i.e. the wind fetch is the distance over which waves are still growing under
wind action). We nevertheless note that, by construction, this method is not adapted to
the study of smaller waves riding over bigger ones, and should be restricted to the study
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Chapter 1. Introduction

of the dominant waves.
We note here that the Airy wave theory, usually referred to as the linear wave theory,

links the pulsation ω = 2π/T = 2πf to the wavenumber k = 2π/λ with the dispersion
relation

ω2 = gk tanh(kD), (1.1)

where g is the gravity and D is the water. Then, the phase speed is given with

C =
ω

k
, (1.2)

and the group speed, which describes the energy propagation in space, is given by

C =
dω

dk
. (1.3)

A second analysis method considers the wave field in the Fourier space. The wave field
is therefore seen as the quantity of energy linked to the elevation variance distributed over
frequencies (or wavenumbers) and directions. Therefore, real waves are a superposition
of sinusoidal waves, with different frequencies (or wavenumbers), amplitudes and phases.
The shape of the energy wave spectrum gives large amounts of information over the
statistical parameters of the wave field. It is in particular possible to distinguish the
local wind sea generated by local wind from possible swell(s) corresponding to regular
longer period waves that were generated by winds of distant weather systems. Typically,
spectral analysis is advised to study real wave fields, which are generally a combination
of several wave systems. Figure 1.2 shows the decomposition of the sea surface variance
E over frequencies f . The shape of the spectrum clearly expose the presence of swell,
with a peak frequency at f = 0.15Hz and a developing wind sea with a peak frequency
at f = 0.38Hz. The significant wave height is here defined with

Hsig = 4
√
E with E =

∫

∞

0

E(f)df. (1.4)

Note that here E is the variance of the surface elevation, and the factor 4 was defined such
that Hsig is in line with H1/3. Using the spectral analysis, we can also define a significant
wave height for each wave system (see Fig. 1.2). Analysis of the wave field can also be
done in the directional Fourier space. Variance is thus distributed over both frequencies
and direction. Figure 1.3 shows the representation of a wave field in the directional Fourier
space.

Introducing spectral wave models, Gelci et al. (1957) greatly improved the wave fore-
casting. Spectral wave models, including the model WAVEWATCH IIIR©used in this work,
compute the evolution of the energy wave spectrum over frequencies (or wavenumbers)
and directions. Note that the phase of the waves is not resolved in these models, so-called
phase-averaged models. Waves from each spectral component are supposed to evolve
freely, following the Airy wave theory. The evolution of the wave energy spectrum along
time and space is mainly driven in spectral models by the spatial energy propagation, the
input from the wind, the non-linear wave-wave interaction which causes transfers among
spectral components and the dissipation due to wave breaking. Numerous other phenom-
ena can also be added to wave models, such as the dissipation due to bottom friction
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or refraction due to the coast. Some of these additional phenomena are discussed in the
chapter 2.

Considering free wave evolving, spectral wave models are well suited to represent the
wave energy propagation, which well follows the Airy wave theory. Nevertheless, we
note that real waves are not linear, and wave field evolution is largely driven by non-
linear phenomena. Wave-wave interactions are weakly non-linear phenomena and can be
resolved in spectral wave models. Nevertheless, the phase-averaged models are not well
adapted to resolve highly non-linear phenomena such as wave growing and wave breaking.
These essential terms must therefore be statistically parametrized.

When wind blows over a flat water surface, friction at the air-water interface exerts
forces on the surface, resulting in its deformation. Thus, the excess of free surface tension
caused by the sea surface deformation compensates the wind induced forces. Wind being
strongly turbulent, the pressure field (i.e. the force field) is not uniform over the flat
sea surface and random capillarity waves, also called ripples, appears on the sea surface.
With wavelengths of few millimeters, these ripples are fully driven by the effects of the
surface tension. If the wind stops, they quickly die, their energy being absorbed by viscous
dissipation. On the contrary, if the wind is still blowing, a resonant interaction between
waves and ripples develops, resulting in the growth of ripples. The mechanism of wave
growing is still misunderstood, particularly at small scale. It is evident that in the air-
sea boundary layer, air flow and sea surface influence each other permanently, resulting
in a strongly non-linear system. Many theories were however proposed to explain the
wave generation by the wind (Jeffreys, 1925; Belcher and Hunt, 1993; Miles, 1957, 1962;
Phillips, 1957), but no details are given in this work.

Then non-linear phenomena occur. The first phenomenon explains the displacement
of the spectral energy to the highest frequency such that wind can create waves with
phase speed Cp, higher than its own speed. In simple words, two wave trains can interact
and create a third one. This phenomenon was confirmed by experimental results and
two main theories were proposed by Hasselmann (1960, 1962) and Zakharov (1968), but
not yet fully validated. Details are not given in this work, but we note, however, that
these nonlinear effects imply perpetual energy transfers between spectral components. No
details will be given in this work.

The present thesis focuses on wave breaking, which represent the main wave energy
dissipation. Figure 1.4 gives the geometry of a breaking wave, with the notations used
in the thesis. ~Ccrest is the speed of water particles at the crest. λ is the wavelength of
the breaker. Λb is the length of breaking front, LA is the average length of front side of
the wave covered by the active breaking1 and δ is the average thickness of the foam. We
obtain the individual whitecap coverage Wb such that

Wb = ΛbLA, (1.5)

and mean foam thickness of an individual breaking wave, ∆b, is

∆b = ΛbLAδ. (1.6)

1Due to the lifetime of the creates bubbles, foam can remain at the surface behind the breaking crest.
Such a residual foam is usually referred to passive foam, in contrast to active foam due to active breaking.
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Subsequently, we will use the density Λ (breaking crest length density), W (whitecap
coverage), ∆ (mean foam thickness), which represents the total quantities (sum over all
waves) per unit area such that

Λ =
1

S

Nb
∑

1

Λb (1.7)

W =
1

S

Nb
∑

1

Wb (1.8)

∆ =
1

S

Nb
∑

1

∆b (1.9)

where Nb are the number of breaking waves in the surface S.
Generally, in people’s minds, wave breaking is associated with the depth-induced

breaking occurring at the coastline (Fig. 1.5). Depth-induced breaking is not the main
topic of this work but is now succinctly described. Reaching the shoreline, water depth
decreases and waves feel the bottom. While water depth is not critical, bottom friction
dissipates wave energy and the wave height decreases. Entering shallower water (typically
when the water depth becomes less than about half the wavelength), the wavelength is
reduced while the frequency remains constant, and the group speed slows down. As the
energy flux must remain constant, the group speed decrease is compensated by an increase
in the wave height (and thus an increase in the wave energy density). Both the reduction
of the wavelength and the increase of the wave height give waves more and more steep-
ness. Non-linear harmonics also develop and make wave crests even more steep. Then,
waves become unstable and break. The most famous criterion for depth-induced breaking
is the Miche criterion which determines the onset breaking when the wave height is equal
to 88% of the water depth. Numerous studies focus on the depth-induced breaking and
showed that such a simple criterion is not sufficient (Raubenheimer et al., 1996; Ruessink
et al., 2003; Battjes, 1974a,b; Sénéchal et al., 2001). Nevertheless, we note that Miche-
like criterion is still widely used for the parameterization of depth-induced wave breaking
in numerical models. If depth-induced breaking is an important phenomenon for swell
waves, the major dissipation due to wave breaking occurs in deep water. Indeed, a large
part of the wave energy coming from wind is quickly dissipated by deep-water breaking.

Deep-water breaking is usually called whitecapping due to the white foam patches
created by breaking waves (Fig. 1.6). Wave breaking results from an instability which
develops from the wave crest. First efforts were done to relate the breaking criterion
to a steepness threshold of the breaking wave, as defined by the wave-by-wave analysis.
However, from their observations, Holthuijsen and Herbers (1986) showed that such a
criterion cannot be used because of the large overlap observed between breaking and non-
breaking wave steepnesses. Actually, the local steepness at the crest is a criterion for
breaking, but it generally cannot be obtained from wave-by-wave analysis, which does
not take into account the smaller waves riding at the crest of the bigger ones. Indeed, the
local steepness at the wave crest of breaking is strongly influenced by the smaller riding
waves. Further efforts were focused on the relationship between breaking statistics and
the wind forcing. It was however shown that breaking statistics depend on the sea state
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development (i.e. on the wave age). In particular, Gemmrich et al. (2008) observed that
breaking concerns a large range of phase speed, from dominant waves to smaller wave scale
in young wind sea whereas it concerns only waves with phase speed less than half of the
phase speed of dominant waves for well developed wind sea. Moreover, Banner et al. (2000)
showed that wind effects can become secondary for dominant waves in developed wave
fields. Further, the kinematic criterion was also investigated to explain wave breaking.
Wave breaking occurs when water particle velocity at the wave crest ucrest becomes higher
than the wave phase speed C. Furthermore, Stansell and MacFarlane (2002) showed that
waves become instable and inevitably evolve towards breaking for crest particle speed
ucrest below C. Therefore, wave stability criterion is exceeded before irreversible breaking
process yet starts (Babanin et al., 2007). The major advantage of a kinematic criterion is
the consideration of the growing non-linearities which cause the wave instability (Tanaka,
1983). Numerous authors have also displayed interest in the the non-linear effects of the
long waves on the breaking of the shorter ones. Indeed, the passage of long wave under
the smaller ones induces hydrodynamical modulations, resulting in the acceleration of
smaller riding waves which may evolve to breaking (Unna, 1947; Stewart, 1960; Longuet-
Higgins, 1978; Dulov et al., 2002, among others). The role of non-linear features, resulting
typically in wave asymmetry and wave skewness, in the emergence of crest instability was
also highlighted by Caulliez (2002).

From an energetic point of view, sea surface assimilates wind energy increasing its
surfaces (i.e. generating waves) until the exceeding energy is released by breaking waves
(Newell and Zakharov, 1992). We note that breaking waves are local phenomena and can
so be related to local energy exceedings. This effect is particularly highlighted by the
correlation observed between wave groupiness and wave breaking (Donelan et al., 1972;
Holthuijsen and Herbers, 1986). Breaking is observed at the crest of the highest waves
of the group, where the energies from the different spectral components converge. This
energy convergence was further inquired as the main predictor of breaking (Banner and
Tian, 1998; Tulin and Waseda, 1999; Song and Banner, 2002; Banner and Song, 2002).
We note that, in laboratories, investigators can create waves that converge and break in
a predicted location.

The thesis opens with the chapter 2 dedicated to a discussion and the adjustment
of the parameterizations for the spectral evolution associated with wave breaking. We
highlight that breaking waves are highly non-linear phenomena where phase relations
between spectral components play a major role. This is difficult to reconcile with phase-
average wave models, and observations of individual breaking are difficult to link to the
spectral dissipation due to wave breaking needed in spectral wave models. Hence, early
concepts, such as proposed by Hasselmann (1974), have little relation with measurable
quantities. Nevertheless, despite the fact that breaking waves are small local phenomena,
a-priori non predictive, their statistics averaged over time and space should be related
to wave spectrum. This link between spectra and time-averaged observable properties
of breaking waves followed the analysis of Phillips (1984). He proposed the idea of a
linearized dissipation rate, and gave a theoretical framework built around a measurable
quantity: the length of breaking wave fronts and their distributions across displacement
velocities. Then, Melville and Matusov (2002) proposed wave breaking measurements
using aerial imaging, and provided a statistical description of related sea-surface processes.
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They found that the distribution of the breaking front lengths per unit area on the sea
surface is proportional to the cube of the wind speed. They also showed that the fraction of
the ocean surface mixed by breaking waves is dominated by wave breaking at low velocities
and short wavelengths, consistently with the Phillips (1984)’s theory. Furthermore, the
video observations of Gemmrich et al. (2008) showed that the distribution of breaking
crest length density peaks at intermediate wave scales and drops off sharply at larger
and smaller scales. Similar distribution were found in other observations (Gemmrich and
Farmer, 2004; Mironov and Dulov, 2008; Thomson and Jessup, 2008). This drop off at
small scale is not explained by the Phillips (1984)’s theory which proposes an increasing
dissipation at smaller scale.

Simultaneously, the breaking-induced dissipation of wave energy was studied with a
numerical approach in spectral wave models (Alves et al., 2003; van der Westhuysen et al.,
2005; Ardhuin et al., 2009; Banner and Morison, 2010; Rogers et al., 2012). These model
developments, discussed in the introduction of the chapter 2, showed the increasing need
of dissipation with smaller wave scales. Supported by the observations of Banner et al.
(1989), these developments lead to the idea that the dissipation of wave energy at a given
scale was not only related to the breaking of these same waves, but also to the breaking
of waves at larger scales. This so-called ”cumulative effect” is necessary to reproduce the
observed shapes of spectra (Banner and Morison, 2010).

My work takes up the work developed by Filipot and Ardhuin (2012) who initiated
a seamless treatment of wave breaking from deep to shallow water. In particular, I have
investigated the modification of their parameterization to make the breaking probabili-
ties used for the dissipation term linked to the breakers themselves consistent with the
associated cumulative term. The parameterization of Filipot and Ardhuin (2012), used
operationally at NOAA/NCEP for the Great Lakes since 2013 because of its better per-
formance at short fetches is analyzed and compared to the parameterization of Ardhuin
et al. (2010), used for operational ocean wave forecasting at NOAA/NCEP since May
2012 for the global ocean. In these recent parameterizations, whitecap occurrence has
been related to the steepness of the waves, respectively through the unidirectional wave
scale analysis of Filipot et al. (2010) and the observations on saturation spectra of Banner
et al. (2000) and Banner et al. (2002). Banner and Morison (2010) showed that an ex-
plicit modeling of whitecap properties provides a new constraint on the model dissipation
source terms. Nevertheless, there parameterizations have seldom been verified in terms of
whitecap properties. In this work, an explicit modeling of the breaking wave front length
distribution over phase speed is proposed and compared to the in situ observations of
Gemmrich and Farmer (2004).

Because of its strong influence on electromagnetic measurements and air-sea gas ex-
changes, the whitecap coverage was also investigated in many studies (Monahan and
Woolf, 1989; Hanson and Phillips, 1999; Reul and Chapron, 2003, among others). Many
investigations have resulted in relationships between the whitecap coverage and the wind
speed at 10m above the sea surface. This relationship was used more than one century
before with the famous Beaufort scale which evaluates the wind speed from whitecap
coverage for higher degrees. We note that most of the whitecap coverage used for the
correction of the satellite measurements are still today only estimated from the wind
speed despite of the large disparity between the published empirical relationships fitted
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on different observations (see Fig. 1.7, extracted from Anguelova and Webster (2006)).
This large variability have been related to environmental and meteorological factors such
as air-sea temperature difference, water salinity, or even biological water content, which
directly influence surface tension, and to sea state (Monahan and Muircheart, 1981; Ban-
ner et al., 2000; Gemmrich et al., 2008). Anguelova and Webster (2006) highlighted the
necessity to build an extensive database of whitecap coverage at large scale to investigate
the large variability of the observations and proposed to retrieve whitecap coverage at
large scale from the satellite-measured brightness temperature. Using the model of foam
persistence of Reul and Chapron (2003), a modeling of the whitecap coverage and the
mean foam thickness related to the dissipation term are also investigated and compared
to the satellite observation database of Anguelova et al. (2009).

This effort on the numerical modeling capabilities highlighted the need of an observa-
tion processing able of analyzing the breaking at the scale of the single breaking waves. It
also emphasizes the necessity of global-scale validation using well suited proxies for wave
breaking parameters derived from remote sensing as proposed by Anguelova and Webster
(2006) and the recent work of Reul et al. (2006). This remote sensing aspect is briefly
investigated in chapter 2, but will require further work. The detailed measurements of
turbulent dissipation rates below breaking waves have been studied elsewhere (Terray
et al., 1996; Gemmrich et al., 2008; Thomson et al., 2009, among others). Here we focus
on the shape of breaking waves and the relation of breaking events to the evolving shape
of waves, based on stereo-video imagery.

The modern quantitative investigation of ocean waves started with stereo-photographic
measurements, such as performed during the Meteor expedition in the 1930s (Dankert
et al., 1939). The shift to a spectral method for the analysis of ocean waves also started
with stereo measurements done during the Stereo Wave Observation Project (Chase et al.,
1957; Cote et al., 1960). Later, Banner et al. (1989) also used the stereo-photography for
the measurement of the spectrum directionality. Recently, with the development of the
numerical photography and video, some investigators involved themselves in wave mea-
surements from stereo observations (Kosnik and Dulov, 2011) or stereo-video (Benetazzo,
2006; Gallego et al., 2008). Nevertheless, the stereo video observation was never used to
observe and quantify the breaking. Therefore, chapter 3 proposes a method to reconstruct
the sea surface in presence of breaking waves, with enough accuracy for the further study
of the breaking.

Wave breaking is a complex non-linear process including various intensive physical
phenomena. The wave breaking event is usually split into two parts. The first one is
the active breaking. It results from an instability which develops from the wave crest,
when water particle velocities exceed wave phase speed (i.e. when the wave crest goes
faster than the wave itself). The wave crest thus collapses on the front size of the wave,
resulting in wave energy dissipation. Then, due to the lifetime of the bubble, the foam
can remain on the sea surface a long time after the active breaking ends. This passive
foam, in contrast with active foam produced by active crest breaking, does not imply
wave dissipation, and the foam persistence is not investigated in this work.

The breaking phenomenon occurs at all wave scales once they are energetic enough.
At microwave scale, breaking occurs without air entrainment. Nevertheless, the labora-
tory measurements of Jessup et al. (1997) show that micro-scale wave breaking associated
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with evolving wind waves disturbs the thermal boundary layer at the air-water interface,
producing signatures that can be detected with infrared imagery. Their laboratory ob-
servations, under the moderate wind speed conditions, showed a substantial frequency of
occurrence and an important areal coverage of the phenomenon. Therefore, micro-scale
breaking is undoubtedly widespread over the oceans and may prove to be a significant
mechanism for enhancing the transfer of heat and gas across the air-sea interface. These
microwave scales are not resolved in the global ocean spectral wave model, and microwave
breaking is not studied in this work.

We here focus on longer breaking waves as modeled in spectral wave model. These
waves, more energetic, are attended with air entrainment and bubble formation. The
formation of foam needs a large quantity of energy, corresponding to the surface tension
multiplied by surface excess. Thus, when breaking waves are energetic enough, they
generate white bubble clouds which contrast with the darker sea surface, and are so
called whitecaps. This signature in the visible frequency spectrum makes the phenomenon
easily observable. The chapter 4 proposed a method to detect and discriminate active
and passive foam on the images taken by the stereo video system inspired by the work
of Mironov and Dulov (2008). By re-projecting the detected events on the reconstructed
surfaces, this allows to analyze the breaking at the scale of the single breaking waves. A
first analysis of the observations is provided.

The present thesis aims to improve on the wave spectral models, in particular with the
development of dissipation parameterizations that better link to the wave breaking. Thus,
my work in the next chapter provides a comprehensive analysis of the existing dissipation
parameterizations through their implicit breaking properties. Despite the fact that these
recent parameterizations are built on wave breaking observations, this chapter points out
the failures of these parameterizations to produce model results, in terms of breaking
properties, in line the observations. These current parameterizations make numerous un-
certain assumptions due to the lack of accurate observations able to investigate them.
The following chapters thus propose a first step for the future improvement of dissipation
parameterizations. The recent wave studies have shown the potential of the stereo-video
systems for sea-wave statistical investigations. Chapter 3 is dedicated to the improve-
ment of the stereo-video analysis for the observation of individual waves. Validated using
a large range of sea-wave parameters, the developed method, shows the potential of the
stereo video observations for investigations at the scale of single waves. My work finally
focuses with chapter 4 on the application of stereo-video observation to breaking analy-
sis. Providing the full accurate 4D time-space evolution of the individual breaking waves,
the stereo video observations open to a new world of information. Although the present
work does not yet provide an improvement of the dissipation parameterization, it demon-
strates the potential of these observations for the future improvements, calibrations, and
validations of the breaking parameterizations in spectral models, as well as for a better
understanding of the breaking phenomenon itself.
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Figure 1.1: Illustration of wave-by-wave analysis for a sea surface elevation time series
obtained from capacitance wave gauge in the Black Sea on 1/10/2013. The wave field
is composed only by a developing wind sea. Top panel: Measured sea surface elevation
(blue line) and decomposition into individual waves using zero down-crossing method
(red circle). Hi and Ti respectively represent the wave height and the wave period of
the individual wave i. Lower panels : Probability Density Function of wave height H
(left) and wave period T (right). Red dashed line represent the Rayleight distribution
that describes the statistical distribution of the individual wave heights for linear gaussian
waves and stationary sea state. The average of the one-third of highest individual waves
is H1/3 = 0.24 m.
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Figure 1.2: Frequency analysis of a sea surface elevation time series obtained from capac-
itance wave gauge in the Black Sea on 3/10/2013. The wave field is composed by both
variance from the developing wind sea (right part of the spectrum) and from swell wave
(left part of the spectrum).
The global significant wave height is:

Hsig = 4
√

∫

∞

0
E(f)df = 0.35m.

The significant wave height of swell waves is:

Hsig,swell = 4
√

∫ 0.23

0
E(f)df = 0.12m.

The significant wave height of wind sea waves is:

Hsig,wind sea = 4
√

∫

∞

0.23
E(f)df = 0.33m.
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Figure 1.3: Typical example of directional frequency wave spectrum in the tropical zone,
measured with buoy 51001, 350km north-west of Kauai island, on January, 11th 2007.

Figure 1.4: Sketch showing the features of a spilling breaker. The waves is moving from
left to right and has a whitecap on its forward face. The figure is extracted from Reul
and Chapron (2003), the notation are modified to agree the present thesis.
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Figure 1.5: Typical example of depth-induced wave breaking occurring on sandy beach
of the Atlantic French coast (La Piste, Capbreton).

Figure 1.6: Picture of deep-water wave breaking taken by the author from a boat off the
north coast of Bretagne.
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Figure 1.7: Various published wind-driven whitecap coverage formula. Figure extracted
from Anguelova and Webster (2006).
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Chapter 2

Wave breaking parameterization and
whitecap properties modeling

Note

The major part of the results presented in this chapter have been published in the journal
Ocean Modelling in October 2013 (Leckler et al., 2013).

2.1 Introduction

Phase-averaged wave models consider the spectral decomposition of the sea surface eleva-
tion across wavenumbers k (or frequencies f) and directions θ at point (x, y) and time t.
The evolution of spectral density F (k, θ, x, y, t) is resolved using the wave energy balance
equation proposed by Gelci et al. (1957):

dF

dt
= Satm + Snl + Soc + Sbt + ... (2.1)

where the Lagrangian derivative of spectral density on the left-hand side includes the local
time evolution and advection in both physical and spectral spaces (e.g. WISE Group,
2007). The source terms on the right-hand side include an atmospheric source term Satm

which includes the classical input of energy Sin from wind to waves, and the energy output
Sout from waves to wind1, associated with friction at air-sea interface (Ardhuin et al.,
2009). The nonlinear source term Snl represents energy transfers in the spectral domain
due to wave-wave interactions. Sbt is the sink of energy due to bottom friction. Other
effects may also be included (WISE Group, 2007). Finally, the oceanic source term Soc,
usually negative, represents dissipation due to wave breaking, Sbk, and wave-turbulence
interactions, Sturb (e.g. Ardhuin and Jenkins, 2006). The latter effect will be ignored here,
because it typically represents at most a 10% fraction of the breaking-induced dissipation
(Rascle et al., 2008; Kantha et al., 2009), and here we focus on wave breaking. The

1The transfer of energy from waves to wind (Sout) is responsible for the swell dissipation over long
distances. A modification of the formulation of Ardhuin et al. (2010) is provided in paragraph 2.2.2.
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Chapter 2. Wave breaking modeling

goal of the present chapter is to evaluate the ability of the breaking-induced dissipation
parameterization to model the associated whitecap properties.

Early parameterizations of dissipation were adjusted to close the energy balance of
waves, with no explicit link to breaking and dissipation observations. This, in particular,
was the basis of the parameterizations of Komen et al. (1984). Following Hasselmann
(1974), they proposed a dissipation quasi-linear in the wave spectrum adjusted on Pierson-
Moskowitz spectrum (Pierson and Moskowitz, 1964) such that

Soc(k, θ) = Sds(k, θ) = −ψd(k)F (k, θ), (2.2)

with ψd depends only on the wavenumber and integrated parameters. Various forms had
been proposed for the quasi-linear coefficient ψd. One of the most successful forms of ψd,
used for a long time as dissipation source term in WAM, was proposed by Komen et al.
(1994)

ψd(k) = −Cds

(

α̂

α̂PM

)m
[

(1− δ)
k

k
+ δ

(

k

k

)n/2

ω

]

, (2.3)

where α̂ = Etotk
2
is an integral steepness parameter, α̂PM = 4.57 10−3 is the integrated

steepness of a fully developed PiersonMoskowitz spectrum (Pierson and Moskowitz, 1964),
k is the mean wavenumber, ω is the mean angular frequency, δ is a weighting factor that
controls the magnitude of linear and quadratic functions of the ratio k/k and Etot is the
total wave energy obtained by integrating the directional wavenumber spectrum F (k, θ).
δ, n and m are tuning parameters. We note that this dissipation aims to produce spectra
close to the empirical PiersonMoskowitz spectrum, and not to reproduce dissipation due
to wave breaking.

Thereafter, following Phillips (1984)’s analysis, breaking probabilities have been re-
lated to the nondimensionals saturation spectrum B,

B(k) = k3 F (k) = k3
∫ π

−π

F (k, θ)dθ. (2.4)

This approach was extended to the parametrization of breaking probabilities for dominant
waves (Banner et al., 2000). In particular, it was found that breaking probabilities become
significant when the saturation exceeds a constant threshold Br. A similar threshold may
also be applied to waves shorter than the dominant waves (Banner et al., 2002).

A preliminary modeling effort based on these observations was made by Alves and
Banner (2003) who modified the Komen et al. (1994) dissipation to include a further
dependence on the ratio B(k, θ)/Br, such that

Sds(k, θ) = −Cds

[

B(k)

Br

]p/2
(

Etotk
2
p

)m
(

k

k

)n

ωF (k, θ), (2.5)

where B(k) is the local saturation parameter defined by equation 2.4, (Etotk
2
p) is an

integral spectral steepness parameter, with kp is the peak wavenumber. Following Banner
et al. (2002), wave breaking occurs when B(k) > Br, and whitecapping dissipation should
become negligible. Nevertheless, to take in account for the other dissipation processes
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(straining of shorter waves and waveturbulence interactions), they assumed that term
[B(k)/Br]

p/2 asymptotically approaches unity instead of zero with

p =
p0
2

+
p0
2
tanh

(

10

{

[

B(k)

Br

]1/2

− 1

})

(2.6)

Therefore, we note that the primary dissipation mechanism is supplemented with two mul-
tiplication factors A = (Etotk

2
p)
m and B = (k/k)n, inherited from Komen et al. (1994)’s

parameterisation, in order to represent dissipation due to general background turbulence.
The threshold saturation level Br and the coefficient Cds and p0, m and n are constants
determined numerically to provide modeled spectra which match the observations. From
numerical tuning, they obtained Br about double of the thershold saturation found from
observations by Banner et al. (2002). Furthermore, numerically found high value of p0
implies a dependence of dissipation on the variance density of up to a power of 5, diffi-
cult to reconsile with the conventional wind input expression (van der Westhuysen et al.,
2007).

Considering this, van der Westhuysen et al. (2007) built another parameterization,
implemented in SWAN, where the dissipation rate is a function of B(k, θ)/Br to a power
that varies with the wave age. They also remove removed the multiplication factors A and
B considering that general background turbulence cannot be simplified to a simple multi-
plication factor but must be considered as an independent additional source term. They
proposed a whitecapping dissipation in frequency space2, except for saturation parameter
B kept in wavenumber space, such that

Sds(σ, θ) = −Cds

[

B(k)

Br

]p/2

σE(σ, θ), (2.7)

where exponent p is a function of the wave age which scales it from 4 to 2, taking into
consideration the balance with the wind input (see details on appendix A in van der
Westhuysen et al. (2007)).

That type of dependency to wave age was then abandoned in the recent parameteri-
zations by Banner and Morison (2010), Ardhuin et al. (2010), and Babanin et al. (2010).
Ardhuin et al. (2010) introduced a directional dependence of the dissipation rate, with
much strong dissipation in the mean direction, consistent with observed higher proba-
bilities of breaking waves propagating in the mean direction (Mironov and Dulov, 2008).
Conversly, the parameterization by Babanin et al. (2010) assumes a stronger dissipation in
oblique directions. More importantly these last three parameterizations also include some
suppression of the short wave energy due to the breaking of longer waves. This so-called
cumulative effect is consistent with many observations (Banner et al., 1989; Melville et al.,
2002; Young and Babanin, 2006).

In his analysis, Phillips (1984) had warned that the use of the saturation spectrum was
only meaningful if the spectrum was relatively smooth. Indeed, monochromatic waves of
very small amplitude have an infinite saturation level but do not produce any breaking.
The saturation-based parameterization of Ardhuin et al. (2010), hereinafter referred to as

2The model SWAN resolves the wave energy balance equation (Eq. 2.1) in frequency space.
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TEST4513, does not use a smoothed saturation spectrum. In practice the wave spectrum
is most saturated at the peak of the wind sea. As a result, that parameterization gives
an abnormal lower dissipation rate on frequencies just above the peak, which is difficult
to reconcile with the relatively broad spectral signature expected from the short lifetime
of each breaking event. For this reason, Banner and Morison (2010) use a smoothed
saturation spectrum.

A different smoothing procedure is used in the parameterization by Filipot and Ard-
huin (2012), hereinafter referred to as TEST500. They defined wave steepnesses for
different scales based on a moving-window integration of the spectrum. This parame-
terization has two benefits. Firstly, it allows the estimation of breaking probabilities for
different scales, in a way consistent with observations (Filipot et al., 2010). Secondly, it
provides a natural way of combining deep and shallow water breaking in a single formu-
lation, extending the work of Thornton and Guza (1983) and Chawla and Kirby (2002).
One inconsistency of TEST500 is that it uses the cumulative effect of Ardhuin et al.
(2010) which is based on different breaking probabilities. For this reason a modification
of TEST500 is proposed. Parameters for all parameterizations discussed in this chapter
are given in table 2.1 in paragraph 2.2.4.

Furthermore, mixing air into water, breaking waves form clouds of bubbles beneath
the sea surface and foamy patches on the surface. This surface signature makes breaking
easily observable with simple visible video or photo camera (Mironov and Dulov, 2008;
Thomson and Jessup, 2008; Kleiss and Melville, 2011). The video observations collected
at small scales, traditionally from research platforms, ships, or aircraft give information
about breaking probability and breaking crest length density as functions of wavenumber
(or wave scale). Another source of whitecap measurement is given by the very clear
signature of bubbles and foam on the emissivity and brightness of sea surface temperature
(Droppleman, 1970). This property was particularly exploited by Anguelova and Webster
(2006). Using satellite radiometric measurements, they gave the first global dataset of
whitecap coverage.

Many investigations have resulted in relationships between the whitecap coverage and
the wind speed at 10m above the sea surface, U10. These relationships exhibit a large
variability which cannot be predicted only with the wind speed. Although the measure-
ment conditions, in particular the view geometry and lighting conditions are an inherent
source of scatter in video measurements, there are also environmental and meteorologi-
cal factors besides the wind speed that may explain some of this scatter. These include
air-sea temperature difference ∆T , water salinity, but also sea state parameters such as
the significant wave height Hs or wave age (Monahan and Muircheart, 1981). Indeed,
Hanson and Phillips (1999) found that observed wave age explained a large part of the
scatter in the whitecap coverage measurements that they analyzed. Recent measurement
campaigns have focused on the estimation of the spectral distribution of breaking crest
lengths, introduced by Phillips (1985). Banner and Morison (2010) have shown that their
parameterization of wave dissipation was indeed able of reproducing the variability in
dominant breaking wave crest lengths. In order to investigate the general applicability

3Compared to the version TEST441b described in that paper, we have introduced a minor swell
dissipation modification described in paragraph 2.2.2. This modification has no impact on the breaking
statistics.
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2.2 Investigated dissipation parameterizations

of our wave model for such a task, we confront here our model to the global radiometric
data of Anguelova et al. (2009).

In section 2.2 the two parameterizations by Ardhuin et al. (2010) and Filipot and
Ardhuin (2012) are fully described, with a minor update to the latter to make the cumu-
lative effect consistent. This updated parameterization is called TEST570. The resulting
dissipation and breaking crest length density are analyzed in section 2.3 with an academic
test case and an hindcast of the SHOWEX experiment. In the next section, we interpret
whitecap coverage W and mean foam thickness ∆ compared to radiometer data over the
world ocean. Conclusions and perspectives follow in section 2.5.

2.2 Investigated dissipation parameterizations

From now on, we focus the investigation on the parameterizations by Ardhuin et al.
(2010), used for operational ocean wave forecasting at NOAA/NCEP since May 2012,
and the parameterizations by Filipot and Ardhuin (2012), now used operationally at
NOAA/NCEP for the Great Lakes since 2013, because of their better performance at
short fetches. Results with the parameterization of Bidlot et al. (2005) (hereinafter BJA)
are given as references, because this parameterization has been used operationally at
European Center for Medium-Range Weather Forecasts (hereinafter ECMWF) since 2005,
with a few minor adjustments (Bidlot, 2012). However, this parameterization is not
investigated because of its poor link to breaking and dissipation observations.

2.2.1 Description of the parameterizations

The two parameterizations by Ardhuin et al. (2010) and Filipot and Ardhuin (2012) here
investigated split the swell dissipation and the dissipation of the wind-sea into independant
negative source terms, Sout and Sbk. As stated in the introduction, the swell dissipation
due to air-sea friction is add to the wind input in the atmospheric source term such that

Satm = Sin + Sout (2.8)

and the oceanic source term includes the dissipation due to wave breaking and wave-
turbulence interactions, such that

Soc = Sbk + Sturb. (2.9)

Following observations by Banner et al. (1989), Melville et al. (2002), and Young and
Babanin (2006), both parameterizations split the wave breaking dissipation source term
Sbk into a spontaneous dissipation source term Sbk,sp due to wave crest collapsing and
another source term Sbk,cu which represents the dissipation of the shorter underlying
waves wiped out by the larger breaking waves (cumulative effect). Therefore, the wave
breaking source terms is

Sbk = Sbk,sp + Sbk,cu. (2.10)
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Figure 2.1: Picture of deep-water wave breaking taken by the author from a boat off the
north coast of Bretagne. Before the passage of the breaking front, sea surface is covered
by ripples waves whereas, in the breaking front wake, sea surface is smoothed. Same
process is observed for all wave scales.

The cumulative effect can be observed on the photograph 2.1. We note that, by definition,
these two source terms should depend on the same breaking quantities, in particular the
breaking probability.

Ardhuin et al. (2010) defined4 a directional saturation spectrum B′(k, θ), partially
integrated over directions between θ −∆θ and θ +∆θ,

B′(k, θ) =

∫ θ+∆θ

θ−∆θ

k3 cos2(θ − θ′)F (k, θ′)dθ′, (2.11)

with ∆θ = 80◦. This directional sector of plus or minus 80◦, combined with the cosine-
square weighting is there to limit the integration of wave trains that actually have enough
time to merge together so that individual waves can evolve to breaking (e.g. Banner and
Tian, 1998). Because the high frequency gravity waves are generally distributed more
broadly over directions, this parameterization also reduces the breaking probability at
high frequencies, in a way similar to the directional normalization used by Banner and
Morison (2010) or Rogers et al. (2012). Varying ∆θ = 80◦ from 50 to 120◦ has very little
influence on the model results. This reduction of breaking probability with directional
spreading is also consistent with a smaller whitecap coverage in crossing seas (Holthuijsen
et al., 2012), although the physical processes involved may be different.

The actual estimation of the dissipation induced by spontaneous breaking Sbk,sp is
a weighted average of a dissipation given by the directional saturation B′(k, θ) and an
isotropic dissipation given by the non-directional saturation spectrum B(k), such that

B(k) = max{B′(k, θ′), θ′ ∈ [0, 2π]}. (2.12)

Therefore, they proposed a spontaneous breaking dissipation source term

Sbk,sp = σ
Cds

B2
r

(

δdmax[
√

B(k, θ)−
√
Br, 0]

2 +

(1− δd)max[
√

B′(k, θ)−
√
Br, 0]

2

)

F (k, θ). (2.13)

4We corrected the typographic error in equation (12) of Ardhuin et al. (2010) by removing the erro-
neous factor df/dk = Cg/(2π).
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This combination of B′(k, θ) and B(k) allowed a control of the dissipation direction-
ality. δd was adjusted to reproduce observed directional spreads, and also provided good
estimates of the energy levels in opposing wave directions (Ardhuin and Roland, 2012).

For the cumulative dissipation, the breaking probability is estimated from the direc-
tional saturation spectrum B′, extrapolating the empirical expression given by Banner
et al. (2000) for dominant waves on the entire spectrum, and assuming that for the dom-
inant waves the steepness is given by B′/1.6. This gives a spectral breaking probability
Pb

Pb(k, θ) = 28.4max[
√

B′(k, θ)−
√

Br, 0]
2. (2.14)

For each breaking wave with phase speed Cb, relative crest velocities of underlying
short waves are defined by ∆C = |C−Cb|. Then, the dissipation rate due to cumulative
effect is simply defined by the rate of passage of the long breaking waves over the short
underlying waves ∆C Λ(C) dC where Λ(C) dC is the breaking crests length density of
wave with phase speed in range [C,C+dC] introduced by Phillips (1985). Λ(k, θ) dk dθ
is estimated using the length density of crest (breaking or not) l(k, θ) ≃ 1/(2π2) (defined
by Ardhuin et al., 2010) with

Λ(k, θ) = Pb(k, θ) l(k, θ). (2.15)

This yields the cumulative dissipation

Sbk,cu(k, θ) = CcuF (k, θ)

∫

k′<r2cuk

∫ 2π

0

∆CΛ(k
′, θ)dθdk′, (2.16)

where rcu defines the maximum ratio between the frequency of the underlying waves wiped
out by the breaker and the breaker frequency. This whitecapping dissipation added to
the wind-wave generation and swell dissipation is called TEST441b and is fully described
by Ardhuin et al. (2010). A minor adjustment of the swell dissipation is described in
paragraph 2.2.2, giving a parameterization TEST451.

The parameterization of Filipot and Ardhuin (2012) is built on the Breaking Wave
Height Distribution (hereinafter BWHD) per wave scale, as parameterized by Filipot et al.
(2010). As stated in the introduction, Filipot and Ardhuin (2012) filtered the spectrum
E(k) with a sliding rectangular windows Rfi , similar to the range used used by Banner
et al. (2000), such that

Rfi(f) =

{

1 if 0.7fi < f < 1.3fi

0 elsewhere.
(2.17)

Then for each wave scale fi, wave steepness is defined from representative wave height
Hfi and mean wavenumber kfi , with

Hfi =
4√
2

√

Efi (2.18)

and

kfi =

∫

∞

0
Rfi(f)k(f)E(f)df

Efi
, (2.19)
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with

Efi =

∫

∞

0

Rfi(f)E(f)df. (2.20)

Following Thornton and Guza (1983), the BWHD is given in each wave scale fi by the
product of the Rayleigh distribution of wave heights (breaking or not) PR,fi times a weight
function W . Filipot and Ardhuin (2012) used the weight function WFAB introduced and
fully described by Filipot et al. (2010). Then integration of BWHD over wave heights
gives the breaking probability of the wave field, so breaking probability of the wave scale
fi is then given by

Pb,fi =

∫

∞

0

PR,fi(H)WFAB,fi(H)dH, (2.21)

with

PR,fi(H) =
2H

H2
fi

exp

(

−
(

H

Hfi

)2
)

(2.22)

and

WFAB,fi(H) = a

[

βfi
βt,lin

]2{

1− exp

(

−
(

β

βt,lin

)p)}

(2.23)

where βt,lin is a breaking threshold similar to the one defined by Miche (1944) but taking
the linearization of the waves into account, and, with D is the water depth,

β =
kfiH

tanh(kfiD)
(2.24)

βfi =
kfiHfi

tanh(kfiD)
. (2.25)

From their observations, Filipot et al. (2010) gave a in range [1−2] and p in range [2−4].
The parameterization of Filipot and Ardhuin (2012) uses a = 1.5 and p = 4.

The authors also estimated the energy dissipation by unit of breaking crest length
ǫ(H) of breakers with height H, adjusting the bore model to all water depths (full details
in Filipot et al., 2010). Defining Πfi = kfi/(2π) as the crest length (breaking or not) of
unidirectional waves per square meter in wave scale fi, they obtained dissipated energy
Qfi with

Qfi =

∫

∞

0

PR,fi(H)WFAB,fi(H)Πfiǫ(H)dH. (2.26)

The dissipated energy quantity Qfi is then distributed over the wavenumber contained in
the wave scale fi using a weight function of the energy such that

Qfi(k) = Qfi

E(k)dk

Efi
, (2.27)

where Efi is the energy in the wave scale fi. Due to overlap of the filtering windows, each
spectral component participates in several scales. Energy lost by spontaneous breaking
Qbk,sp is then given by

Qbk,sp(k) =
1

N

N
∑

i=1

Qfi(k) (2.28)
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where fi∈[1,N ] are the wave scales involving k.
Qbk,sp(k) is then distributed over direction with

Qbk,sp(k, θ) = Qbk,sp(k)
E(k, θ)dθ

E(k)
, (2.29)

Finally, dissipation Sbk,sp is given by Sbk,sp(k, θ)dkdθ = Qbk,sp(k, θ). Compared to the
original algorithm, we now compute Pb,fi by extrapolating the wave spectrum to unre-
solved high frequencies, assuming a f−5 roll-off of the energy spectrum. The bottom panel
of figure 2.3 shows the breaking probabilities obtained with this spectral extrapolation.

Because there may be inconsistencies in combining breaking probabilities derived from
saturation spectrum (Ardhuin et al., 2010) for cumulative dissipation, and breaking prob-
abilities derived from wave scale analysis (Filipot and Ardhuin, 2012) for spontaneous
dissipation, a consistent combination, resulting in TEST570 parameterization, is pre-
sented and validated in paragraph 2.2.3. Despite the fact that this new parameterization
does not clearly provide better results, the inconsistency of the dissipation term Sbk in
TEST500 does not allow the modelisation and the investigation of the breaking properties
which are derived from it.

2.2.2 Correction of swell dissipation

The essence of that modification is a smoothing of the swell dissipation function around
the threshold for transition between laminar and turbulent conditions. This was done
by introducing a weighted average of the laminar Sout,l (f, θ) and turbulent Sout,t (f, θ)
dissipation source terms respectively given by equations (8) and (9) of Ardhuin et al.
(2010),

Sout (f, θ) = (0.5 + α)Sout,l (f, θ) + (0.5− α)Sout,t (f, θ) (2.30)

where the smoothing parameter is defined by,

α = 0.5 tanh
[

(πH3
s/(4νTm0,2)− s4)/s7

]

, (2.31)

where ν = 1.4 × 10−5 m2 s−1 is the air viscosity, Tm0,2 is the mean wave period and
s4 = 105 m and s7 = 2.3× 105 m are fitting parameters.

The new parameterization of swell dissipation reduced the global errors on wave height
by 4% on average (Fig. 2.2). More importantly it corrected the abnormal distribution of
significant wave heights. Implemented in both TEST441b and TEST500, parameteriza-
tions are respectively renamed TEST451 and TEST510.

2.2.3 Adaptation of TEST500 into TEST570

The parameterization TEST500 by Filipot and Ardhuin (2012) is now modified by in-
cluding both a correction of swell dissipation described above, and a cumulative effect
now consistent with the spontaneous breaking dissipation term. These aspects are im-
plemented in WAVEWATCH IIIR©(hereinafter WWATCH), and we refer to the modified
parameterization as TEST570.
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Figure 2.2: Top: Global NRMS Error for parameterizations TEST441b (left) and
TEST451 (right). Middle: Comparison of PDF of wave heights (left) and Normalized
bias vs wave height (right). Bottom: Comparison of Normalized RMS Error (left) and
Scatter Index vs wave height (right).
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From breaking probabilities Pb,fi estimated by equation (2.21), breaking probabilities
Pb(k) at wave wavenumber k is then estimated averaging the Pb,fi of the N wave scales
fi∈[1,N ] involving k,

Pb(k) =
1

N

N
∑

i=1

Pb,fi . (2.32)

The breaking probability is distributed over different directions proportionally to the
spectral energy

Pb(k, θ) = Pb(k)
E(k, θ)

∫ 2π

0
E(k, θ)dθ

. (2.33)

Then, Λ(k, θ) is obtained with equation (2.15) and is now used in equation (2.16) to
provide the cumulative dissipation.

The parameters for spontaneous dissipation are kept equal to those proposed by Filipot
and Ardhuin (2012) and parameters for cumulative effect dissipation, rcu and Ccu in
equation (2.16) are kept equal to those proposed by Ardhuin et al. (2010) (see §2.2.4).
As a result, the only differences with TEST500 are the breaking probabilities used in the
cumulative term.

We note that Ccu = 0.6 is kept whereas it is expected to be close to 1 (Ardhuin et al.,
2010). There can be two explanations. First, the crest lengths of all waves, breaking or
not, is larger by a factor of two in Ardhuin et al. (2010) compared to Banner and Morison
(2010). Using the expression in Banner and Morison (2010), we would arrive at the same
model results with Ccu = 1.2. Second, it appears likely that the wind input for the
shortest waves is underestimated in the parameterizations described here (see Rascle and
Ardhuin, A global wave parameter database for geophysical applications. Part 2: model
validation with improved source term parameterization, submitted to Ocean Modelling).
This low input requires an underestimation of the dissipation rate to produce a correct
spectral level. Calibration of the new parameterization leads us to reduce the global swell
dissipation factor from 0.70 to 0.65. The wind input coefficient βmax is also decreased
from 1.52 to 1.50 (see 2.2.4 for further details).

Validation of the updated (TEST570) parameterization

Global validation for all of 2006 The model performance in terms of significant
wave height Hs and mean square slope (mss) is now given. The model uses a 0.5-degree
regular resolution in longitude and latitude. ECMWF operational analyses for the wind
and sea ice concentration are used as forcing fields, with the addition of sub-grid blocking
of waves by small icebergs in the Southern Ocean, using the method and iceberg dataset
described by Ardhuin et al. (2011b). The validation uses altimeter data from ERS2,
ENVISAT, Jason-1 and GFO-Sat, assembled in the Globwave database (Queffeulou and
Croizé-Fillon, 2010). The model results from three-hourly gridded output are interpolated
on the satellite track position every second. Both model and satellite data are then
averaged over 1 degree in latitude along the track. These averaged parameters are then
binned geographically or according to the wind speed and wave height.
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Figure 2.3: Top: Rectangular filtering windows Wfi (colors) over integrated spectrum
(black line). Bottom: Breaking probabilities Pb,fi obtained for each wave scale fi (colors)
and breaking probability Pb(k) obtained with averaging (Black line).

Figure 2.4 shows the similar biases and random errors of the TEST570 and TEST451
parameterizations. These are also close to the results of TEST500 (not shown, see Filipot
and Ardhuin 2012). These results contrast with the very different error pattern obtained
with the BJA parameterization by Bidlot et al. (2005), which is shown for reference. BJA
produces larger normalized errors, with large biases for low wave heights, due to an under-
estimation of swell dissipation, in particular in the Pacific Ocean. That effect is generally
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well corrected in the operational ECMWF by the assimilation of altimeter data. Other
aspects of these differences are discussed by Ardhuin et al. (2010). TEST570 generally
yields slightly larger random errors compared to TEST451 but, similar to TEST500 (Fil-
ipot and Ardhuin, 2012), it also has less bias for the significant wave height in enclosed
seas such as the Gulf of Mexico, the Mediterranean Sea or Hudson Bay, giving smaller
overall errors there.

When the data is binned according to wave height, as shown on figure 2.5, we see that
the swell dissipation correction of TEST451 has removed most of the strange biases in
TEST441b for heights between 1 and 3 m (Ardhuin et al., 2011a, Fig. 1). Because they
share the same swell treatment, the same benefits are found in TEST570 compared to
TEST500. For larger wave heights, the negative bias with TEST451 is greatly reduced in
TEST570. However, this reduced bias for the highest wave ranges should be considered
with caution, given the general underestimation of high winds in the ECMWF analyses
(Ardhuin et al., 2011a; Hanafin et al., 2012). It is likely that, for these phenomenal seas,
an overestimation of the wave growth is compensating for a low bias in the ECMWF wind
speeds. Results are also given using CFSR wind as forcing wind fields. In this case, wind
input coefficients are reduced to βmax,CFSR = 1.33 (Ardhuin et al., 2011a) for TEST451
and we consistently fix βmax,CFSR to 1.30 for TEST570.

A complementary and interesting diagnostic of the model performance is provided
by the altimeter normalized radar cross sections (NRCS) that can be interpreted as the
mean square slope of the sea surface (Barrick, 1968; Vandemark et al., 2004). Although
the absolute calibrations of the NRCS and thus the mean square slope estimation are
difficult, their relative variations with wave height, for a fixed wind speed, should follow
the variations of the true mean square slope. Ardhuin et al. (2010) showed that, in wave
model estimates, this variation is strongly modified by the cumulative parameterization
and the sheltering effect in the wind-wave generation term.

The TEST451 parameterization inherits the tuning performed for TEST441b and
generally gives a realistic spread in mean square slope for a fixed wind speed, in particular
for low wind speeds (Fig. 2.6). Using same cumulative term, TEST500 (not shown here)
gives a similar spread. In contrast the distribution mssku(U10, Hs) shown for TEST570
is narrower than the observed distribution and biases to relatively high values. This
behavior suggests that the cumulative effect may be overestimated in TEST570, i.e. the
short waves that contribute strongly to the mean square slope are not energetic enough.
This could be caused by an overestimation of the breaking probabilities at the largest
wave scales. The other possibility is that the sheltering effect is exaggerated, giving a
too strong reduction of wave generation at high frequencies. That latter hypothesis is
consistent with the nearly inexistent variability of wave-supported stress with wave age
in both TEST451 and TEST570.

Fetch-limited case: SHOWEX hindcast Due to its important effect on the
spectral shape, wave breaking dissipation also influences the wind input source term,
which controls the wave field growth. This wave growth and associated spectral shape, is
evaluated with a hindcast of a fetch-limited case measured during SHOWEX, on November
3, 1999 (Ardhuin et al., 2007). The 1 m high swell present with a peak frequency of
0.1 Hz during the experiment is included in the model offshore boundary from the X6
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Figure 2.4: Normalized RMS Error for new parameterization TEST570 compared to
TEST451 (Ardhuin et al., 2010) and BJA (Bidlot et al., 2005) parameterizations for
whole 2006 year. In all three cases the model is driven by ECMWF operational wind
analyses.
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2.2 Investigated dissipation parameterizations

Figure 2.5: Normalized Bias, RMS Error and Scatter Index on Hs for new parameteriza-
tion TEST570 compared to TEST451 and BJA parameterizations.
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Figure 2.6: Mean values of mssku binned as a function of Hs (x-axis) and U10 (y-axis) for
TEST570 and TEST451 parameterizations and satellite observations.
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buoy measurements. Details on buoy location and observed data analysis are given by
Ardhuin et al. (2007). The model configuration uses the same model grid as the one used
in Ardhuin et al. (2010) with a resolution of 0.016 deg (≈ 1.6 km). Wind forcing is taken
from the Climate Forecast System Reanalysis (Saha et al., 2010).

The wind blows offshore with a direction 20 degrees from shore-normal, which results
in a particular slanting fetch wind sea for buoys such as X2, located 25 km from shore.
Ardhuin et al. (2007) showed how the strength of the input and dissipation source term
influence the mean direction in these slanting fetch conditions. Wave directions align with
the wind for strong forcing, and wave directions align in the longest fetch (alongshore)
for the longer and more weakly forced components. As they also strongly control the
spectral shape, non-linear interactions also influence the wave field growth, as reported
by Gagnaire-Renou et al. (2010). Here, both DIA and XNL methods are used to estimate
the non-linear source term.

Overall, we find a good agreement between model and measurements in terms of en-
ergy and mean directions (Fig. 2.7, top and middle panels). The shift in mean direction
at the location of buoy X2, from the wind direction at high frequency to the alongshore
direction at low frequency, occurs at a slightly lower frequency in TEST570 compared to
TEST451, due to a faster development of the wind sea with the new parameterization.
Modeled directional spreads are more problematic (Fig. 2.7, bottom panels). They are
underestimated for all parameterizations, especially for TEST570, due to a stronger cu-
mulative effect, because short waves in oblique directions are more easily taken over by
the large breakers in the main direction. That narrowing effect is partly compensated
in TEST451 by the broadening associated with the stronger spontaneous breaking in the
mean direction, but in the case of an isotropic dissipation term such as used in TEST570
or by van der Westhuysen et al. (2007), the produced spectra are too narrow.

2.2.4 Model settings for the different parameterizations

Table 2.1 gives the values of the different namelist parameters to reproduce the present
results. They can be used in version 4.04 to 4.08 of WWATCH.

2.3 Dissipation source terms and breaking crest length

densities

All model results described here use the same spectral grid with 24 directions and 32 fre-
quencies exponentially spaced between 0.037 and 0.7 Hz. In this section, different parame-
terizations are both used to compute nonlinear interactions between spectral components.
Runs named TESTNNN use the Discrete Interaction Approximation (hereinafter DIA)
proposed by Hasselmann et al. (1985). Runs noted TESTNNNX use the Webb-Tracy-
Resio algorithm for the exact nonlinear interactions (hereinafter XNL), as coded by van
Vledder (2006). A diagnostic tail proportional to f−5 is imposed at a cut-off frequency
fc = rFM fm, with fm = 1/Tm 0,1. In TEST500X, Filipot and Ardhuin (2012) reduced the
value of rFM to 4.5, to maintain a reasonable energy level in the spectral tail. In the new
parameterization TEST570X, as in TEST441bX (Ardhuin et al., 2010), the diagnostic tail
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Figure 2.7: Wave spectra (top panels), mean direction (middle panels) and directional
spread (bottom panels) on 3 November 1999 at buoy X2 and X4, averaged over the time
window 12:00-17:00 EST, from observations and model runs with T451 , TEST510 and
T570 parameterizations. The swell is excluded due to the frequency range used in the
figure.
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Parameters : βmax [1] s7 (Eq. 2.31) Bdw [2] κ (Eq. 2.34)
WWATCH var. : BETAMAX SWELLF7 SDSBCK SDSC1 WHITECAPWIDTH

namelist : SIN4 SIN4 SDS4 SDS4 SDS4

TEST441b 1.52 0.0 0 0 0.3
TEST451 1.52 2.3 106 0 0 0.3
TEST500 1.52 0.0 0.185 1 0.3
TEST510 1.52 2.3 106 0.185 1 0.3
TEST570 1.50 2.3 106 0.185 0 0.18

Table 2.1: Wave model settings for parameterizations discussed in the thesis. TEST510
is the updated version of TEST500 (Filipot and Ardhuin, 2012) including minor swell
dissipation modification (§2.2.2). Bold values are non-default values, which need to be
reset via the SIN4 and SDS4 namelist (see manual of WWATCH) to switch from the
default parameterization (TEST451) to another. [1], see Ardhuin et al. (2010). [2], see
Filipot and Ardhuin (2012).

is imposed only above rFM = 9.9 times the mean frequency, which generally falls outside
the model frequency range.

2.3.1 Academic case: Uniform infinite deep ocean

The first model calculations are performed for a single point domain, corresponding to
uniform deep ocean conditions. First, the wave evolution is started from rest with a
constant wind of 10 m s−1. Figure 2.8 shows breaking probabilities and the associated
dissipations obtained after 3 days of simulation, when the wave field is fully developed.

Both parameterizations, TEST570 and TEST451, give similar breaking probability
distributions but with a higher level for TEST570. However, the abnormal lower breaking
probabilities on frequencies just above the peak observed with saturation-based param-
eterization (TEST451) disappears with wave scale analysis (TEST570), which provides
smooth breaking probability distribution over frequencies. As a result, the higher break-
ing of waves just above the peak leads to a stronger cumulative dissipation (Sbk,cu) at
high frequencies.

All source terms and spectra are presented in figures 2.9 (DIA) and 2.10 (XNL). The
net dissipation induced by breaking Soc = Sbk,sp + Sbk,cu is shifted to lower frequencies in
the new parameterization TEST570 compared to the result given by TEST451.

With the more accurate estimation of the non-linear source term Snl, the spectral level
is artificially higher in the highest two spectral bins. This artefact is due to a kink in
the spectrum between the resolved spectral range and the assumed tail shape beyond the
highest resolved frequency. However, the breaking probability distribution is not much
affected, as shown on figure 2.11.

We now compare the two parameterizations in terms of breaking crest length distribu-
tion Λ(C) defined by equation 2.15. Here we use the linear dispersion relation to estimate
the crest velocities C from the wavenumbers k.

Model calculations are performed for the single point (uniform ocean) started from rest,
described above with uniform winds (U10 = 5, 10, and 15 m.s−1), during 48 hours (Fig.

49



Chapter 2. Wave breaking modeling

Figure 2.8: Breaking probabilities and associated dissipations obtained for a fully devel-
oped sea state (3 days of simulation) for TEST570 (left) and TEST451 (right).
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Figure 2.9: Source terms for TEST570, TEST451 and BJA parameterizations using DIA
for non-linear interactions after 8 hours of run. The considered model is a uniform infinite
deep ocean with a uniform 10 ms−1 wind, starting from rest.
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Figure 2.10: Source terms after 8 hours of run for TEST570X, TEST451X and BJAX pa-
rameterizations using XNL for non-linear interactions. The considered model is a uniform
infinite deep ocean with a uniform 10 ms−1 wind, starting from rest.
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2.11). We note that observations show a maximum of the Λ-distribution (Gemmrich et al.,
2008; Thomson and Jessup, 2008), which is not reproduced by either parameterization.
This could be partially explained by the absence of bubble generation in the breaking of
short waves (C < 1.5−2 m/s). However, infrared observations show that such a maximum
also occurs for short gravity waves (Jessup and Phadnis, 2005). In TEST451, the increase
in directional spreading towards high frequencies tends to reduce the direction-dependent
saturation, but this reduction is not sufficiently pronounced to make Λ(C) decrease for
small values of C. We have tried a similar generalization of TEST570 in which the
spectrum would only be integrated over an angular sector to give the wave steepness from
which breaking probabilities are derived. In this case Λ(C) can also be reduced but it
would also take a very steep spectral decay, close to f−6 to produce a maximum in Λ(C).
Such a spectral variation is not supported by observations (e.g. Banner et al., 1989; Kosnik
and Dulov, 2011).

The smooth shape of Λ(C) around the peak given by TEST570 is in accordance with
the C−6 asymptote proposed by Phillips (1985) from the generation and dissipation bal-
ance, and observed in experiments by Gemmrich et al. (2008), Melville and Matusov
(2002), Mironov (2009), and Kleiss and Melville (2011). However, the level of this asymp-
tote is lower by a factor ≈ 4 than in the observations of Gemmrich et al. (2008) and could
be again reduced by a factor of 2 using the expression of the crest lengths of all waves,
breaking or not, given by Banner and Morison (2010). In contrast, Λ distributions given
by TEST451, with a clear minimum for phase speeds just below those of dominant waves,
are not consistent with the observed distributions.

The top panels in figure 2.12 show the evolution of the wave spectrum (left) and
the associated Λ-distribution (right). The bottom panel shows the evolution of the Λ-
distribution value at the frequency peak (Λp) for the various parameterizations. We have
used U10 = 12 m s−1, allowing a direct comparison with the model results of (Banner
and Morison, 2010, their figure 8b). Both parameterizations tested here provide values
of Λp in good agreement with this other model. Nevertheless, we remark that using
the DIA or XNL methods for the nonlinear interactions slightly modifies values of Λp,
with higher levels obtained when using XNL, compared to results obtained with the DIA
parameterization.

2.3.2 Wave-breaking experiment: FAIRS hindcast

Hindcasts were run from September 24 to October 10, 2000 offshore of the central Cali-
fornian coast corresponding to FAIRS (Fluxes, Air-sea Interaction and Remote Sensing)
experiment aboard the research platform FLIP in the open ocean 150 km offshore of the
central Californian coast (Gemmrich and Farmer, 2004). A global model using a regular
grid (0.5 deg resolution) provides input boundary condition for a high resolution domain
using an unstructured grid. That particular grid covers the entire U.S. West coast with
a resolution of about 500 m along the shoreline and was already used by Ardhuin and
Roland (2012). The spectral grid considers 24 directions and 32 frequencies exponentially
spaced between 0.037 and 0.7 Hz. Input wind fields are taken from the Climate Fore-
cast System Reanalysis (Saha et al., 2010). Figure 2.13 shows that modeled Λ(C) using
TEST570 parameterization are consistent with observed one by Gemmrich et al. (2008).
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Figure 2.11: Spectra (left) and direction-integrated breaking crest length distribution
(right) obtained with TEST570 and TEST451 parameterizations for a uniform infinite
deep ocean after 3 days of run, when Cp/U10 > 1.2, with U10 = 5, 10, and 15 m s−1.
Energy peaks are marked by circles.

The measured and modeled distributions differ for the slowest waves because these waves
break without forming bubbles and thus are not detected in the measurements. However,
the figure show clearly that shapes of Λ given by TEST570 are in better agreement than
those given by TEST451 which provides too small values at peak scale.
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2.4 Whitecap coverage and mean foam thickness at

the global scale

In this section, we consider the global hindcast of the year 2006, for which we obtained
the WindSat radiometer data interpreted by Anguelova and Webster (2006). The model
uses the same 0.5-degree regular resolution in longitude and latitude, ECMWF opera-
tional analyses for the wind and sea ice and iceberg concentrations than used in previous
described global validation of the TEST570 parameterization. The non-linear source term
is now computed using only the DIA (Hasselmann et al., 1985). This same model is val-
idated in terms of wave height and mean square slope in 2.2.3. The low error levels for
both parameters, typically 10% of the observed RMS values, indicate a generally good
representation of the frequency spectrum. We now consider our estimations of whitecap
coverage in relation to the radiometer data of Anguelova et al. (2009).

In order to be consistent with radiometer data, we define the whitecap coverage (WCC)
as the fraction of sea surface covered by both active breaking (stage A) and residual foam
(stage B). Although stage A is more closely related to breaking fronts, which is what
we model, these two stages are difficult to separate in microwave radiometric data. This
combination with stage B introduces a large variability due to other factors, such as water
temperature and salinity, which we have not introduced in our model.

For a single breaker, the area covered by foam is obtained by multiplying the breaking
crest length by a mean whitecap width parameterized as the constant fraction κ = κA+κB
of breaker wavelength λ. Mironov (2009) has found that the geometry of phase A is
well represented by ellipses of almost constant eccentricity with breaking crest lengths
distributed as a power-law. These observations are consistent with the use of a constant
κA. Reul and Chapron (2003) also proposed a κA constant to represent stage A. Based
on laboratory observations of Duncan (1981), they used κA = 0.3. Our parameterization
for both stages A and B is based on the fact that, for constant environmental parameters,
stage B is related to stage A.

The whitecap coverage, corresponding to the fraction of sea surface covered by both
stages, is here estimated as

W =

∫

∞

0

κ λC Λ(C) dC, (2.34)

where λC is the wavelength of breaking waves with phase speed C. In deep water, the
wavelength is proportional to the squared phase speed (λC = 2πC2/g). Therefore, white-
cap coverage from breaking wave with velocities in range C to C + dC in deep water
is proportional to the second moment of λC (Reul and Chapron, 2003) and the total
whitecap coverage, in deep water, is given by

W =

∫

∞

0

κ2π.
C2

g
Λ(C)dC. (2.35)

We have adjusted the constant κ for each parameterization, to provide whitecap cov-
erage consistent with empirical wind-driven fit by Monahan and Woolf (1989) and the
global whitecap coverage database of Anguelova et al. (2009). κ is adjusted to 0.30 for
TEST451 and 0.18 for TEST570.
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The figure 2.14 showsW binned as a function of U10 for both model parameterizations
using ECMWF forcing wind and satellite observations of whitecap coverage by Anguelova
et al. (2009) for the month of March 2006. The blue line corresponds to the empirical
wind-dependent expression by Monahan and Woolf (1989), based on video data analysis.
The whitecap coverages were derived from WindSat observations by Anguelova et al.
(2009), using the methodology of Anguelova and Webster (2006). They used 10 GHz and
37 GHz radiometric measurements in horizontal polarization across the WindSat swath,
giving respectively W10H and W37H . The model and observed W are then interpolated on
the satellite measurements, and then averaged over 1 degree in latitude along the satellite
track. The general dependence of W on the wind speed is relatively well reproduced
with a good correlation between modeled whitecap coverage and formula by Monahan
and Woolf (1989), mainly for U10 < 15 m/s. For higher winds (U10 > 15 m/s), both
parameterizations provide a linear dependence of WCC to wind speed, which is consistent
with satellite observations. We remember here that the absolute level ofW is controlled by
κ. Using model wind field, independent of wind observation, by Anguelova et al. (2009),
differences between observed wind under satellite track and collocated ECMWF winds
leads to a large spread of Wobs for a given wind speed. However, this spread shrinks when
satellite winds are used, because the wind speed is then estimated from the same brightness
temperature used to derive the WCC. Direct comparison between values of modeled and
observed WCC on collocated points is shown in figure 2.15. Modeled whitecap coverages
are slightly better correlated than an empirical estimate using Monahan and Woolf (1989)
and model wind speeds (R2 = 0.53 instead of 0.5), but this improvement is very far from
the impact reported by Hanson and Phillips (1999) who used measured wind trends
in addition to measured wind speeds. Although geophysical and measurement factors
contribute to the scatter, we expect that both the wave modelling and the modelled
ECMWF winds are responsible for the larger errors in our model results.

We finally attempted to estimate the mean vertical foam thickness. For this purpose,
we modeled the average vertical thickness of foam-layers following Reul and Chapron
(2003) (Fig.3, Eq.5), who considered stage A and B of breaking separately. During active
breaking (stage A), vertical thickness grows linearly (equation 2.36) to reach a maximum
value δmax = 0.4 τ ∗/k. Then, foam thickness decreases exponentially with a time constant
τ ′ (stage B) (equation 2.37). Following Reul and Chapron (2003), the persistence time of
active breaking is set to τ ∗ = 0.8T and global persistence of a foam-layer, including stage
A and B is set to τmax = 5T with T the period of the breaking wave. τmax represents the
duration between the beginning of the breaking event and the time at which the foam
thickness is practically zero. Time evolution of foam thickness δ(C, t) for a wave with
phase speed C is estimated for 0 < t < τ ∗ using:

δ(C, t) =
δmax(C)

τ ∗
t (2.36)

and for τ ∗ < t < τmax using

δ(C, t) = δmax(C) exp

(

−t− τ ∗

τ ′

)

(2.37)

where the relaxation time τ ′ is equal to 3.8 s (salt water). Time evolution of vertical
thickness is integrated over the foam time persistence to obtain mean foam thickness
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Figure 2.14: Mean values of W binned under the WindSat track as a function of U10 for
new parameterization (TEST570) and modified Ardhuin et al. (2010)’s parameterization
(TEST451) compared to March 2006 satellite observations by Anguelova et al. (2009).
Wind used for binning is the collocated CFSR data, which is independent of the WindSat
data until September 2008. Red bars represent minimum and maximum values, black bars
are the standard deviations and the blue line represents the empirical fit by Monahan and
Woolf (1989).
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Figure 2.15: Q-Q plot of WCC given by TEST570 and TEST451 and satellite observations
(Anguelova et al., 2009) on March 2006. Compared values are collocated under WindSat
swath. Colors give the values of log(Nval).
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∆(C) of individual breaking events:

∆(C) =
δmax(C)

τmax

(

1

2
+ 3.8

(

1− exp

(

−τmax − τ ∗

3.8

)))

(2.38)

Integration of the whitecap coverage produced by each scale times its mean foam thickness
over all wave scales gives a global mean foam thickness

∆ =

∫

∞

0

∆(C)κλ(C)Λ(C)dC, (2.39)

The figure 2.16 shows the dependence between the mean foam thickness and the wind
speed for the two parameterizations. Higher breaking probabilities just above the peak in
TEST570 than ones in TEST451 lead to a slightly higher level of mean foam thickness.
This difference increases with wind speed due to displacement of the peak to longer waves
which produce higher foam layers. More importantly, for a fixed wind speed, the relative
variability of foam thickness is much larger than the variability observed in whitecap
coverage values. This suggests that radiometric data at larger wavelengths, which are
more sensitive to foam thickness, may be a good indicator of breaking activity beyond
the usual wind-whitecap coverage relation of which the Beaufort scale for wind speeds is
a perfect example.

Figure 2.16: Mean values of mean foam thickness (∆) binned as a function of U10 for
new parameterization (TEST570) and modified Ardhuin et al. (2010)’s parameterization
(TEST451). Wind used for binning is the collocated CFSR data, which is independent
of the WindSat data until September 2008. Red bars represent minimum and maximum
values, black bars are the standard deviations.
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2.5 Conclusion and Perspectives

The TEST570 parameterization presented here accounts for the physical relationship that
intrinsically links spontaneous breaking dissipation and dissipation induced by breaking
waves (cumulative term) and thereby extends the work of Filipot and Ardhuin (2012).
The cumulative dissipation term was adjusted so that the model could reproduce observed
spectral evolution and global wave heights distributions. It is found that this TEST570
parameterization produces breaking crest lengths distributions that are in better quali-
tative agreement with observations, contrary to TEST451 which fails to produce smooth
Λ-distributions. This difference is clearly associated with the integration over frequencies
in TEST570 compared to the local saturation used in TEST451. Banner and Morison
(2010) have shown that estimating breaking parameters after smoothing the local satu-
rations over frequencies has the same effect.

Overall, as already shown by Banner and Morison (2010), an explicit modeling of
whitecap properties provides a new constraint on the model dissipation source terms, and
a more detailed use of global observations from satellite radiometers, such as interpreted
by Anguelova and Webster (2006), can be used for this. In particular, we find that joint
estimates of the whitecap coverage and foam thickness could be an interesting way to
discriminate between different sea states or parameterizations. This can be achieved by
combining radiometric measurements from different bands. Recent results by Reul et al.
(2006) with L-band radiometric measurements in Hurricanes using the Soil Moisture and
Ocean Salinity space mission can be combined with the Ku and X band data to provide
the necessary information.

Further work on the parameterization remains, in particular on the method to at-
tribute breaking probabilities and dissipation rates to different directions, and in the
physical processes represented in the cumulative term. Indeed, the cumulative effect pa-
rameterization of Ardhuin et al. (2010) used with isotropic breaking probability tends
to reduce the width of the directional spectrum. All the parameterizations tested here
produce directional spectra which are too narrow at high frequencies (f > 0.6 Hz in
typical oceanic conditions). We attribute this deficiency to a lack of physical processes
in the model. In particular the splash of breakers has been shown to transfer energy to
high frequencies by creating small waves (Rozenberg and Ritter, 2005, e.g.), and short
waves are known to break mostly at the crest of longer waves, due to hydrodynamic and
aerodynamic modulations (e.g. Smith, 1986).

The analysis of the recent wave breaking dissipation parameterizations provided in
this chapter showed that such parameterizations are able to provide an energy dissipation
that properly equilibrate the wave energy balance equation providing spectra in good
agreement with observation in terms of shape and energy level, but without guarantee
for the underlying physics. In particular, we showed that modeled breaking crest length
densities are inconsistent with observations. Moreover, models are currently not able to
reproduce the large disparity in observations. We also note that the parameterizations
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2.5 Conclusion and Perspectives

combine results from different studies, from different areas, from both laboratory and field
experiments. The large sensibility of the results the a misunderstood number of external
parameters, makes the combination of these studies uncertain.

We here highlights the need of observations that provide in same time information on
wave spectrum, directional breaking parameters and directional breaking dissipation. In
the next chapter, we propose a field experiment using stereo video system to observe time-
space evolution of sea surface wave evolving towards breaking or not. Such observations
provide simultaneously directional breaking parameters and directional wave spectrum
including non-linear contributions. These observation can also be used to observe the
evolution of the wave shapes induced by breaking, and thus, to estimate dissipation in-
duced by breaking.
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Chapter 3

Reconstruction of 3D oceanic surface
waves

3.1 Introduction

Water wave elevations can be measured with different methods. Usually, 1-D elevation
is obtained using a pressure sensor in the water or a capacitive wave gauge crossing the
surface. By multiplying the number of instruments, several 1-D surface elevations can
be obtained and 2-D surfaces can be approached. Direct 2-D surface elevation can also
be obtained using 2-D radar-based systems installed on either fixed positions (Dankert
et al., 2003) and aircrafts (Hwang et al., 2000) or using stereo video systems. These last
systems provide 3-D elevation maps of water waves by using a spatial-widespread and
non-intrusive optical system. Video imagery has another significant advantage with a
low-cost system in both installation and maintenance (Holland et al., 1997; Holland and
Holman, 1997). A stereo camera view provides spatial and temporal data whose statistical
content is richer than that of a time series retrieved from a buoy, which is expensive to
install and maintain (Benetazzo, 2006; Gallego et al., 2008). Moreover, extending image
processing from static individual images to image sequences of stereo-pairs opens a new
world of information. Indeed, stereo image sequences contain both the temporal and
spatial structure of the phenomena observed. Except for limitations in resolution in time
and space and the size of the images, image sequences capture the events as completely
as possible.

Stereoscopy regroups all the methods which reproduce relief effect from a pair of 2D
images. Long before its application to recent computer vision, humans have exploited the
ability of their brain to create a 3D illusion starting from a pair of 2D images. Therefore,
in 1550’s, painter Jacopo Chimenti made two drawings representing a slightly different
point of view of a same scene to produce a relief effect within the brain of viewer. The
first stereoscopic camera appeared in the 1850’s, soon after the first simple camera and
their evolution is still underway. Taken with a spacing of a few centimeters, pairs of
photographs present a slightly different image to each eye and reproduce the relief of the
scene. A rich literature on the subject exists on the subject. Stereoscopy appeared in
scientific literature from the middle of the 18th century (Wheatstone, 1853; Claudet, 1856,
1857, and many others.) with large scope of application, such as for example, topography
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(Galton and Galton, 1865) or medicine (Mach, 1896). Nevertheless, 3D reconstruction of
the scene was only a brain process, and no quantitative access to the 3rd dimension was
possible.

Further, the development of the epipolar geometry (see §3.3.3) sets the basis of the
recent computer vision, where the shape of the scene can be extracted from the stereo
pairs of photographs. In spite of the relatively simple procedures involved by the stereo
vision, its application to oceanic surface waves is rather limited. Therefore, before the
1950’s, only one published study used it (Dankert et al., 1939). In the early 1950’s,
the desirability of obtaining the two-dimensional sea spectra appeared in the literature
(Pierson, 1952; St Denis and Pierson Jr, 1953). The stereo-photography of the wavy
surface for determining the vertical displacement of the water surface was initiated by
Marks (1954) to determine the wave number spectrum. By taking photographs from a
bridge, he was able to get useful data on the two-dimensional wave spectrum, but on a
much reduced scale. Moreover, Cruset (1953) also showed feasibility of photogrammetric
measurements of the sea swell from synchronized cameras driven by separated aircrafts.
These two studies among others motivated the launching of the Stereo Wave Observation
Project (Chase et al., 1957; Cote et al., 1960). Latter, Banner et al. (1989) also used the
stereo-photography for the measurement of the spectrum directionality. Recently, with
the development of the numerical photography, some investigators concerned themselves
with wave measurements from stereo photography (Kosnik and Dulov, 2011) or stereo-
video (Benetazzo, 2006; Gallego et al., 2008).

In this chapter, the first section gives a description of the experiment. Then, the section
3.3 deals with the theoretical background and the mathematical definitions of the relations
between a 3D scene and its camera image projection. The epipolar geometry describing
the relations existing between the projection of a same scene on multiple camera images is
also considered. Then, the section 3.5 describes methodology of the stereo reconstruction
of sea surfaces. Finally the section 3.6 deals with the validation of reconstructed surfaces
and the analysis of their corresponding spectra.

3.2 Experiment description

The experiment was conducted on September and October 2011 from the research plat-
form of the Marine Hydrophysical Institute of the Academy of Sciences of Ukraine. The
platform is located 500 meters off the coast next to Katsiveli in the Black Sea. The depth
at the observation area is at least 30m. The measurements consider synchronized acquisi-
tion of wind speed and direction, sea surface elevation and stereo video acquisitions. The
positions of the instruments are shown in the figure 3.1. The wind measurements, speed
and direction, are obtained using a 23 meter height anemometer. The sea surface eleva-
tion is measured at a 10Hz sampling frequency and 2mm accuracy with an array of six
wave gauges. Finally, the Wave Acquisition Stereo System (hereinafter WASS) acquires
image sequences of the sea surface.

The WASS is a couple of synchronized 5 Megapixel BM-500GE JAI cameras encap-
sulated in waterproof cases (Fig. 3.2) with the following specifications

• Sensor 2/3 progressive scan CCD (8 bit)
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3.2 Experiment description

Figure 3.1: Platform of Katsiveli, Crimea, Ukraine. Location of anemometer, wave gauge
array and Wave Acquisition Stereo System (WASS).
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• Pixel Clock 60 MHz

• Active area 8.45 (h) x 7.07 (v)

• Cell size 3.45 (h) x 3.45 (v)

• Active pixels 2456 (h) x 2058 (v). (Cell size = 3.45µm x 3.45µm)

• Read-out modes

• GigE Vision interface with 12, 10 or 8-bit output

Each camera was coupled to a 5-mm focal length low distortion lens and linked to the
workstation with RJ45 Ethernet cable for data transfer and a power cable, also used for
trigger, ensuring synchronization of pictures taken by each camera. Due to the hard disk
writing speed limitation, the maximum frame rate is 15 frames per second. In addition to
ensure trigger and picture storage, the software allows parameterization of the exposure
time of each camera by the user before acquisition and an automatic adjustment of the gain
is done by the system during the acquisition to compensate for the brightness variations.
For all the acquisitions described further, the exposure time is set for the both cameras
to 6000µs. Such a large value is set to keep a small analogical gain, but it implies some
blurring on the image borders.

The acquisitions were done for wind direction established to West-South-West, with
speed up to 10m/s. The figure 3.3 and the table 3.1 resume the wind and wave conditions
during the 4 video acquisitions selected for this study. The wind speeds and directions
are averaged over the duration of the record. The significant wave heights and the wind
sea peak frequencies are get from wave gauge records.

3.3 Theoretical background

The video cameras capture the light reflected from the objects on the observed scene
using a Charge-Coupled Device (CCD). During the exposure time, each cell of the CCD
measures the received light quantity. Then, this quantity is discretized to give the value of
the corresponding pixel. The number of possible discretized values is the image depth. To
maintain the values between the range of the possible values, an analogical gain is generally
applied on the measured raw light quantities before discretization. Repeating the process
at high frequency, the result is a N frame-per-second (fps) sequence of pictures capturing
the evolution of the scene, with a resolution (i.e. a number of pixels) given by the number
of CCD cells. The aim of the camera calibration is to find the parameters which link a 3D
object to its projection on the bit-mapped image. Usually used in computer vision, the
pinhole camera model, described in paragraph 3.3.1, provides this link. Nevertheless, this
simple model does not take in account that the coordinates are generally expressed in a
reference system independent of camera position and orientation nor the discretization of
the image plane into pixels and the distortion induced by the optical lenses. The complete
equations that relates a 3D point to its projection are discussed in the paragraphs 3.3.2.
Finally, the last paragraph 3.3.2 describes the epipolar geometry which links the two
pinhole cameras.
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3.3 Theoretical background

Figure 3.2: Top: Waterproof camera case. Bottom, left: 5-mm focal length low distortion
lens. Bottom, right: 5 Megapixel BM-500GE JAI cameras.
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Figure 3.3: Evolution of wind and wave conditions during the experiment. Acquisitions were done for wind direction established
to West-South-West, with speed up to 10m/s.
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dAcq. Acq. # of Acq. Mean wind Mean wind Hsig Wind sea Wave Age
# freq. images duration speed direction peak freq. Cp/U10

1 15Hz 5689 ≈ 7min 11.5ms−1 W-S-W 0.30m 0.33Hz 0.41

2 12Hz 14376 ≈ 20min 10.9ms−1 W-S-W 0.36m 0.38Hz 0.38

3 12Hz 21575 ≈ 30min 13.2ms−1 W-S-W 0.45m 0.33Hz 0.35

4 12Hz 21576 ≈ 30min 13.9ms−1 W-S-W 0.55m 0.27Hz 0.42

Table 3.1: Conditions during video acquisitions. Wind speeds and directions are averaged over the duration of the record.
Significant wave heights and wind sea frequencies are obtained from wave gauges records.
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Chapter 3. Sea surface reconstruction

3.3.1 Pinhole camera model

The pinhole camera model is the simplest model which relates a point of the scene to its
projection on the image plane. It assumes a rectilinear projection in which the straight
lines in a scene are projected into straight lines in the image. In other worlds, it assumes
that all rays from the 3D scene straightly crosses the image plane and focus on the
projection center, at a distance f , so-called the focal length, such as shown on figure 3.4.
A metric image coordinate system is defined such that origin o is the intersection between
the optical axis and the image plane and the vectors ~u′ and ~v′ are orthogonal and parallel
to the image plane. The camera coordinate system is defined such that the origin Oc is
the projection center, the axis ~Zc is collinear to the optical axis and the vectors ~Xc and
~Yc are respectively collinear to ~u′ and ~v′. Therefore, a 3D point P (Xc, Yc, Zc) of the scene
is related to its projection point p(u′, v′) on image plane with

[

u′

v′

]

=
f

Zc

[

Xc

Yc

]

. (3.1)

3.3.2 From 3D coordinates to 2D pixel coordinates

This paragraph, illustrated by the figure 3.5, describes links between a 3D point P of the
scene expressed in 3D world reference and its projection in the undistorted bit-mapped
image. Generally, the coordinates of the 3D point P in the scene are not known in
the camera reference system (Oc, ~Xc, ~Yc, ~Zc), but in an external system, usually called

world system, (Ow, ~Xw, ~Yw, ~Zw). Assuming that both the camera axes and the world axes
are orthogonal and isotropic, the unique Euclidean 3D transformation between the two
coordinate systems can be defined by a 3 × 3 rotation matrix R and a 3-dimensional
translation vector T , such that





Xc

Yc
Zc



 = R ∗





Xw

Yw
Zw



+ T, (3.2)

where R transforms axes ( ~Xw, ~Yw, ~Zw) into axes ( ~Xc, ~Yc, ~Zc) and T moves origin from Ow

to Oc. We note that the rotation matrix R is related to the 3 angles parameters, the
roll θ (counterclockwise rotation of the camera around X-axis), the pitch φ (Y -axis), and
the yaw ψ (Z-axis). These three angles with the three components of T are called the
extrinsic (or external) camera parameters.

We now define two different coordinate systems on the image plane. The first one is
the metric system defined by the camera pinhole model which the origin is the intersection
of the optical axis with the image plane and the axis (~u′, ~v′) are collinear to the camera
reference system (see Fig. 3.4). The second system, called pixel coordinates system,
is defined such that the origin is the center of the upper-left pixel and the axis (~u,~v)
respectively follow rows and columns of the pixel matrix, such as shown on figure 3.5. We
note here that due to the manufacturing defects on camera sensor, these axis are generally
not perfectly orthogonal.
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Figure 3.4: Schema of the pinhole camera model.
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Figure 3.5: Schema of the links between 3D points of the scene and their projection on undistorted bit-mapped image.
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3.3 Theoretical background

Many transformations can be found in the literature, implying different parameters
adapted to type and quality of the sensor. Consistently with calibration described further,
and accordingly with the used CCD sensor, the set of intrinsic (or internal) parameters
used to link point coordinates expressed in camera reference system to pixel coordinates
of its projections on bit-mapped image consists of :

• the focal length f as defined in pinhole camera model,

• the distortion coefficient, Kn and Pn, which correct for the optical lens distortion,

• the pixel coordinates of the principal (or center) point, (uc, vc)

• the coefficients, Du and Dv , which change metric into values to pixel (Stated oth-
erwise 1/Du and 1/Dv are the center-to-center distance between two consecutive
CCD cells in respectively u and v axis.),

• an uncertainty scale factor on u-axis, su (Typically, such an uncertainty scale factor
also exist on v-axis. However, one of these uncertainty factors can be absorbed by
focal length. Calibration used for this work, as usually done in the literature, keeps
su and adapt focal length to obtain sv = 1),

• and the skew coefficient, γ, which corrects for error on the orthogonality of CCD
cells.

All these internal parameters are linked to the use of a given optical lens with a given
CCD in a given configuration, so they generally differ from left to right camera. The
calibration of these parameters is discussed in section 3.4.

We note that the projection of the 3D scene on an image plane reduces the dimensions
from three to two. Following the pinhole camera model, the coordinates (u′, v′) of the
projection on the image plane of a given 3D scene point expressed in camera reference
system by (Xc, Yc, Zc) is fully determined by the equation 3.1. On the contrary, given
the image projection coordinates, the position of the scene point is only defined with an
ignoring factor. Indeed, the ensemble of the possible coordinates of the scene point is a
line, called line of slight or ray. Following the 3D camera geometry given by the pinhole
camera model, the orientation vector r of the ray is defined such that

r ∼





u′

v′

f



 (3.3)

Usually, the orientation vector r is normalized such that its third component is the unity.
Therefore

r = [
u′

f
,
v′

f
, 1]T = [ũ′, ṽ′, 1]T, (3.4)

where (ũ′, ṽ′) are normalized metric image coordinates.
The pinhole camera model considers the rectilinear projection. Nevertheless, the use

of real optical lens entails distortion, which corresponds to a deviation from the rectilin-
ear projection. Indeed, seen through optical lens the straight lines can appear curved.

75
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The resulting image deformation is nonlinear. Assuming a rectilinear projection, the pin-
hole camera model described above cannot take into account such an optical aberration.
Therefore, a correction for lens distortion must be apply independently (§3.4.4).

The lens distortion is split into radial and tangential distortions. The radial distortion,
also called centering distortion, corresponds to an inhomogeneous image magnification.
When the image magnification decreases with the distance from the optical axis, we talk
about barrel distortion. Contrary, an increasing of the magnification with the distance
from the optical axis is called pincushion distortion. As example, the barrel distortion
is used in fish-eye lenses as a way to map an infinitely wide object plane (hemispherical
view) into a finite image area. In contrast, the pincushion distortion is used for the
visual optical instruments to limit the globe effect induced by a long focal length. A
mixture of the both types could also be used and is referred to as mustache distortion
or complex distortion. The radial distortion is usually predominant but is often coupled
with a tangential distortion, also known as decentering distortion. This latter is caused by
the physical elements in the lens not perfectly aligned. Its effect is weak for high-quality
lenses. Brown (1966) proposed a distortion model based on work of Conrady (1919),
which corrects for the both radial and tangential distortion. To be consistent with the
calibration procedure described in the next section, Brown’s model is here adapted to
normalized images coordinates (ũ′, ṽ′) = (ũ′, ṽ′)/f . Then, the displacement due to the
radial and tangential distortion are respectively given by

{

δ(r)(ũ′) = ũ′ (K1r
2 +K2r

4 + . . .)

δ(r)(ṽ′) = ṽ′ (K1r
2 +K2r

4 + . . .)
(3.5)

and
{

δ(t)(ũ′) = 2P1ũ′ṽ′ + P2(r
2 + 2ũ′

2
)

δ(t)(ṽ′) = P1(r
2 + 2ṽ′

2
) + 2P2ũ′ṽ′

(3.6)

where r =

√

ũ′
2
+ ṽ′

2
and Kn and Pn are respectively the coefficients for the radial and

tangential distortion. Therefore, the projection on image plane taking into account for
the lens distortion is given using normalized metric image coordinates by

{

ũ′d = ũ′ + δ(r)(ũ′) + δ(t)(ũ′)

ṽ′d = ṽ′ + δ(r)(ṽ′) + δ(t)(ṽ′)
(3.7)

We note that by adding distortion into the projection model, it becomes strongly non-
linear. As a result, the reverse mapping which consists in recover the ray from the image
coordinates does not have a direct solution. However, few solutions for inverse mapping
exist in the literature (Melen, 1994; Wei and Ma, 1993; Heikkila and Silven, 1997).

Finally, the image coordinate (u′d, v
′

d) must be expressed in the pixel reference system.
With the notations described above, the pixel coordinates (u, v) are linked to the metric
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image coordinates (u′, v′) with

ud = fDusu(ũ′d + γṽ′d) + uc

= fu(ũ′d + γṽ′d) + uc (3.8)

vd = fDv ṽ′d + vc

= fv ṽ′d + vc, (3.9)

where fu = Dusuf and fv = Dvf are the unique focal metric distance f expressed in
term of pixels in each direction. When the pixels in the CCD sensor are not perfectly
square, the aspect ratio, Dv/(suDu) = fv/fu , differs from 1. Nevertheless, the recent high
quality CCD manufacturing leads to an aspect ratio close to 1 (fu and fv are usually very
similar). Moreover, the high quality manufacturing also leads to skew factor close to 0.

The computer vision science usually used the homogeneous coordinates, which con-
sists in the expression of the coordinates with an additional dimension, such that the
homogeneous 3D points coordinates in world reference system (resp. in camera reference
system) are given by vector [Xw, Yw, Zw, 1]

T (resp. [Xc, Yc, Zc, 1]
T). Then, neglecting the

distortion, the projection of a scene points into the bit-mapped image can be represented
with a 3× 4 matrix C, called the camera matrix such that

Zc





u
v
1



 = C ∗









Xw

Yw
Zw

1









= A
[

R T
]









Xw

Yw
Zw

1









(3.10)

where R and T are the external parameters (see Eq. 3.2) and A is the matrix containing
the intrinsic parameters such that

Zc





u
v
1



 = A





Xc

Yc
Zc



 , (3.11)

with

A =





Dusuf Dusufγ uc
0 Dvf vc
0 0 1



 =





fu fuγ uc
0 fv vc
0 0 1



, (3.12)

As previously discussed, the coordinates of a points, given coordinates of its projection,
are given by





Xc

Yc
Zc



 = α C−1





u
v
1



 . (3.13)

We note that the ray where are all the possible positions of the point is then given by
varying α, and coordinates of the 3D point are given by α = Zc, which is generally
unknown. The equation 3.13 is the linear solution for the inverse mapping usually used in
computer vision. Nevertheless, as noted, by including distortion, the projection becomes
non-linear (C = C(u, v)). As a result, the camera matrix C cannot be inversed and the
equation 3.13 cannot be applied. A way around the problem is to use the equation on a
rectified image corrected for the lens distortion (see §3.4.4).
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3.3.3 Epipolar geometry and stereo triangulation

Given two (or more) cameras with distinct projection centers, the epipolar geometry de-
scribes geometric constraints existing between the cameras. This geometry is based on
the pinhole camera model, so the distortion must be neglected or previously corrected
(see §3.4.4). The example for two cameras is shown on the figure 3.6, where the centers of
projection of the cameras are the points C1 and C2. We suppose the external parameters
(R1, T1) and (R2, T2). We note that the world reference system can be defined as equal
to the reference system of the first camera. Therefore, R1 = I3 and T1 = [0, 0, 0]T, and
(R2, T2) represent the relative positions of the cameras. We define the epipolar points (e1,
e2) as the intersection of the line (C1C2) with the image planes. These epipolar points
generally fall out of the bit-mapped image. For each point P of the scene, the correspond-
ing epipolar plane is defined by the three points (C1, C2, P ). This plane intersects the left
and right image planes in lines, called epipolar lines.

Projecting on the first image plane onto p1, the corresponding scene point P must be
on the ray (C1, p1). Therefore, its projection on the second image must be on the epipolar
line, which corresponds to the projection of the ray. This property is used in the point
matching step of the reconstruction processing, described further, to reduce search area
of the corresponding points (see §3.5.1). Inversely, given p1 and p2 the projections of a
same scene points P into the image 1 and 2 respectively, the 3D location of the point P is
fully determined by the intersection of the rays (C1, p1) and (C2, p2). The determination
of the 3D coordinates of a point from its projections onto two images is called stereo
triangulation (see §3.5.2).

3.4 Camera calibration and image rectification

The aim of the camera calibration is to compute the intrinsic and extrinsic camera pa-
rameters disused in paragraph 3.3. The performances of the WASS are inevitably related
to the camera calibration accuracy which is described in this paragraph. After a short
history on the evolution of calibration methods, a detailed description of the calibra-
tion procedures, for the intrinsic and extrinsic calibration, used in this work for WASS
calibration are given.

3.4.1 Short historical of camera calibrations

Throughout the years, many authors proposed many methods following the growing need
of accuracy and image sensor evolution. We must note the strong influence of the works
of Tsai (1987) on the recent camera calibration methods. The previous methods could
be simply classified into two categories. The first category involves full scale nonlinear
optimization, allowing easy adaptation of any arbitrarily complex model for imaging,
including obviously the lens distortion. Nevertheless, this adaptability is made at the
cost of a large set of non-physical implicit parameters. Moreover, these implicit methods
require a good initial guess to start computing. In contrast, the second category regroups
the computationally efficient explicit methods that solve only linear equations related to
physical parameters. These methods have generally a number of unknowns much larger
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epipolar line
epipoles

(epipolar points)

Image 1 Image 2

Figure 3.6: Illustration of epipolar geometry for a pair of cameras. The points C1 and C2

are the center of projection. The image points e1 and e2 are epipolar points. The epipolar
plane corresponding to scene point P is represented in yellow. The intersection between
the epipolar plane and the image planes defined the epipolar line.
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than the degrees of freedom. Moreover, no nonlinear search entails that the effect of the
lens distortion cannot be considered. These linear solutions do not provide as good results
as nonlinear minimization.

Mixing these two approaches, Tsai (1987) proposed an autonomous, accurate, reason-
ably efficient and versatile two-step method applicable to any type of camera, whereas
most of previous methods require professional cameras and processing equipment. Ap-
proximating the intrinsic parameters to the manufacturing given values, the first stage
consists in a linear approximation of the parameters. In the second stage, the optimized
solution is computed with a standard optimization scheme, using as guess null distortion
(K1 = 0) and the parameter approximations previously computed in the first step. Even if
a reduction of the lens effect to this first radial component limits the method accuracy, this
kind of two-step method (the linear approximation is the guess for the nonlinear optimiza-
tion) still today the groundwork of most of the recent calibration procedures. Heikkila
and Silven (1997) further improved calibration by including the asymmetric projection
correction. We note that the historical development of camera calibration techniques with
an exhaustive literature survey can be found in Clarke and Fryer (1998).

Numerous calibration tools are available today (Heikkila and Silven, 1997; Vezhnevets,
2005; Strobl et al., 2006; Scaramuzza et al., 2006; Stoyanov, 2010, and many others). For
this work, the WASS calibration was done using the Camera Calibration Toolbox for
MatlabR© written by Jean-Yves Bouguet which proposes interesting additional tools, such
as corner extraction and visual check routines. As the overall accuracy of the surface
reconstruction is interconnected with the accuracy of the camera calibration, the details
on both operator procedure and calibration code as written by Jean-Yves Bouguet are
given.

3.4.2 Camera intrinsic calibration

The intrinsic parameters, which link a 3D point in the camera reference system to its
projection in the bit-mapped image reference system, must be firstly defined. Driven by
the association of a given Charge-Coupled Device (CCD) with a given lens, the intrinsic
calibration is done independently for each camera with an identical processing. A large set
of calibration images containing a square-chessboard at various distances are taken (see
Fig. 3.7). Precisely, more than 1000 images are selected for each camera. Two chessboards
with 30mm and 80mm square size were used. We note that chessboard corners correspond
to a coplanar set of points.

Since the coordinates of the chessboards are not initially known in the camera reference
system, the extrinsic parameters must be also estimated. The intrinsic parameters do not
depend on the extrinsic ones. This allows us to define an independent world coordinate
system for each image. Conveniently, the world systems are fixed such that the Xw-
axis and Yw-axis are collinear to the square sides of the chessboard and the origin is the
center of the up-left corner (see Fig. 3.7, up-left panel). Therefore, the corner world
coordinates are well known in its corresponding reference system and depend only on the
chessboard square size, dX. In a second step, the coordinates of the corner projections
must be extracted from images. The human influence on the processing is limited to a
rough estimation of the four extreme corners of the chessboard. An automatic mechanism
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then counts squares in each direction and deduces approximate locations of the projected
corners. Finally, the sub-pixel corner coordinates are computed using gradients. A visual
check is done by the operator. At the end, for each image, a set of coplanar 3D points and
their projection on the images are stored. Following the previous notations, a corner point
is defined by its coordinates (Xw, Yw, Zw) in the world reference system and its projection
on bit-mapped image coordinate system is defined by (u, v).

Heikkila and Silven (1997) proposed a first linear estimation of the 12 elements of the
camera matrix C (Eq. 3.10) using Direct Linear Transformation (DLT) initially developed
by Aziz and Karara (1971), from which can be then extract the focal length, the principal
point coordinates and the coefficients for linear distortion. In the procedure used here,
recently developed for high quality CCD and lens, the first estimation of the internal
camera parameters considers the skew factor γ and the distortion coefficients Kn and
Pn are null, and the center point (uc, vc) is the center of the pixel matrix. Moreover,
using a planar target (the corners on the chessboard are coplanar), the procedure can be
simplified compared to one proposed by Heikkila and Silven (1997) by using homography,
which reduces number of unknowns to 9. Indeed, using the world reference such as defined
previously, it follows that for all points i, Zw,i = 0, therefore equation 3.10 becomes

Zc





u
v
1



 = A
[

R T
]









Xw

Yw
0
1









= A
[

r1 r2 T
]





Xw

Yw
1



, (3.14)

where ri is the ith column of rotation matrix R. In other hand, chessboard and im-
age planes (respectively Π′ and Π on figure 3.8) can also be seen as projective planes.
Therefore, there exists a projective transformation, also called homography, which links
chessboard points to their corresponding image points. Let us define homogeneous coordi-
nates of point i on plane Π′ with Pi = [Xw,i, Yw,i, 1]

T and on plane Π with pi = [ui, vi, 1]
T.

Homography is defined using 3× 3 matrix H such that

∀i, pi ∼ A[r1, r2, T ]Pii

∼ HPi (3.15)

∼ [h1, h2, h3]Pii

where ∼ means equality up to a non-zero scale factor, and hi is the i
th column of homog-

raphy matrix H. This implies that the vector pi and HPi are collinear, so pi ×HPi = 0,
with × is the vector cross product. Applying DLT to the N chessboard points of a same
image, H can be defined as the solution of the following system

Lh = 0 (3.16)
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Figure 3.7: Example of images using for left intrinsic camera calibration. Green crosses
represent corner detected on the images whereas blue circle are reprojections of 3D points
using with calibrated intrinsic and extrinsic parameters. On upper-left panel, red lines
represent definition of the world coordinate system. Chessboard square size is 30mm on
the four upper images, and 80mm on the two lower ones.
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with

L =



























P1(1) P1(2) 1 0 0 0 P1(1)p1(1) P1(2)p1(1) p1(1)
0 0 0 P1(1) P1(2) 1 P1(1)p1(2) P1(2)p1(2) p1(2)
...

...
...

...
...

...
...

...
...

Pi(1) Pi(2) 1 0 0 0 Pi(1)pi(1) Pi(2)pi(1) pi(1)
0 0 0 Pi(1) Pi(2) 1 Pi(1)pi(2) Pi(2)pi(2) pi(2)
...

...
...

...
...

...
...

...
...

PN(1) PN(2) 1 0 0 0 PN(1)pN(1) PN(2)pN(1) pN(1)
0 0 0 PN(1) PN(2) 1 PN(1)pN(2) PN(2)pN(2) pN(2)



























and

h = [H1,1, H1,2, H1,3, H2,1, H2,2, H2,3, H3,1, H3,2, H3,3]
T.

The solution is defined at the least square sense using Singular Value Decomposition
(Golub and Reinsch, 1970, among others). Then the focal length f is extracted from
the homography matrix following Zhang (1999), with some simplifications due to the
previous estimations. As R (Eq. 3.10) is a rotation matrix, the vectors ri (Eq. 3.15) are
orthonormal. Therefore, the equation (3.15) gives two constraints (verifying the two basic
constraints given one homography), which are

hT1 (A
−1)TA−1h2 = 0 (3.17)

hT1 (A
−1)TA−1h1 = hT2 (A

−1)TA−1h2. (3.18)

By using the parameter estimations given above and assuming the aspect ratio is 1, the
matrix A (Eq. 3.12) becomes

A =





fu,v 0 uc
0 fu,v vc
0 0 1



. (3.19)

Finally, we define the matrixM , which translates the origin of the pixel coordinate system
to the center point (uc, vc) such that

M =





1 0 −uc
0 1 −vc
0 0 1



. (3.20)

Therefore, the equation 3.15 becomes

H̃ = [h̃1, h̃2, h̃3] ∼ Ã[r1, r2, T ], (3.21)

with H̃ =MH and

Ã =MA = fu,v





1 0 0
0 1 0
0 0 1/fu,v



. (3.22)
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Therefore, the constraint (3.17) gives

fu,v =

√

˜h1,1 ˜h2,1 + ˜h1,2 ˜h2,2
˜h1,3 ˜h2,3

, (3.23)

with [h̃i,1, h̃i,2, h̃i,3]
T = h̃i, the i

th column of the homography matrix H̃. We note that h1
and h2 represent the vanishing points of the lines parallel to square sides of the chessboard.
Indeed, following the definition of the world reference system, these lines have direction
vectors respectively given by [t, 0, 1]T and [0, t, 1]T. Therefore, the equations of their
projection into the image plane are h1t + h3 and h2t + h3, so their director vectors are
h1 and h2. As shown in Caprile and Torre (1990), the vanishing points of parallel lines
are given by their director vector. So, the equation 3.23 corresponds to the estimation
of the focal length from the vanishing points of lines vertically and horizontally parallel
to square side of the chessboard. A similar estimation can be done using diagonal lines
([t/2, t/2, 1]T and [t/2,−t/2, 1]T), so

fu,v =

√

√

√

√

˜h′1,1
˜h′2,1 +

˜h′1,2
˜h′2,2

˜h′1,3
˜h′2,3

, (3.24)

with h′1 = (h1 + h2)/2 and h′2 = (h1 − h2)/2. In practice, fu,v is computed over the whole
set of the M calibration images as the least square solution of the following system































































0 = ˜h1,1 ˜h2,1 + ˜h1,2 ˜h2,2 +X ˜h1,3 ˜h2,3

0 = ˜h′1,1
˜h′2,1 +

˜h′1,2
˜h′2,2 +X ˜h′1,3

˜h′2,3

}

Image 1

...

0 = ˜h1,1 ˜h2,1 + ˜h1,2 ˜h2,2 +X ˜h1,3 ˜h2,3

0 = ˜h′1,1
˜h′2,1 +

˜h′1,2
˜h′2,2 +X ˜h′1,3

˜h′2,3

}

Image I

...

0 = ˜h1,1 ˜h2,1 + ˜h1,2 ˜h2,2 +X ˜h1,3 ˜h2,3

0 = ˜h′1,1
˜h′2,1 +

˜h′1,2
˜h′2,2 +X ˜h′1,3

˜h′2,3

}

Image M

(3.25)

where h̃i,j and h̃′i,j are extracted from M -set of homography matrices H̃ = CH computed

over the M -set of calibration images and fu,v =
√
X.

We note that numerous linear estimations of the intrinsic parameters given in the
literature leads to a better estimations of a larger number of intrinsic parameters. Indeed,
the homography matrix contained 8 coefficients (9− 1 for scale factor) that can be used
to evaluate elements of A[r1, r2, T ] (Eq. 3.14). As [r1, r2, T ] is defined by 6 parameters
(3 for rotation + 3 for translation), two parameters can be estimated in A, whereas our
processing extracts only the focal length. Moreover, other methods proposed a direct
estimation of A[R, T ] (Tsai, 1987; Heikkila and Silven, 1997, among others) from which
more intrinsic parameters can be extracted. Nevertheless, the present processing considers
a computationally fast and simple way to provide enough accurate guess for the following
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Figure 3.8: Chessboard and image planes seen as projective planes, so linked by a homography matrix H.
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nonlinear estimation - thanks to the use of recent well manufactured camera and lenses.
Indeed, even when using more complicated direct methods, nonlinear estimation is still
necessary to fully take into account the lens distortion1. Another disadvantage of linear
methods is highlighted by Heikkila and Silven (1997). Considering non perfect data - the
3D coordinates (Xw, Yw, Zw) can be disturbed by non-perfectly planar chessboard and the
image coordinates of the projected corners (u, v) can contain some noise - linear solution
does not provide best estimation.

Estimating the data errors as a white Gaussian noise, the best estimation is found
with an iterative non-linear process, starting from the previously estimated parameters,
which minimize the residual between the projection model and the N -observations. As the
model (Eq. 3.10) considers also the extrinsic parameters, their estimations are required
to start the non-linear error minimization. The extrinsic parameters differs between the
calibration images (world system depends on chessboard position), and so are estimated
independently for each image. As the intrinsic parameters are now estimated, the image
coordinates can be normalized with

{

ũ′ = (u − uc)/fu,v

ṽ′ = (v − vc)/fu,v .
(3.26)

The origin of the world coordinate system is translated to the barycenter of points with











X̃w = Xw −Xw

Ỹw = Yw − Yw

Z̃w = Zw = 0.

(3.27)

Then the homography H̃ between normalized coordinates is computed using same method
as previously. Using the normalized pixel coordinates, the equation 3.15 becomes αH̃ =
[r1, r2, T ], with α an ignoring factor. An approximation of this factor is given by α =
1/2(||r1|| + ||r2||) where ||X|| means the norm of the column vector X. Therefore, the
approximated extrinsic parameters R and T are get using

r1 = αh̃1 (3.28)

r̃1 = r1/||r1|| (3.29)

r2 = h̃2 − (r̃1 · h̃2)r̃1 (ensures orthogonality) (3.30)

r̃2 = r2/||r2|| (3.31)

r̃3 = r̃1 × r̃2 (r̃3 finishes orthonormal basis). (3.32)

R = [r̃1, r̃2, r̃3] (3.33)

T = h̃3 (3.34)

where · and × are respectively vector dot and cross product. Theses estimations being
very poor due to poor approximation of factor α, a refinement is done using minimization
of the reprojection error. The iterative non-linear least square optimization processing is

1We note that some lens effect can nevertheless be estimated using linear methods (Shih et al., 1993,
as example), but accuracy is less than that expected with non-linear methods.
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now described in detail using the external parameter refinements as example. A similar
processing will be used further for the intrinsic parameter refinements. Remember that the
rotation matrix is defined by the 3 angles: θ (roll), φ (pitch), ψ (yaw) and T = [t1, t2, t3]

T.
From the world coordinates (Xw,i, Yw,i, Zw,i) of each point i, the coordinates (up,i, vp,i) of
the corresponding projection are computed using equation 3.10. So, the residual (error) r
can be estimated for each point i with ri = (ui − up,i, vi − vp,i). The solution in the least
squares sense, is the set of n parameters βj=1,...,n (here there are n parameters: θ, φ, ψ,
t1, t2, t3) which minimize the sum S of the squares residuals,

S =
N
∑

i=1

||ri||. (3.35)

The minimum value of S occurs when all its partial derivatives with respect to the 6
external parameters are zero: ∀i ∈ [1, n],

∂S

∂βj
= 2

N
∑

i=1

ri
∂ri
∂βj

= 0 (3.36)

In a non-linear system, the derivatives ∂ri/∂βj are functions of both the independent
variables and the model parameters, so these gradient equations do not have a closed
solution. Nevertheless, an iterative optimization can be implemented as follows. At each
iteration, the parameters βj are refined with βj+∆βj, where ∆βj is the approximation to a
first-order Taylor series expansion about βj. The convergence is given by all ∆βj=1,...,n are

0. We note βj=1,...,n (respectively ri, up,i, vp,i) the values at convergence, whereas β
(k)
j=1,...,n

(respectively r
(k)
i , u

(k)
p,i , v

(k)
p,i )) are the values at iteration (k). The projection function is

noted P such that PRe3→Re2 : (Xw,i, Yw,i, Zw,i) → (up,i, vp,i). The first-order Taylor series
expansion about βj gives

P (Xw,i, Yw,i, Zw,i, β
(k+1)
j=1,...,n) ≈ P (Xw,i, Yw,i, Zw,i, β

(k)
j=1,...,n)) +

n
∑

j′=1

J
(k)
ij′ ∆βj′ (3.37)

where ∆βj′ = (β
(k+1)
j′ − β

(k)
j′ ), and

J
(k)
ij′ =

∂P (Xw,i, Yw,i, Zw,i, β
(k)
j=1,...,n)

∂βj′
. (3.38)

So, in terms of the linearized model,

r
(k+1)
i = (ui, vi)− P (Xw,i, Yw,i, Zw,i, β

(k+1)
j=1,...,n)

= (ui, vi)− P (Xw,i, Yw,i, Zw,i, β
(k)
j=1,...,n)) +

n
∑

j′=1

Jij′∆β
(k)
j′

= r
(k)
i −

n
∑

j′=1

J
(k)
ij′ ∆β

(k)
j′

= r
(k)
i +

n
∑

j′=1

∂r
(k)
i

∂β
(k)
j′

∆β
(k)
j′ , (3.39)
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with ∂r
(k)
i /∂β

(k)
j′ = −Jij′ . From gradient equation 3.36, convergence is found when

−2
N
∑

i=1

Jij

(

(ri −
n
∑

j′=1

Jij′ ∆βj′

)

= 0. (3.40)

This gives the normal equations, ∀j = 1, ...n,

N
∑

i=1

n
∑

j′=1

JijJij′∆βj′ =
N
∑

i=1

Jijri. (3.41)

The matrix notation is adopted. The set of parameters βj=1,...,n defines the vector β, and
residuals ri=1,...,N defines the vector r. The Jacobian matrix J , storing all the derivatives
Jij for the whole set of 2N calibration point coordinates with respect to the n set of
parameters, is defined such that

J =



























∂θup,1 ∂φup,1 ∂ψup,1 ∂t1up,1 ∂t2up,1 ∂t3up,1
∂θvp,1 ∂φvp,1 ∂ψvp,1 ∂t1vp,1 ∂t2vp,1 ∂t3vp,1

...
...

...
...

...
...

∂θup,i ∂φup,i ∂ψup,i ∂t1up,i ∂t2up,i ∂t3up,i
∂θvp,i ∂φvp,i ∂ψvp,i ∂t1vp,i ∂t2vp,i ∂t3vp,i
...

...
...

...
...

...
∂θup,N ∂φup,N ∂ψup,N ∂t1up,N ∂t2up,N ∂t3up,N
∂θvp,N ∂φvp,N ∂ψvp,N ∂t1vp,N ∂t2vp,N ∂t3vp,N



























. (3.42)

The normal equations are therefore written

(JTJ)∆β = JTr. (3.43)

In the procedure, the convergence is considered reached when ||∆β|| becomes smaller than
a fixed threshold, with the iterative procedure given with

β(k+1) = β(k) +∆β, with ∆β = (JTJ)−1JTr(k). (3.44)

We note that an additional condition, related with the sensitivity of the solution of the
linearized system to errors in the data, is required to validate convergence. Indeed, the
condition number of the Jacobian matrix J (corresponding to the ratio of the largest
singular value of J to the smallest) must be under a fixed threshold, else the corresponding
calibration image is disable for the further intrinsic parameter optimization.

So, the external parameters Ri and Ti are now known for each calibration image and
can be used as guess for the global intrinsic-extrinsic calibration optimization over the
whole set of M calibration images. The new set of parameters (intrinsic + extrinsic) to
optimize is

β = [fu , fv , uc, vc, γ,K1, P1, K2, P2, θI , φI , ψI , t1,I , t2,I , t3,I ]
T
I=1,...,M (3.45)

where (θI , φI , ψI , t1,I , t2,I , t3,I) are the external parameters of the Ith calibration image.
The non-linear optimization procedure is similar as one described previously. Never-
theless, the new optimization considers n = 9 + 6 ∗M parameters to optimize over all
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calibration images. For obvious memory reasons, the very large matrix J is not explicitly
computed. The n× n matrix (JTJ) and the n vector JTr are directly computed, using a
loop over calibration images. We note that, the external parameters depend only on the
point set of their corresponding image. As a result, the matrix (JTJ) is sparse and so
easily invertible. Contrary to the external parameter optimization described further, ∆β
is now computed using a smoothing coefficient α, increasing with iteration such that,

∆β = αk(J
TJ)−1JTr(k), with αk = 1− (0.9)k. (3.46)

This provides an optimization of both internal and external parameters. Nevertheless, the
convergence condition only takes in account the focal length and center point accuracies
such that convergence is considered reached when

||[∆fu ,∆fv ,∆uc,∆vc]T||
||[fu , fv , uc, vc]T||

< 10−9. (3.47)

Finally, the intrinsic and extrinsic parameters are extracted from the optimized vector
β and an estimation of the uncertainties is get from the matrix (JTJ)−1, such that

U(βj) = 3DjE, (3.48)

with D = Dj=1,...,n the vector formed with the diagonal values of (JTJ)−1 and E is the
standard deviation between the observed corner projection (u, v) and the reprojection
(up, vp) for all points of all images. The deviation of the pixels from rectilinear projection
due to distortion is shown on figure 3.9.

Some tools are included in the calibration toolbox helping the operator to manage
the calibration. In particular, the difference between the found image corners and the
reprojected points can help to quickly identify bad corner detection, and remove the image
or the point from the calibration set. However, the errors on the images extremities can
be large despite of good corner matching. In this case, it is difficult to define if the image
(or the point) must be removed or not. In our calibration, we decided to use a very
large number of calibration images (compared to the number usually used) so that the
influence of such points on the calibration results is very limited. Therefore, all points,
except for the visual bad corner matching are kept for the calibration procedure. The
figure 3.10 shows these errors. We note that the skew coefficient γ was found to be equal
to zero within its uncertainty (as computed by equation 3.48) for the left camera. Its
computation was disabled (i.e. γ is removed from the vector β), and the calibration was
run again. The representation of the chessboard positions used for the left camera intrinsic
calibration computed from the optimized external parameters, are presented in figure 3.11,
in the camera reference system. The calibration results for the intrinsic parameters are
presented in table 3.2 for the two cameras.

3.4.3 Camera extrinsic calibration

The second step of the WASS calibration, usually called extrinsic calibration, consists in
get the relative positions of the cameras. This calibration required a set of stereo image
pairs, with the calibration pattern (chessboard) taken at same time by each camera in
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Figure 3.9: Deviation of pixels from rectilinear projection due to distortion for right
camera.

Left cam. Right cam.
fu ( 1457.95300 ± 0.37922 ) pix ( 1456.05048 ± 0.49248 ) pix
fv ( 1458.25791 ± 0.38494 ) pix ( 1456.16652 ± 0.48999 ) pix
uc ( 1211.97340 ± 0.24963 ) pix ( 1240.00987 ± 0.30611 ) pix
vc ( 1051.17932 ± 0.28919 ) pix ( 1043.86046 ± 0.31326 ) pix
γ 0 ( −0.00017 ± 0.00004 )
K1 ( −0.03499 ± 0.00021 ) ( −0.02265 ± 0.00024 )
K2 ( 0.04543 ± 0.00026 ) ( 0.03179 ± 0.00025 )
P1 ( 0.00141 ± 0.00005 ) ( 0.00157 ± 0.00006 )
P2 ( 0.00021 ± 0.00005 ) ( −0.00143 ± 0.00006 )

Table 3.2: Calibrated internal parameters as returned by the calibration tool. Skew
coefficient γ was found to be equal to zero within its uncertainty for left camera, so its
computation was disable, and calibration was run again. We note that uncertainties on
left camera are lower, despite of greater error on reprojection, than ones on right camera.
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Figure 3.10: Error of reprojection (residual after optimization) for the right camera :
ru = u − up and rv = v − vp. Upper-left panel shows that some reprojections are far
from observed corner, nevertheless, these points have small influence on global calibration
results, given large number of calibration points. Upper-right panel shows disparity in
reprojection errors in both u and v pixel axis. Lower panel gives disparity in reprojection
errors for each axis. We note that assumption of error assimilated to a white Gaussian
noise looks fine. Directional RMS errors of reprojection are (0.28, 0.20) for left camera
and (0.26, 0.18) for right one.
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Figure 3.11: Distribution of intrinsic calibration chessboards in camera reference system
for right camera.

92



3.4 Camera calibration and image rectification

their rigid position. Therefore, the absolute calibration pattern position is the same for
each camera and the different projections obtained on each image are only due to the
different points of view. In practice, this stereo image set have been respectively merged
with left and right image set used for the intrinsic calibration. In the following, the
extrinsic calibration considers only the set of stereo image pairs. The calibrated positions
of the chessboard in each camera reference system are thus already given by the intrinsic
calibration. We note (RL, TL) and (RR, TR) the external parameters that respectively
relates the chessboard (i.e. world) reference system to the left and right camera reference
systems. Therefore, the equation 3.2 applied to each camera gives

~Xw = R−1
L

(

~Xc,L − TL

)

(3.49)

~Xw = R−1
R

(

~Xc,R − TR

)

(3.50)

where ~Xw = [Xw, Yw, Zw]
T ~Xc,L = [Xc,L, Yc,L, Zc,L]

T and ~Xc,R = [Xc,R, Yc,R, Zc,R]
T are

respectively coordinates in world, left camera and right camera reference systems. It
follows

~Xc,R = RL→R
~Xc,L + TL→R, (3.51)

where RL→R and TL→R described rotation matrix and translation vector from left to right
camera reference systems, such that

RL→R = RRR
−1
L = RRR

T
L (3.52)

TL→R = TR −RRR
−1
L TL = TR −RL→RTL. (3.53)

Using these equations (3.52,3.53), the rotation matrix RL→R (or angles θL→R, φL→R and
ψL→R) and the translation vector TL→R are computed independently for each stereo image
pair. The first estimation for the rotation and the translation between the two views are
given by the median values over the set. Then, as in the intrinsic calibration, an iterative
non-linear optimization refines the values minimizing the reprojection errors on both left
and right images. The optimization considers the relative angles θL→R, φL→R, and ψL→R,
the three components of relative translation vector TL→R and the sets of the left extrinsic
parameters for all stereo image pairs. We note that the set of right extrinsic parameters
are now considers rigidly liked to left ones with RL→R and TL→R, and do not have to be
included in list of parameters to optimize. The stereo calibration tool also proposed a
refinement of the left and right intrinsic parameters. However, the set of stereo calibration
images does not cover properly the whole field of view of each camera. So, despite a better
minimizing of the global reprojection errors, such a refinement leads to non-real intrinsic
values, and is hereby disabled. The vector β of parameters to optimize is so

β = [ θL→R , φL→R, ψL→R, tL→R, tL→R, tL→R, ... (3.54)

θL,I , φL,I , ψL,I , tL,1,I , tL,2,I , tL,3,I ]
T
I=1,...,M , (3.55)

whereM is now the number of stereo image pairs. The non-linear optimization procedure
is similar as one used previously, with the direct computation of the matrix (JTJ) and
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the vector JTr to save memory, but without the smoothing coefficient (α = 1). The
convergence condition is considered reached when

||[∆θL→R,∆φL→R,∆ψL→R,∆tL→R,∆tL→R,∆tL→R]
T|| (3.56)

−||[θL→R, φL→R, ψL→R, tL→R,1, tL→R,2, tL→R,3]
T|| < 5.10−6 . (3.57)

Finally, the optimization procedure returns the relative camera position (θL→R, φL→R, ψL→R, tL→
with their uncertainties computed with the equation 3.48.

This kind of external calibration, using a chessboard pattern, generally provides very
nice results. Nevertheless, the calibration and the acquisitions were not done in the same
place and it appears that the mounting of the camera bar on the platform modified the
relative positions of the cameras. A solution was found thanks to a recent calibration code
developed by at the Dipartemiento si Scienze Ambiantali, Informatica e Statistica of the
university Ca’ Foscari Venizia in Italy and run by Filippo Bergamasco. The code is not
yet published and so will not be fully detailed here. For each acquisition, the code is run
over 30 sea surface images extracted from the acquisition, and returns relative position of
the camera. Nevertheless, the absolute translation vector between the cameras cannot be
extracted from sea surface images, and is returned normalized by the absolute distance
between camera. Compared to the results obtained with the chessboard calibration, the
relative rotation (around Xc,L) between the cameras is increased by a few degrees. These
few degrees have a strong influence on the final results, providing a magnification of the
3-dimensions by a factor about 2. Nevertheless, they do not significantly affect distance
between the cameras. The distance between the cameras is obtained by the chessboard
calibration and is the applied to the normalized translation vector to obtain the absolute
translation vector later used for reconstruction.
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3.4.4 Image rectification

The image rectification is an important step of the stereo reconstruction made in this
work. First, it permits the correction for distortion for left and right images. As a result,
the linear inverse mapping given by the equation 3.13 can be applied on the rectified
images. The second rectification, named stereo rectification, brings the epipolar lines
aligned with the horizontal pixel lines, and in correspondence between left and right
images. As a result, a point which projects on the left image into pixel (uL, vL) must
project on the right image on the epipolar line defined by uR = uL, and vice versa.
The stereo rectification is not fundamental for stereo reconstruction itself, nevertheless,
it simplifies the matching points processing described further (§3.5.1).

The image rectification consists in an image transformation such that the rectified
image corresponds to the projection of the same scene taken by an hypothetical camera
with the same optical center, but with another orientation and/or another set of intrinsic
parameters. The image rectification processing consists in the following steps. First, all
pixels of the rectified image are associated to their 3D ray using rectified set of intrinsic
parameter and new orientation. As no distortion effects are wanted on the rectified images
(i.e. Kn = 0 and Pn = 0 for rectified images), the rays are linearly expressed in the a
hypothetical camera reference system by
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, (3.58)

with t ∈ [0,∞[. The subscript (r) means that coordinates are given in rectified image
or hypothetical camera system, whereas the subscript (i) means that coordinates are
given in initial image or camera system. Then defining Rrect the rotation matrix between
hypothetical and real camera optical axis, the rays are expressed in real camera reference
system (r) by
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. (3.59)

Then, the projections (u(i), v(i)) of the rays, from rectified image, onto the initial image
plane are given by the equation 3.8 using the real calibrated intrinsic parameters. We
note that the distortion of the initial image is taken into account. Finally, for rays that
intersect the initial image (i.e. u(i) and v(i) are respectively in range [0, Nu,(i) − 1] and
[0, Nv,(i) − 1], with (Nu,(i), Nv,(i)) the size of the initial image), a bilinear interpolation
of the pixel values at (u(i), v(i))) on the initial image gives the pixel value at (u(r), v(r)))
on the rectified image. In practice, the pixel index and the interpolation coefficients are
computed to be applied quickly on the whole set of acquisition images.

Using Rrect = I3 and identical initial and rectified intrinsic parameters, except the rec-
tified distortion parameters that are set to zero, the process returns images only corrected
for distortion. However, the stereo rectification implies both a modification of the camera
orientation, through Rrect, and the modification of some intrinsic parameters. First, mak-
ing epipolar lines parallel implies bringing the epipolar point at infinity. This corresponds

95
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to parallel left and right image planes, and so parallel optical axis (RL → R = I3). This
is obtained by rotating each camera minimally such that

R1,L = Frodrigues(−θL→R/2,−φL→R/2,−ψL→R/2) = R−1
L = RT

L (3.60)

R1,R = Frodrigues(θL→R/2, φL→R/2, ψL→R/2) = R−1
R = RT

R. (3.61)

where Frodrigues returns the rotation matrix corresponding to roll, pitch, and yaw angles
(Rodrigues formula). This implies that the new translation vector between the cameras
is T1 = R1,RT . Then, the epipolar lines aligned with the horizontal pixel lines are given
by the rotation R2 which makes the horizontal pixel lines parallel to T1. Finally, the
rotations to be applied to each camera are

Rrect,L = R2R1,L (3.62)

Rrect,R = R2R1,R. (3.63)

The rectified set of external parameters that links left to right camera is

Rrect,L→R = I3

Trect,L→R = Rrect,RT. (3.64)

Finally, epipolar lines in correspondence are obtained by coplanar left and right image
planes and a same vertical pixel discretization (fv,rect identical for both each image). In
order to retain the maximum information from initial image (i.e. a maximum of rays
from the rectified image intersect the initial image), the common rectified focal length is
defined such that

frect,v = min(f1, f2) (3.65)

where

f1 = fv,L
[

1 + P1,L(N
2
u +N2

v )/(4P
2
2,L)
]

(3.66)

f2 = fv,R
[

1 + P1,R(N
2
u +N2

v )/(4P
2
2,R)
]

(3.67)

Therefore, the rectified set of intrinsic parameters for each camera is only modified by
setting distortion parameters to zero and vertical pixel focal length to fv,rect and the
rectified relative position of the cameras are given by equations 3.64

3.5 Sea surface reconstruction

The stereo analysis to obtain the 3-D shape of a scene is one of the first and most
popular problems in Computer Vision. As discussed above in paragraph 3.3.3, using two
projections of the same scene from different points of view restores the third dimension
lost by single projection. Thanks to the camera calibration described in the previous
paragraph 3.4, links between 3D scene and each projection are now well-known. Moreover,
using rectified images (with rectified camera parameters), the inverse mapping has now a
simple linear solution given by equation 3.13. For the continuation of the chapter, only
rectified images with their rectified intrinsic and extrinsic parameters are now considered
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3.5 Sea surface reconstruction

and, subscript rect is removed to simplify the notation. Surface reconstruction is in
theory trivial. Since projection in each image of a same scene point is found, intersection
of corresponding rays gives its 3D position (see paragraphs 3.3.3 and 3.5.2). In practice,
the main problem in stereo analysis is how to find, given a point in the first image,
the corresponding point in the second image. This problem, commonly known as the
correspondence problem is discussed in the section 3.5.1. Then, the triangulation process
which computes the 3D coordinates in the camera reference system from the matched
projections is given in the section 3.5.2. The definition of the mean sea surface plane in
the camera reference system is discussed in the paragraph 3.5.3. The section 3.5.4 deals
with the expression of the 3D coordinates of the points in the world reference system.
Then, the paragraph 3.5.5 investigates the correction of asymmetric projection. Finally,
the section 3.5.6 describes griding and smoothing of the sea surfaces. The main steps of
the processing are illustrated on the figure 3.12.

3.5.1 Point matching processing

Usually, in computer vision, when the dynamic of the scene is acquired (i.e. movie of
the scene is taken), motion can be used to help the research of correspondences and
correspondences can be used to infer the motion of rigid bodies in the scene (Kanade and
Morris, 1998). Since water waves are definitely far from rigid bodies, an ad-hoc algorithm
must be implemented and each image pairs is processed independently (Benetazzo, 2006).

Point matching processing used here is an adaptation of the work of Benetazzo (2006).
Given a point in a right image, process consists in search the corresponding point on the
corresponding left image. A rectangular area is defined around the point in right image
as template. Then similar templates are searched in right image using cross-correlation.
Also known as sliding dot product, cross-correlation determines a correlation coefficient
for each part of the left image that quantifies the similarity with the right template.
Similarity of the templates is then assimilated to similarity of the points. Correlation
coefficient can be computed over various algorithm. Here, the normalized correlation
coefficient, CuR,vR(uL, vL), which measures similarity between right point (uR, vR) and left
point (uL, vL) is given by

CuR,vR(uL, vL) =

∑

u′,v′ (TR(u
′, v′)− TL(u

′, v′))2

√

(

∑

u′,v′ TR(u
′, v′)2

)(

∑

u′,v′ TL(u
′, v′)2

)

(3.68)

where TLand TR are respectively left and right template defined around (uL, vL) and
(uR, vR) and

∑

u′,v′ is the sum over all element of the templates. Therefore, CuR,vR defined
the correlation map on left image of right point (uR, vR). The best matching is then
get as point providing greater correlation coefficient and pairs of corresponding points
[(uL, vL), (uR, vR)] are defined. Horizontal and vertical disparity maps are respectively
given by uR − uL and uR − uL. As discussed in Benetazzo et al. (2012), discretization
of the continuous world by CCD cell implies that correspondence are fit to the closest
integer-pixel, forcing the reconstructed 3D points to lie only on a certain discrete collec-
tion of depth planes from the cameras after triangulation (§3.5.2). In this work, sub-pixel
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Chapter 3. Sea surface reconstruction

Figure 3.12: Main steps of stereo reconstruction processing: Top panels show set of corre-
sponding points returnd by matching point processing. Bottom left panel corresponds to
the stereo-triangulation processing. Finally, bottom-right panel represents the sea surface
obtained in world coordinate system. Figure presented here shows results obtained for
first image pair of the 4th acquisition.
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3.5 Sea surface reconstruction

matching algorithm proposed by Benetazzo et al. (2012) is implemented, reducing discon-
tinuous transitions in disparity map.

Following epipolar geometry, corresponding point must be on left epipolar line, limiting
the searching of correspondence to this line. In practice, a search area of some pixel
width ∆v around epipolar line is chosen to avert for errors in calibration and image
stereo rectification. Using stereo rectified images, search area corresponding to right point
(uR, vR) is defined on left image by vL−vR < ∆v. In addition to save computational time,
this restricted search area limits for multiple matching which comes from pseudo-fractal
aspect of the sea surface. We note that using rectified images, epipolar line are supposed
to be horizontal and in correspondence. Therefore, non-zero vertical disparity maps are
an indicator of errors in calibration. This will be discussed further and focus is now on
horizontal disparity map, linked to the 3D scene.

To reject bad matching, Benetazzo (2006) proposed that the pairs of matched points
are kept when texture (variance) in templates and obtained maximum correlation coeffi-
cient exceeds predefined thresholds. However, experience showed that in the presence of
breaking waves, these conditions are not adapted. Breaking waves form bright patches
over darker surface water2, resulting in strong brightness gradients. The presence of these
strong gradients in correlation templates strongly disturbs matching processing, partic-
ularly if the gradients are on extremities of the templates, by providing large variance
and correlation coefficients but non corresponding points. Indeed, strong gradients in
templates give too much weight on the corresponding zone of the template. As a result,
best matching is obtained for templates that provide best fit only on strong gradient
parts. The figure 3.13 shows aberrant surfaces provided by this spurious effect around a
breaking wave. Typically, extension around bright part of the images of such effects is
subdued by defining smaller correlation templates. Nevertheless, smaller correlation tem-
plates also increase probability of multiple and bad matching. Therefore, improvements
on the processing of Benetazzo (2006) were implemented for reconstruction of sea surface
in presence of breaking waves.

A first improvement consists in a simple equalization of the pixel value histogram
applied on both left and right images, resulting in a homogenization correlation weight
within templates. Histogram equalization is a gray scale transformation T which min-
imizes |c1(T (i)) − c0(i)| where c0(i) is the cumulative histogram of the image, c1(i) is
the cumulative sum of an ideal flat histogram for all intensities i. This minimization is
subject to the constraints that T must be monotonic and c1(T (i)) cannot overshoot c0(i)
by more than half the distance between the histogram counts at intensity i. Another
good way to homogenize template correlation weight is to apply histogram pixel equal-
ization independently over each pair of right correlation template and left search area.
Such an implementation was tested. The slight results improvement costs an increase of
the computational time of about a factor 3, and was so not retained in our processing
algorithm.

A second improvement consists in reducing of the correlation template size. To avoid
increasing probability of bad matching, search areas must be reduced. Therefore, the
pyramidal search, implemented by Benetazzo (2006) to save computational time, now

2This particularity is used for the breaking detection discussed in next chapter.
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Figure 3.13: Example of bad point matching due to foam patch. Size of correlation
templates is purposefully increased to 121 × 61 pixels to exaggerate this phenomenon.
Left panels: Matching points obtained between left (top) and right (bottom) images.
Color of points are correlation coefficient of matching (top) and standard deviation of
pixel values in right correlation window. Green point matching is not disturbed by foam
patch whereas red point matching if fully driven by small part of foam patch in correlation
window. Top-right: resulting surface after stereo triangulation (§3.5.2) and rotation to
world coordinates (§3.5.4). Green point falls on reconstruction in back of wave crest
whereas images show that it is in front of the crest. Bad matching leads to unrealistic
step around foam patch. Bottom-right: histogram of pixel vertical coordinates disparity
between left and right images, with abnormal peak observed around pixel value 101 due
to bad matching.

100



3.5 Sea surface reconstruction

includes a decreasing of correlation template size with increasing iterations. A 3-step
corresponding point search is implemented. In the first step, we get disparity map corre-
sponding to the mean surface plane. A few number of corresponding points distributed
over reconstruction area are given by highest correlation coefficient computed using a large
correlation template (121×61 pixels), which increases the probability of good matching. A
simple standard deviation filtering rejects uncertain matching. Then, 2D linear functions
are fit at the least square sense on kept correspondence, such that

uL = AuuR + BuvR + Cu (3.69)

vL = AvuR + BvvR + Cv. (3.70)

These functions are then assimilated at pixel displacement between right and left corre-
sponding point, due to mean sea surface plane of the considered area. Then, second step
is to approximate disparity map due to long signal waves in images. A denser grid is
defined on the right image and corresponding left points are searched using smaller corre-
lation template(41 × 41 pixels). Estimating location of corresponding left points thanks
to linear functions 3.69 and 3.70, search areas can be reduced and bad matching proba-
bility decreased. A standard deviation filtering is then applied on the difference between
predicted and found left points to rejects uncertain matching. Finally, the last step is to
find a very dense set of corresponding points, with a 2 × 2 pixel resolution grid defined
on the right image. Once again, predictive locations of correspondences on left image are
estimated using linear interpolation of the previous results. Finally, a fine disparity map
is obtained using a small correlation template (21×21 pixels), and sub-pixel fit. Again, a
standard deviation filtering is then applied on the difference between predicted and found
left points.

We note that due to the projective transformation between left and right images, the
rectangular template in the right image must corresponds to a parallelogram on the left
image. Therefore, the processing is slightly modified by taking into account for this fact.
Following methods of Kosnik and Dulov (2011), results at each step are now used to
transform the left image, such that disparity map computed over transformed image is
null. In a similar way as described above, a projective transformation fitted on the first
step filtered results is applied on the left image. The rectified left image is used in the
second step search, where predictive positions of correspondences are (uL, vL) = (uR, vR).
Reverse transformation then recover correspondences in the initial left image. A piecewise
linear transformed image is computed by these results and used in the last step search.
Reverse transformation gives fine disparity map. Correlation template sizes are kept equal.
We note that with this method variant, matching should be better, because rectangle
pattern in right image correspond to rectangular pattern in transformed left one. We
note that image transformation also induces a smoothing of pixel values, so a loss of
texture in the images, which slightly increases the number of unmatched points.

Experience shows that direct triangulation of these results leads to spiky surfaces.
Therefore, the disparity map is smoothed using a 10×10 point (i.e. 20×20 pixel) median
filter, resulting in the figure 3.15. The figure 3.14 shows corresponding points obtained
with this modified matching processing.

We note that Benetazzo (2006) proposed to approximate locally the water surface
by a planar surface to limit the possible location of the corresponding points on the
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Figure 3.14: Same figure as 3.13, but matched points are now obtained with decreasing
correlation template size, pixel histogram equalization, and left image rectification. Sizes
of correlation templates are 121×61 pixels, 41×41 pixels, and 21×21 pixels in subsequent
searching steps. Left panels: Matching points obtained between left (top) and right
(bottom) images. The point colors represent correlation coefficient of matching (top) and
standard deviation of pixel values in right correlation window. Top-right: resulting surface
after stereo triangulation (§3.5.2) and rotation to world coordinates (§3.5.4). Bottom-
right: histogram of pixel vertical coordinates disparity between left and right images.
The abnormal peak observed around pixel value 79 in figure 3.13 is not present here.
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Figure 3.15: Same figure as 3.15, after the smoothing of the disparity map with a 10 ×
10 point (i.e. 20 × 20 pixel) median filter. Top-right: resulting surface after stereo
triangulation (§3.5.2) and rotation to world coordinates (§3.5.4). Bottom-right: histogram
of pixel vertical coordinates disparity between left and right images.
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epipolar line in subsequent steps. Here, the reasoning is different. Indeed, Benetazzo
(2006) use a same correlation template size for all its steps, and so subsequent steps only
search for new correspondences, with the aim of refining the disparity map. Therefore, a
non-iterative search should lead to the same disparity map, and iterative-processing only
saves computational time. In the method described here, the previous steps predict the
approximative locations of the correspondences and so reduces the search areas in the
next step. This helps to reduce the correlation template size, with a limited increase in
the probability of bad matching. Therefore, each step refines correspondences location.

The size of the correlation template footprints on the sea surface greatly increase away
from the cameras. Therefore, the use of a fixed template size over the whole image must
be interpreted with care. Indeed, on upper part of images, disparity is obtained over sea
surface areas of a few square meters whereas disparity on the lower part of the images
is obtained over sea surface areas of a few square centimeters. At this stage, absolute
position and orientation of cameras are not known3. Nevertheless, they can be estimated
from triangulation (see §3.5.2) of the points taken in the first step. Therefore, an adaptive
correlation template size can be implemented to keep a constant footprint on the sea
surface. Such processing should leads to more homogeneous disparity map. However,
in a same way, informations on small waves far from cameras (i.e. in the upper part of
the images) is lost due to the larger footprints of pixels. Because the correspondence
search needs enough texture within the correlation templates, such a processing was not
implemented.

The figure 3.16 show the zone on images selected for reconstruction. The zone shapes
are computed using an approximation of the mean sea surface plane to provide recon-
structed surfaces approximatevely rectangular.

Figure 3.17 shows the time-mean horizontal and vertical disparity maps obtained for
the acquisition 4. The non-null vertical disparity map means that correspondences were
found out of calibrated epipolar lines, and so reveals errors in calibration results. Never-
theless, we note that the vertical disparity maps are typically less than one pixel. This
indicates that the intrinsic and extrinsic camera parameters are correct and can be used
for next reconstruction steps.

The matching process is the more expensive process of reconstruction in term of com-
putational time. Matching process takes more than 6 minutes to search for the about
100000 correspondence, corresponding to previous shown figures. As reference, the fixed
correlation template size (61× 41 pixels) process takes about 30% more time, and reject-
ing process applying pixel histogram to each correlation template and search areas takes
more than 300% more time for same reconstruction area. Written in MatlabR©, codes were
compiled and matching processes, independent for each image pairs, were then distributed
in a few hundred parallel jobs.

3.5.2 Triangulation processing

Following the epipolar geometry discussed in paragraph 3.3.3, the triangulation provides
the 3D coordinates of the intersection of rays corresponding to left and right corresponding

3Only relative positions and orientations of camera compared to each other are given by calibration.
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Figure 3.16: Reconstruction zone in which matching processing is done. Results are
approximatively rectangular reconstructed sea surface.
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Figure 3.17: Mean vertical (left) and horizontal (right) disparity maps obtained from the
average of the 21576 disparity maps of the 4th acquisition.
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points using equation (3.13),
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As the earth system is not defined at this stage, the world system is defined as the left
camera system. Then, using relative camera position (Eq. 3.51) with intrinsic camera
matrix (Eq. 3.12), triangulation searches for αL and αR which are solution of
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where R = RL→R and T = TL→R, such as defined by external camera calibration. As
undistorted images are used, ṽ′L = ṽ′R = ṽ′ and [ũ′, ṽ′, 1]T = A−1[u, v, 1]T, with α[ũ′, ṽ′, 1]T

is equation of the 3D ray corresponding to pixel (u, v). Moreover, the stereo rectification
of images implies R = I3 and T = [d, 0, 0]T. Therefore, equation 3.72 can be written
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ũ′R
ṽ′
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Then, the equation 3.73 gives
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(3.74)

This verifies definition of image stereo rectification, with third dimension fully given by
horizontal disparity map. Nevertheless, in practice, calibration errors and non-perfect
accuracy of matching points lead to vL 6= vR. As a result, left and right rays computed by
equation 3.13 do not intersect in the 3D space. The problem, then, is to find a 3D point
which optimally fits the measured image points. Literature proposes multiple methods
to define this optimal point. Based on different optimality criteria, the various methods
produce different estimates when noise (error) is involved. A description of triangulation
processing used in this work is now given. Usually called mid-point method, the algorithm
first computes independently the point [X ′

L, Y
′

L, Z
′

L]
T = αL[ũ′L, ṽ

′

L, 1]
T on left ray closest

to right ray and inversely, the point [X ′
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R, Z
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R]
T = αR[ũ′R, ṽ
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T on right ray closest to

left ray with
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[
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(3.75)
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1

D

[

||rL||2(rR · T )− (RrL · T )(rR ·RrL)
]

(3.76)
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where (x · y) means dot product of vectors x and y, rL = [ũ′L, ṽ
′

L, 1]
T, rR = [ũ′R, ṽ

′

R, 1]
T are

respectively left and right rays, and

D = ||rL||2||rR||2 − (RrL · rR)2. (3.77)

Obviously, if the left and right rays intersect, these two points are directly linked by rigid
transformation between camera. In general case, the two different points are expressed in
the same reference system (here left camera one) and mid-point is computed, in both left
and right camera reference system with
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and
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We note that the following triangulation algorithm does not need image stereo rectifi-
cation. Nevertheless, it is implicitly assumed that a previous correction of images for
distortion was done, which allows a linear link between pixel p = (u, v) to its correspond-
ing ray [ũ′, ṽ′, 1]T. From each stereo image pair, triangulation returns a scattered set of
3D surface point positions expressed in left and right camera reference system. Bottom
left panel of figure 3.12 shows an example of 3D surface point coordinates returned by
triangulation processing, expressed in right camera reference system.

3.5.3 Mean surface plane definition

This process consists in the expression of the scattered surface points in world coordinate
system, where axis ~Xw and ~Yw are horizontal and ~Zw is aligned with gravity, looking up.
As position of cameras in such a reference system is not known, information must be
extracted from the set of 3D points. Only right coordinates are now used, but similar
process can be done over left ones. Following Benetazzo (2006), gravity direction in right
camera reference system is obtained using time-averaged water surface elevation. Indeed,
considering a long period, the time-average surface is assumed to be a horizontal plane.
Benetazzo (2006) proposed to fit a plane (aXc + bYc + cZc + d = 0, with a2 + b2 + c2 = 1
and c ≥ 0) over all scattered points using a least square solution. In practice, solution can
be found directly over the whole set of 4D (space + time) scattered points. Therefore, the
mean plane is obtained by averaging all the a, b, c, and d parameters of planes fitted for
each stereo image pairs. We note here that triangulation applied on time-mean disparity
map gives 3D positions of 3D scattered points on mean sea surface plane. Mean plane can
then be extracted directly from this set of points. The two methods were implemented,
and they give similar results. The effect on final reconstruction is negligible.
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3.5.4 Surfaces in world reference system

The rigid transformation between right camera reference system and world system is
defined by consecutive rotation Rc→w which makes the mean surface plane horizontal
and vertical translation Tc→w which moves mean sea surface plane to Zw = 0. In other
words, the world system is defined by ~Zw is aligned with gravity, looking upwards, and
the origin is on mean sea surface plane, vertically below right camera. We define the unit
normal vector of plane ~np = [−a,−b,−c]T, looking out water (camera looks down and
plane parameters are defined such that c ≥ 0). Rotation must transform ~np into [0, 0, 1]T.
Therefore, Rc→w = [~u,~v, ~np]

T with (~u,~v, ~np) forms an orthonormal basis, here defined
with

~u =
[b,−a, 0]T√
a2 + b2

(3.80)

~v = ~np × ~u. (3.81)

where × means cross product. We note that any couple of vectors (~u,~v) which form

orthonormal basis with ~np makes mean sea surface plane horizontal with ~Zw looking up.

Nevertheless, defining the third component of ~u null, the obtained ~Yw is aligned with
camera reference (i.e. rotation around Z-axis (yaw) is null). The proper direction of
~u then gives positive values of Yw. Finally, translation vector is simply defined with
Tc→w = [0, 0,−d]T. Therefore, coordinates of surface points in world coordinates are





Xw

Yw
Zw



 = Rc→w





Xc

Yc
Zc



+ Tc→w. (3.82)

3.5.5 Correction for the asymmetric projection

Inspired from works of Heikkila and Silven (1997) (§2.3), a correction for the asymmetric
projection was implemented. In our experimentation, image and sea surface planes are
not parallel. So, projective geometry does not preserve shape. In other words, the image
rectangular correlation template projects on the mean sea surface plane in a quadrilat-
eral polygon. Considering a real sea surface deformed by waves, projection is a complex
surface. Generally, the barycenter of this surface does not project on center of the cor-
responding image template. This problem is commonly called asymmetric projection.
Using a five-step iterative processing, template corners of each left and right camera
are projected on sea surface plane, as defined in the previous paragraph. The template
barycenter is then reprojected on left and right images respectively, giving a new disparity
map. A new triangulation is done, giving a new mean plane. The process is reiterated to
obtain both the mean plane and a set of triangulated points corrected for the asymmetric
projection. We note that this processing does not take in account the local sea surface
slope due to waves. Nevertheless, experience shows that such a correction provides a
minor modification of the results. Figure 3.18 shows deviation of triangulated points due
to correction for the asymmetric projection.
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Figure 3.18: Triangulated point deviation due to correction for asymmetric projection,
applied on the mean disparity map of acquisition 4 (Fig. 3.17)
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3.6 Analyses of sea surface reconstructions

3.5.6 Griding and smoothing of the surfaces

As scattered point sets are difficult to manipulate, the surface at each time step (i.e. for
each stereo image pair) is then gridded, using a bi-linear interpolation. Three different
grids are defined. First, two grids, shown in blue and red on figure 3.16, are used for
the 3D spectra (frequency-wavenumber) described in the next section. A third large grid,
shown in black on the figure is used in next chapter to analyze breaking events.

To reduce noise in the data, a slight smoothing is applied on the gridded surface, using
a time-space low-pass filter. The 2D space filter is defined by the matrix Fs such that

Fs =
1

16





1 2 1
2 4 2
1 2 1



, (3.83)

and the time filter is a 5-point hann window. This time-space filtering reduces noise for
frequencies up to 1Hz.

3.6 Analyses of sea surface reconstructions

The reconstruction results here analyzed correspond to the matching processing including
both equalization of pixel intensity histogram and decreasing correlation template size as
discussed in paragraph 3.5.1, with the correction for asymmetric projection described in
paragraph 3.5.5. If it is not specified, the smoothed surfaces are analyzed (see §3.5.6).
After the reconstruction processing and the data griding, the time-evolving elevation map
are Z(x, y, t) for a regular x, y grid.

Unfortunately, the wave elevation could not be measured in the reconstruction areas.
Indeed, the above-water part of the capacitance wave gauges would have affected the
images, making reconstruction impossible and due to the water depth (30m), the pressure
sensors could not measure the short waves. Nevertheless, the capacitance wave gauges
were about 20-30 meters away from reconstruction areas. At this distance, wave shapes
are strongly disturbed, and the direct comparison of water elevation cannot be done,
however, the wave statistics are comparable. Therefore, Probability Density Function
(PDF) of elevation and the frequency spectra obtained with reconstruction are compared
to those obtained with wave gauges in the respective sections 3.6.1 and 3.6.2. Another way
to validate our reconstruction is the 3D wavenumber-frequency-direction spectra discussed
in the section 3.6.3. The directional wavenumber spectra are then analyzed in the section
3.6.4. Finally, the mean square slopes (mss) are compared to the observations of Cox and
Munk (1954) in the section 3.6.5.

3.6.1 Probability density function of the elevation

For each acquisition, the Probability Density Function (hereinafter PDF) of the elevation
is computed over the whole set of 3D reconstructed surfaces. The PDF are compared
to those those obtained with the wave gauges time series on the figure 3.19. The ob-
tained PDF are in line with the wave gauge observations. Nevertheless, we note that the
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Chapter 3. Sea surface reconstruction

reconstruction for the fourth acquisition disagree with wave gauges data. Same disagree-
ment is observed on the comparison of frequency spectra given further. We also note an
unrealistic step in the PDF obtained with the wave gauges around Z = −0.5m.

3.6.2 Non directional frequency spectra

For each (x, y) of the grid, the time series of surface elevations, Zx,y(t), are exacted.
For each time series, the frequency spectra are computed in the sliding sub-time series
of 1024 elevation, and averaged. We note that no spatial variation of spectra on the
grid appears up to 2Hz. The same processing is applied on the 6 wave gauges time
series. For both reconstruction and wave gauge data, all the frequency spectra obtained
in different location are finally averaged and plotted on figure 3.20. The spectra from the
reconstructions are globally in line with wave gauges observations, and well followed the
expecting f−5 decreasing asymptote. We note however that a bad fit is observed for the
small swell present during the first acquisition. This bad fit could be relied to the short
time-series observations for the first acquisition, in which statistics on longer waves can
not be well represented.

3.6.3 Frequency-wavenumber directional spectra

For the acquisition 1 (resp. 2, 3 and 4), 11 (resp 28, 42 and 42) elevation matrix Z(x, y, t)
with size 128×128×1024 (resp. 200×200×1024, 240×240×1024 and 256×256×1024)
are extracted from smoothed surfaces, and the corresponding 3D spectra E(kx, ky, f) are
computed and averaged. Hann-windows are applied in each axis (x, y and t), before
the spectrum calculation. We note that an ambiguity in direction of 180˚on the 2D
wavenumber spectra cannot be resolved using an individual elevation map. Nevertheless,
the time evolution of the elevation maps resolves this direction ambiguity through the
3D frequency-wavenumber spectra. Therefore, the spectrum part corresponding to the
negative frequencies is removed. Due to the symmetry of the Fourier spectrum, the
energy is conserved with a multiplication of the energy spectrum part corresponding to
the positive frequencies by 2. The 3D spectra E(kx, ky, f) are converted to frequency-
wavenumber-direction spectra E(k, θ, f) and respectively plotted on the figures 3.21-3.24,
for the 4 acquisitions.

The figures show that the energy integrated over directions follows the dispersion
relation up to 1.6Hz. We however note that the phase speeds of the small waves is sightly
greater than ones expected by the dispersion relation. The small wave are modulated
and drifted by the longer underlying wave orbital velocity, resulting in absolute greater
apparent phase speed. We note also the presence of the energy corresponding to the
second order. The directional energy spreading is discussed in the next paragraph.

3.6.4 Wavenumber spectra

The wavenumber spectrum considers the spatial Fourier analysis. From a square sub-
area is extracted from each elevation map, the wavenumber spectra E(kx, ky) can be
computed, then averaged over the whole set of images. As stated before, this Fourier
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Figure 3.19: Probability Density Function (PDF) of the surface elevation. Black lines
correspond to the PDF obtained with wave gauges time series. The blue lines correspond
to the PDF of the reconstructions obtained with the new processing, including both
equalization of pixel intensity histogram and decreasing correlation template size in the
matching point processing, and the correction for asymmetric projection.
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Figure 3.20: Frequency Spectra (FS) of the surface elevation. Black lines correspond to
the PDF obtained with wave gauges time series. The blue lines correspond to the FS
of the reconstructions obtained with the new processing, including both equalization of
pixel intensity histogram and decreasing correlation template size in the matching point
processing, and the correction for asymmetric projection.
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3.6 Analyses of sea surface reconstructions

Figure 3.21: Wave spectrum over wavenumbers and frequencies (i.e. 3D spectrum
integrated over directions) on the left panel and cross-sections in the 3D frequency-
wavenumber-direction spectrum at fixed frequencies on right panels, for acquisition 1
(U10 = 11.5 m/s, Hs = 0.30 m, fp = 0.33 Hz). The white arrow indicates the wind
direction.

115



Chapter 3. Sea surface reconstruction

Figure 3.22: Same figure as Fig. 3.21 for acquisition 2 (U10 = 10.9 m/s, Hs = 0.36 m,
fp = 0.38 Hz).
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Figure 3.23: Same figure as Fig. 3.21 for acquisition 3 (U10 = 13.2 m/s, Hs = 0.45 m,
fp = 0.33 Hz).
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Figure 3.24: Same figure as Fig. 3.21 for acquisition 4 (U10 = 13.9 m/s, Hs = 0.55 m,
fp = 0.27 Hz).

118
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analysis is ambiguous in the direction of 180˚, and the directional spreading can be
properly extracted. Using stereo reconstruction of the sea surface using photograph,
the observations of Banner et al. (1989) are altered by this directional ambiguity. The

integration of the spectra over direction is nevertheless analyzable. E(k) =
∫ 2π

0
E(k, θ)dθ

is plotted on figure 3.25 and saturated spectra S(k) = E(k)k3 is plotted on 3.26. The
energy level, and so the saturation, becomes higher with the development of wave field
(i.e. with increasing wave age). The saturation level is compared to the analytic spectra
for fully developed sea state of of Bjerkaas and Riedel (1979), Apel (1994), Donelan
and Pierson (1987) and Elfouhaily et al. (1997). In the wavenumber range given by the
surface areas considered, these analytical spectra have large disparity in the saturation
levels, from 4 10−3 for spectrum of Bjerkaas and Riedel (1979) and one of Elfouhaily et al.
(1997) to 42 10−2 for Donelan and Pierson (1987) spectrum. The Apel (1994) spectrum is
saturated at 8 10−3. We note also that the peak wavenumbers are respectively 0.44, 0.58,
0.44, and 0.29rad/m. An oscillation of the saturated spectra at 10kp is also observed by
Leykin and Rozenberg (1984).

To study the directional spreading of the 2D wavenumber spreading, the ambiguity on
the direction must be removed. Here, the time evolution of the elevation maps is acquired
thanks to the use of high frequency cameras. The directional ambiguity can so be resolved
using the 3D spectra (see §3.6.3). Therefore, the 3D spectrum is integrated over positive
frequencies and the obtained wavenumber spectrum E(kx, ky) is thus unambiguous in
direction. The mean directional wavenumber E(kx, ky) are plotted on the figure 3.27.
The directional spreading over wavenumbers,

Mk(k) =
E(k, θ)

∫ 2π

0
E(k, θ)dθ

(3.84)

is plotted on figure 3.28 for each acquisition, and the spreading integral I(k) such that

Ik(k) =

∫ 2π

0

M(k, θ)M(k, θ + π)dθ, (3.85)

is shown on the figure 3.29. I(k) is cut for wavenumber smaller than 2rad/m due to
the lack of directional information on the wave with wavelengths close to the size of the
elevation maps used to compute the spectra.

First, note that the spreading function I(k), coming from the directional spreading is
a fundamental property of the surface wave spectrum. There is a large theoretical and
experimental literature on the spreading function for long gravity waves. Nevertheless,
very little is known about the spreading function for the short gravity waves, here observed
(Munk, 2008). Webb and Cox (1986) have demonstrated that plausible estimates of the
spreading integral could be inferred from deep ocean pressure data. Wilson et al. (2003)
followed a different strategy, using deep sea pressure data in the band between 0.1 and 1 Hz
to confirm a spreading integral calculated from surface measurements. Here, the range of
observed wavenumber (k = [2, 10], λ = [0.6, 3.1]) is about 10 times the peak wavenumber.
The present observations show that the two broad lobes in the directional spectrum of
the gravity wave spectrum become nearly perpendicular to the wind direction, leading in
the increasing of the spreading integral I(k). Duennebier et al. (2012) proposed that the
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Chapter 3. Sea surface reconstruction

Figure 3.25: Non directional wavenumber spectra E(k) for the 4 acquisition. The black
dashed line is the k−3 asymptote.
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Figure 3.26: Saturated directional wavenumber spectra S(k) = E(k)k3 for the 4 acquisi-
tion.
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Figure 3.27: Wavenumber spectra obtained with the integration over positive frequencies
of the 3D spectra presented on the figures 3.21-3.24. The obtained wavenumber spectrum
E(k, θ) is so unambiguous in direction.
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Figure 3.28: Directional spreading (Eq. 3.6.4) computed from the spectra presented in
figure 3.27.
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spreading integral decrease with higher frequency to get the value of 1/(2π) (the value for
a near isotropic spreading) at the wave frequency of 1Hz. Our observations clearly show
a non isotropic spreading up to 1.6Hz.

3.6.5 Mean Square Slopes of elevation maps

Another interesting parameter generally observed is the Mean Square Slopes (hereinafter
mss). As the whole range of wave scale is not given by the reconstruction, the standard
comparison with the mss computed from sunlight reflection by Cox and Munk (1954)
cannot be done directly. However, Vandemark et al. (2004) proposed to add themss<1m =
0.019ln(U10) to 1m-mss. At each point (x, y, t) of the elevation maps, the slope sx and sy
are computed mssx and mssy are so computed with

sx,>1m(x, y, t) = (Z(x− 0.5, y, t)− Z(x+ 0.5, y, t)) /1 (3.86)

sy,>1m(x, y, t) = (Z(x, y − 0.5, t)− Z(x, y + 0.5, t)) /1. (3.87)

Therefore, 1m-mss is given with

mssx,>1m(x, y) =
1

T

∫ T

0

s2x(x, y, t)dt (3.88)

mssy,>1m(x, y) =
1

T

∫ T

0

s2y(x, y, t)dt (3.89)

mss>1m(x, y) = mssx(x, y) +mssy(x, y) (3.90)

The figure 3.30 shows the slope variance mss1m (left panels), and the slope variance along
x-axis, mssx,1m (center panels) and y-axis, mssy,1m (rigth panels) for each acquisition.
We note that the spatial disparity of the mss over the reconstructed area does not have
a physical sense. In particular, the inhomogenous mssy obtained for acquisition 4 is
linked to the errors in the matching processing due to inhomogeneous illumination of the
sea surface. The spatial-averaged mss1m are respectively 0.65%, 0.55%, 0.84% and 0.97
for the four acquisitions. Then, the mss given by the smaller scales than 1m are added
following Vandemark et al. (2004) with mss = mss>1m +mss<1m. To a fonction of the
wind speed, 11.5m/s, 10.9m/s, 13.2m/s and 13.9m/s, the mss are 5.29%, 5.09%, 5.74.%
and 5.87%, where Cox and Munk (1954)’s formula gives respectively 6.19%, 5.88%, 7.06%
and 7.42%, with a standard deviation estimated to 0.004. Our mss are strongly under the
Cox and Munk (1954)’s ones. However, note that the acquisitions correspond to young
wave field, and Vandemark et al. (2004) show that mss given by wave scale greater that
1m wavelength, here not fully developed, strongly influence the global mss.

3.7 Conclusion

The existing methods of sea surface reconstruction provide good results in term of sea
elevation statistics and spectra. Nevertheless, it was shown that the presence of foam
patches on the sea surface strongly disturbs the local shape of the surface. Particularly,
these methods provide unrealistic breaking wave shapes. In this chapter, a complete
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method for the reconstruction of sea surface in presence of foam patches is proposed
and validated. Compared to the existing reconstruction methods, the main improvement
concerns the matching point processing. The implementation of an iterative corresponding
point search with a correlation template which size decreases with increasing iteration
greatly increases the accuracy of the reconstructed surface, particularly in the presence
of foam patches. A correction for the asymmetric projection is also proposed.

Four stereo video acquisitions are investigated. A first validation of the reconstructed
surfaces obtained with the improved method is given by comparison with wave gauge
data. Then the observation of the 3D direction-wavenumber-frequency spectra obtained
from the time-space evolution of the surface shows the coherence of the surfaces up to
f = 1.6Hz (λ ≈ 60cm). The observed directional wavenumber spectra directly computed
over the elevation maps and the directional frequency spectra computed over extraction
of several times series are also discussed. Finally, the mean square slope are computed
and compared to the classical observations by Cox and Munk (1954). After the validation
provided, the reconstructed sea surfaces are considered accurate enough to be used in the
breaking wave study proposed in the next chapter.
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Figure 3.29: Spreading integral (Eq. 3.85) computed from the directional spreading
presented in figure 3.28.
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Figure 3.30: Mean Square Slope given by waves longer than 1m computed over the whole
set of images for the 4 acquisitions. mss>1m is the global slope variance (left panels),
mss>1m is the slope variance along x-axis (center panels) andmss>1m is the slope variance
along y-axis (right panels).
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Chapter 4

Observation of breaking waves

4.1 Introduction

Breaking waves occur everywhere on the world’s oceans and affect almost all sea surfaces.
Today, the breaking phenomena are still misunderstood. Nevertheless, it is clear that
breaking is the dominant process for wind wave energy dissipation. Therefore, a good
understanding of wave breaking is necessary to understand wave energy balances and
wave spectra characteristics. Moreover, breaking waves also influence many processes.
Inducing a turbulence increasing in the upper sea layer and an active air entrainment
into water, they play an important role in air-sea gas transfers and biochemical processes.
Wave breaking process is also associated to the production of sea sprays. In addition, the
breaking-induced foam strongly influences many ocean electromagnetic measurements. In
particular, whitecaps increase surface reflectance in visible frequencies and strongly impact
on radar backscattered signal and brightness temperatures measured by radiometers, such
as those used on Windsat, SMOS and Aquarius. Thus, the whitecap coverage variability
must be taken into consideration for the sea surface albedo or ocean color estimations,
but also for retrieving sea surface properties. These electromagnetic properties are used
in this work to detect breaking wave in visible spectrum range. Indeed, generated white
foam areas contrast with a dark sea surface, and are easily observable signatures of the
breaking waves.

Wave breaking is a complex non-linear process with various intense physical phenom-
ena in it. Different terminology can be found in the literature to describe evolution of
breaking waves. Wave breaking event is usually decomposed into two parts. The first
one is the active breaking usually called stage A (Bondur and Sharkov, 1982; Monahan
and Woolf, 1989). It results from an instability which develops from the wave crest, when
water particle velocities approach the wave phase speed (Longuet-Higgins, 1978; Longuet-
Higgins and Fox, 1978; Tanaka, 1983, 1985). The wave crest thus collapses on the front
size of the wave, resulting in wave energy dissipation. The breaking phenomenon occurs
at all wave scales once they are energetic enough.

For waves shorter than one meter in wavelength, breaking occurs without air entrain-
ment, and so without signature in the visible spectrum range. Nevertheless, laboratory
measurements of Jessup et al. (1997) show that microscale wave breaking associated
with evolving wind waves disturbs the thermal boundary layer at the air-water interface,
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producing signatures that can be detected with infrared imagery. Their laboratory ob-
servations, under the moderate wind speed conditions, showed a substantial frequency of
occurrence and an important areal coverage of the phenomenon. Therefore, microscale
breaking is undoubtedly widespread over the oceans and may prove to be a significant
mechanism for enhancing the transfer of heat and gas across the air-sea interface (Jessup
and Phadnis, 2005; Sutherland and Melville, 2013). These microwave scales are not re-
solved in the global ocean spectral wave model, and microwave breaking is not studied in
this work.

The present thesis focuses on longer breaking waves as modeled in spectral wave mod-
els. These waves, more energetic, are attended with air entrainment and bubble formation.
Formation of foam needs a large quantity of energy, corresponding to the surface tension
multiplied with surface excess. Thus, when breaking waves are energetic enough, they
generate white bubble clouds which form whitecaps that contrast with the darker sea
surface. This signature in the visible frequency spectrum makes the phenomenon easily
observable.

Persistence of the foam on sea surface in the wake of the breaking wave is usually
referred as stage B of the breaking, also called passive breaking. Passive foam, in contrast
with active foam produced by active crest breaking, does not imply wave dissipation.
Nevertheless, the lifetime of the foam persistence is of interest to many investigators due
to the previously discussed strong influence on electromagnetic measurements and air-
sea gas exchanges. Foam lifetime has been related to environmental and meteorological
parameters, including air-sea temperature difference, salinity or even biological content,
which directly influence surface tension. Focusing on whitecap dissipation, this work does
not investigate the passive breaking.

Despite wave breaking being an important phenomenon with many authors interested
in this subject, it is still misunderstood for many reasons. Wave breaking is generally
studied with laboratory or field measurements. Laboratory measurement provides very
interesting and complete data. Indeed, experimental tanks are manageable environment
where a complete instrumentation can be easily deployed. Moreover, laboratory experi-
ments allow a quasi complete control of the various factors which influence wave breaking,
and thus provide reproducible experiments in well defined conditions. Numerous labo-
ratory experiments have quantified the breaking occurrence and the wave dissipation.
However, these experiments fail to reproduce all the conditions observed in situ. Indeed,
wave age have a strong influence on breaking ; for young wind-sea, intensive breaking is
observed around a spectral peak whereas breaking seems to be absent at the peak wave
scale for mature sea (Cp/U10 ≃ 1), and whitecaps are observed on smaller wave scales.
Tank experiments succeed in reproducing very young wind sea (with wave age Cp/U10

less than 0.15), but fail to reproduce more developed sea due to limited fetches (Donelan
et al., 1993). However, in situ measurements sample a wave age from 0.2 for young sea
to 0.83 for fully developed wave field. These considerations make the results obtained
in laboratory difficult to apply in the wave models. In contrast, field measurements deal
with real external conditions. But such investigations also have their limits. Firstly, the
deployment of complex measuring equipment is difficult in real sea condition. Secondly,
the large number of non manageable external parameters makes experiments non repro-
ducible and results difficult to analyze. Here again, application of observation results to
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model parameterization seems difficult, due to dependence of results to very particular
conditions.

Two approaches are usually used to study breaking in field measurements. Generated
white foam areas contrasting with the dark sea surface, breaking wave can be easily
detected on photo (Monahan et al., 1983; Stramska and Petelski, 2003; Callaghan et al.,
2008) or on image sequences from video camera (Melville and Matusov, 2002; Mironov and
Dulov, 2008). Various acoustic methods can also be used to measure breaking intensity.
On one hand, breaking wave characteristics can be retrieved from reflection of the acoustic
sonar signal on breaking wave (Loewen and Melville, 1991). On the other hand, sound
produced by breaker crest collapsing can be measured using hydrophones (Babanin et al.,
2001). This last method provides direct information on the occurrence and intensity of
breaking, but is not able to define neither precise location of the breaking nor breaking
direction. In contrast, optical methods based on breaking foam detection at sea surface,
are generally used to investigate shape, speed, direction and other characteristics of the
breaking waves. Nevertheless results are strongly dependent on the threshold used for
foam patch detection and on the discrimination of stage A and B.

In this study, an optical system is used. As in majority of the optical methods pub-
lished in the literature, foam patches of breaking waves are here detected using a threshold
method. In large number of studies, the threshold is defined by the investigator. These
methods have two main disadvantages. Firstly, results depend on the investigator sub-
jectivity. Secondly, these methods are difficult to apply automatically on different data
sets. Discrimination of phases A (active breaking) and stage B (passive foam) is also
problematic. Many studies proposed a discrimination using to different thresholds. Ac-
tive breaking entrains air into water, and so actively produce new bubbles, associated
with brighter foam. Passive foam corresponds to the decreasing of the foam density and
is related to darker foam. Therefore, high level selects bright whitecaps and marks them
as active breaking, whereas a lower value discriminates passive foam. Results of whitecap
measurements vary in different works; often, the problem of threshold selection is among
the causes of such variations (Mironov and Dulov, 2008).

Mironov and Dulov (2008) developed a processing algorithm to define threshold and
discriminates stage A and B based on physical prerequisites and statistical properties of
the studied phenomenon that maximally eliminates human influence, and so that can be
applied in a same way on different data sets. They applied their processing on large data
set, providing very interesting speed and direction distribution. Nevertheless, their study
does not include the elevation of the surface and shape of breaking waves. Indeed, using
only one camera, they linked pixel coordinates to sea surface coordinates by a simple
projection on the mean sea plane, losing sea surface elevation information. Originality of
the present work is that, using surface stereo reconstruction discussed in previous chapter,
the breaking waves are observed together with sea surface elevation maps, providing an
alternative source of information.

The vast majority of the wave breaking studies discuss the breaking probability. On
the classical 1D studies, the breaking probability Pb is defined with

Pb =
Nb

Nw

, (4.1)
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where Nb is the number of breaking waves and Nw is the total number of waves. In
an elevation time series, the individual waves are generally defined between successive
points where the water surface crosses downwards (zero down-crossing) or upwards (zero
up-crossing) the mean water level. For each individual wave, the period is the time lag
separating the two zero down-crossing (or up-crossing) and the height is the difference
between minimum and maximum elevation. This wave-by-wave analysis is applied for
the study of the dominant wave breaking (Banner et al., 1989). By construction, this
analysis can be applied to the study of the smaller waves, which may be riding on the
crest of the large waves (Banner et al., 2002). Nevertheless, this wave counting method
can be applied to frequency filtered elevation time-series to analyze breaking of smaller
wave scales (Banner et al., 2000; Babanin et al., 2001; Filipot et al., 2010). The difficulty
is to choose a frequency bandwidth narrow enough in order to discriminate the energy
of waves with different frequencies but also large enough so that the filtered surface
has a representative steepness. Indeed, the narrower bandwidth, reduced to a unique
frequency would lead to a small monochromatic wave not representative of the observed
surface elevation. Banner et al. (2000) and Babanin et al. (2001) assumed that the
components contributing to the dominant waves were contained between (1−δBBY)fp and
(1+ δBBY)fp, with δBBY = 0.3. For deep water waves, this frequency interval corresponds
to wavenumbers from 0.5kp to 1.7kp. Further, Filipot et al. (2010) re-use this frequency
bandwidth for their wave-scaled analysis of breaking.

As disused in the chapter 2, these breaking probabilities were then related to the
spectrum saturation (Banner et al., 2002), leading to the breaking parameterization of
Ardhuin et al. (2010) (TEST451) or to the wave steepness (Filipot et al., 2010), leading
to the breaking parameterization of Filipot and Ardhuin (2012) (TEST500), improved to
TEST570 (see chapter 2). The work presented here proposed a comparison of our obser-
vations with these two parameterization of breaking probability and a critical analysis of
the assumptions used in the breaking parameterizations. Indeed, it must be noted that
in the wave model, the assumption is made for the length of crest calculation, and so
for the cumulative effect estimation, that the breaking probability thus calculated can be
applied on the wave crest (breaking or not) length density to obtain the breaking crest
length density. Another severe assumption is made for the definition of the wave crest
length density.

The breaking detection processing used in this work, greatly inspired from the algo-
rithm of Mironov and Dulov (2008), is described in the section 4.2, with a description of
the results in terms of speed and direction distributions of the detected breaking. The
next section (4.3) discussed a definition of the crest length density. Then, observed break-
ing probabilities are shown in section 4.4. These observations are compared to the model
of Filipot et al. (2010) used in the parameterization of Filipot and Ardhuin (2012) in the
section 4.5, then rely to the partially integrated saturation spectrum used in the param-
eterization of Ardhuin et al. (2010) in the section 4.6. The conclusion follows in the last
section.
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4.2 Automatic detection of breaking events

Detection of breaking events used for this study is now described. The processed image
parts of the 4 records correspond to the reconstruction areas shown on figure 3.16. The
process is split into two steps. First step consists in removing of all unnecessary informa-
tion not connected with breaking wave properties, to simplify processing. An evident way
of such simplification is binarization of whitecaps from the sea surface video records using
brightness threshold criterion (Mironov and Dulov, 2008). A binary data array with only
whitecap information is the result of this procedure. The main difficulty of this step is
the selection of the threshold which discriminates foam patches. The method of Mironov
and Dulov (2008) is used here, as described in section 4.2.1. Second step consists in the
discrimination of the binarized foam patches into active and passive foam. This second
step is also adapted from works of Mironov and Dulov (2008). Using physical properties,
the binarized data are then discriminated into active and passive foam. The discrimina-
tion is described in section 4.2.2. The automatic detection of breaking events is applied
to the four acquisition already described in the chapter 3 (see §3.2, Tab. 3.1).

4.2.1 Image binarization

Pixel brightness arises from various parameters. Basically, brightness levels depend on
the position of the Sun and sea surface slope. Nevertheless, many other parameters can
strongly influence it: the presence of clouds, the sky reflection and air scattering and
absorption (which is a problem in airborne imagery. Note that in our case, there can
also be a strong reflection from the coastal mountains. Moreover, the automatic gain
adjustment also affects pixel brightness. Finally, the presence of foam on the sea surface
also strongly increases brightness level. The aim of the present algorithm is to define a
threshold which discriminates high pixel brightness level due to presence of foam.

Long-lasting brightness removing

Mironov and Dulov (2008) proposed an algorithm, independent of human influence and
based on physical principles of brightness field formation, which ensures satisfactory
threshold for such a wide range of conditions. Brightness variance at a fixed point of
sea surface, I, is the sum of an instant brightness, Ig, due to surface slope and of a long-
lasting brightness component, Iavg, resulting from background conditions. Generally, the
values of Iavg widely vary on the frame, making the selection of a common threshold im-
possible. The first step so consists in the removing of this brightness trend. This trend
is evaluated by averaging a sequence of consecutive images. In this work, average is done
over 2000 images, corresponding to about 2.2 min sequence for the 15 Hz acquisition 1 and
2.7 min sequence for the 12 Hz acquisitions 2, 3, and 4. The evolution of the automatic
gain is smoothed, and the gain is assumed constant during the averaged image sequence.
Spatial brightness distribution permanently evolves along the frame (sun displacement,
cloud moving, ...) and Iavg is computed for every 2000 image sequence of the record.
Then, all brightness trends and heterogeneity can be removed by the subtraction of the
calculated Iavg values from each frame of the processed video record.

133



Chapter 4. Breaking Observation

On the figure 4.1, the panel A shows the original 1028th image, I1028, of the 4
th acqui-

sition and the panel B is the corresponding long-lasting brightness component, Iavg, given
by the average of the first 2000 images :

Iavg =
1

2000

1999
∑

i=0

Ii (4.2)

Therefore, Iavg corresponds to the brigthness obtained with a flat horizontal sea surface.
The panel C (= panel A - panel B) is then the instant brightness Ig = I − Iavg,

supposed to be due only to sea surface slopes ζx and ζy, respectively in x and y direction,
such that :

Ig = cxζx + cyζy. (4.3)

With x-axis and y-axis respectively along and across wind direction, ζx and ζy are inde-
pendent, with a normal distribution (Cox and Munk, 1954) :

p(ζx) =
1√
2πσx

exp(− ζ2x
2σ2

x

) (4.4)

p(ζy) =
1√
2πσy

exp(−
ζ2y
2σ2

y

), (4.5)

where σx and σy are surface slope variance in each direction. Therefore, defining σ2
I =

c2xσ
2
x + c2yσ

2
y , it follows that distribution of Ig is close to Gaussian :

p(I) =
1√
2πσI

exp(− I2

2σ2
I

), (4.6)

if cx and cy are constant. In a strict physical sense, cx and cy depend on viewing and sun
angles. Mironov and Dulov (2008) proposed to neglect spatial variation of cx and cy, due
to variation of viewing angle in the whole frame. Nevertheless, they avoid variation of sun
angles by computing σI values for short record segments. Compared to their study, the
image part processed here is smaller so the variations of the viewing angles (i.e. spacial
variation of cx and cy are also smaller). Nevertheless, σI is here computed over the whole
record.

Threshold finding algorithm and data binarization

First, for each acquisition, the observed p(I) (blue solid thin lines on figure 4.2) are com-
puted for the positive values Ig using the whole whole set of trend-free image. Following
Mironov and Dulov (2008), we now define the probability function F of excess of the
brightness I (green solid thick line on the figure 4.2) with

F (I) =

∫

∞

I

p(I ′) dI ′. (4.7)

In absence of foam patches (i.e. brightness I only depends on sea surface slope), the
normal brightness distribution F0 meets the relation

F (I) =
1− erf(Y )

2
, (4.8)
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where erf is the error function defined as

erf(Y ) =
2

√

(π)

∫ Y

0

exp(−t2)dt, (4.9)

and

Y =
Ig − Im√

1σI
, (4.10)

with Im a likely average error. Therefore, defining erf−1 as the inverse function of erf, it
follows

Y (I) = erf−1(1− 2F (I)). (4.11)

Note that for a normal distribution F0(I), Y0(I) = erf−1(1 − 2F0(I)) must be linear.
Using observed distribution F (I), this linearity is found only for low brightness values,
but is strongly disturbed for higher brightness values due to presence of the bright foam
patches. The Y0 function is fitted on the low brightness value part of Y (I) and is linearly
extrapolated to higher brightness. Then, the extrapolated normal distribution F0 (i.e.
the presumed distribution in absence of foam patches, the red dashed line on the figure
4.2) is obtained with equation 4.8 applied on Y0. Further, the threshold IT is get when
observed distribution F (I) becomes 10 times higher than the normal distribution F0(I).
The thresholds found with this method are marked with blue crosses on the figure 4.2.
Finally, data are binarized in the reconstruction areas (panel D of the figure 4.1) with

M(u, v) =

{

1 if Ig(u, v) ≥ IT

0 if Ig(u, v) < IT ,
(4.12)

such that M(u, v) = 1 corresponds to the pixel (u, v) is detected as abnormal too white
point and so considered as foam point. Visual check shows that all the active whitecaps
are well detected. Note that the points where the sun light reflects onto the camera, called
specular points, are also detected as foam points by the method and must be removed in
the next step. A few points corresponding the right part of the Gaussian distribution can
also be detected as foam. Using the reconstructed 3D surfaces, it should be possible to
compute a threshold depending on the slope. Such an improved method could reduce the
number of the detected points corresponding to the right part of the Gaussian distribution
and not to foam. A visual check shows that part of the passive foam is not detected.
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Figure 4.1: A) Image 001028 of acquisition 4 (I). B) Long-lasting brightness component
(Iavg) resulting from background conditions. C) Instant brightness (Ig = I − Iavg) due to
surface slope. D) Binarized Images (Ig > T ).
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Figure 4.2: Brightness variance distribution and probability function obtained for the 4
acquisitions. The blue solid thin line corresponds to the observed p(I) function. The
green solid thick line is its corresponding F (I) function. The red dashed line corresponds
to F0(I). The computed threshold value IT is marked with a blue cross.

136



4.2 Automatic detection of breaking events

4.2.2 Event filtering method

For each acquisition, binarized data are organized in a large 3D binary matrix M =
M(u, v, f) where u and v are pixel coordinates in reconstruction area and f is the frame
number. The foam points directly connected in time and connected in space within a
length of 10 pixels are grouped. Generally, the set of foam points in each group in-
cludes active and passive foam, but also mirror points which must be discriminated. High
sunglint on wave crest can also imply additional white point detection. This problem
is difficult to resolve because corresponding detected white points follow the wave evo-
lution and so have dynamic properties very close to breaking detected white points. To
avoid this problem, the processed image areas have been chosen in the image part dark
enough to visually distinguish the breaking. However, specular points can appear in the
reconstruction areas. These points have short lifetime and a small area. The acquisition
time was chosen so that most of the specular points are in the lower part of the image,
where they disturb only small number of connected pixel. These points are removed by a
filtering of smallest white point groups in time and space. Typically, groups which contain
less than 200 white points, or which time duration is less than 0.4 seconds are removed.
All non-removed white points are now called foam points. Note that this filtering also
removed small breaking event. Nevertheless, the reconstructed surface resolution is also
not adapted, due to insufficient pixel resolution, to study the small events. Higher pixel
resolution and/or using of zoom lenses should allow for smaller breaking event study.

As stated in the introduction, many investigators discriminate active foam by brighter
pixels. In this work, a discrimination algorithm based on physical properties, inspired
from work of Mironov and Dulov (2008), is implemented. Focusing on active breaking
and wave dissipation, the present algorithm is adjusted to mainly detect the start of the
breaking event, and as far as possible the complete active breaking. Each foam point
group is the analyzed separately.

The group is first analyzed in the pixel-frame reference system. Let’s note Mi(u, v, f)
the binary sub-matrix containing the foam points of group i. The time evolution of
number of foam points Ni(f) is first computed with

Ni(f) =
∑

u

∑

v

Mi(u, v, f). (4.13)

The sea surface footprint of pixels depends on both surface shape and coordinates of
the pixel on the image. Nevertheless, foam pixels of a same group stretch on a small
and localized image part. Therefore, the time evolution of pixel number Ni(f) is in first
approximation assimilated to the time evolution of foam patch surface. Active breaking
actively produces new bubbles, faster than passive foam disappears. Typically, Ni(f)
increases to a maximum during active wave breaking and then decreases as a function of
the foam lifetime. However, a new active breaking can occur in the same zone, before
the residual foam of the previous one completely disappears. In this case, the two active
breaking events are contained in the same group, and must be split. If the second breaking
wave is not too small compared to the first one, it implies a second increase of Ni(f) and
so can be detected. In practice, each group is split into independent events such that
previous an event ends when its number of foam points N becomes smaller than 25% of
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its maximum and a new event starts further if N becomes higher by 25% of the previous
minimum of N (since the defined end of previous event), and so on. Each separated event
is then processed separately. Again, short events are removed.

For each active breaking event, the foam points are then projected on the 3D surfaces to
obtain the set of Npt 4D surface foam point Pj = (xj, yj , zj , tj), with t = f/fps. Therefore,
speed in each direction of the point set is computed as the least square solution of

x1 − x = Vx(t1 − t) (4.14)

y1 − y = Vy(t1 − t) (4.15)
... (4.16)

xj − x = Vx(t1 − t) (4.17)

yj − y = Vy(t1 − t) (4.18)
... (4.19)

xNpt
− x = Vx(t1 − t) (4.20)

yNpt
− y = Vy(t1 − t), (4.21)

with

X =
1

Npt

Npt
∑

j=1

Xj . (4.22)
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Figure 4.3: Example 1: 1st detected active breaking event on acquisition 1. The blue
contours are white patches detected by threshold method. The red contour is the filtered
active breaking.
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Figure 4.4: Example 1: 1st detected active breaking event on acquisition 1. The black
points correspond to the projection of the active foam points (red contour of the figure
4.3) on 3D surfaces. Black contours are the footprint of the images shown on figure 4.3.
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Figure 4.5: Example 2: 54th detected active breaking event on acquisition 4. The blue
contours are white patches detected by threshold method. The red contour is the filtered
active breaking.
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Figure 4.6: Example 2: 54th detected active breaking event on acquisition 4. The black
points correspond to the projection of the active foam points (red contour of the figure
4.5) on 3D surfaces. Black contours are the footprint of the images shown on figure 4.5.
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Therefore, absolute speed and direction are

Vb =
√

V 2
x + V 2

y (4.23)

θb = arctan(
Vy
Vx

). (4.24)

Visual observations of breaking waves show that active breaking foam move around the
main direction of wind surface waves and passive foam drift on a sea surface with rather
slow velocity modulated by orbital velocities of the surface waves. Therefore, all events
with computed speed less than 1m/s are assimilated to small events or passive foam and
are removed. The figures 4.3 and 4.5 show two examples of detected active breaking
events on images. The figure 4.4 and 4.6 show their respective projection on 3D surfaces.

With this algorithm, 108, 782, 1669 and 2741 active breaking events are respectively
found for the 4 acquisitions. The distributions of the breaking waves on speed and di-
rections are shown on the figure 4.7. The observations show a maximum in the breaking
speed distribution, which could be related to the maximum of the Λ-distribution observed
by Gemmrich et al. (2008) and Thomson and Jessup (2008). The maximum seems to move
to the higher breaking speeds with wind speed increasing. The breaking wave direction
distribution show a Gaussian centered on the wind direction, in line with the observations
of Mironov and Dulov (2008).
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Figure 4.7: 1D distribution over breaking speed (left panel) and direction (right panel) of
the detected events for the 4 acquisitions.

4.3 Crest length density

We define wave crest as the locations where one slope component is zero, with a negative
curvature. In other words, the crests are defined by the points such that (dz/dx = 0 and
d2z/d2x < 0) or (dz/dy = 0 and d2z/d2y < 0). Note that this method also considers
the crests corresponding to the smaller riding waves, generally not taken into account by
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Figure 4.8: 2D distribution over breaking speed and direction of the detected events for
the 4 acquisitions.

wave-by-wave zero-crossing analysis. Consecutive points in the elevation map matrix are
grouped to form the wave crests. Finally the crest length is measured and divided by the
sea surface area to obtained the crest length density of the waves, breaking or not, for the
considered wave scale fc. Note that the obtained crest length densities are linked to the
frequency bandwidth ∆k = 2δBBYk = 0.6k.

Following Filipot et al. (2010), the crest are detected on frequency-filtered surfaces, at
various scales, with frequency filter defined by a 2δ wide Hann window Ufc(f), centered
at fc such that

Ufc(f) = 0.5− 0.5 cos

[

π

δ

(

f

fc
− 1− δ

)]

, (4.25)

with δ = δBBY = 0.3. The 3D spectra presented on the figures 3.21-3.24 in the chapter
3 show that the frequency-filtered surfaces also contain energy associated with nonlinear
harmonics of other wave scales. As the wave models only takes into account linear waves
energy, Filipot et al. (2010) proposed to remove the nonlinear contribution using an
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iterative removing of the harmonic coming from the other wave scales estimated using the
second order theory by Sharma and Dean (1993). Here, the non-linear wave removal is
done using a wavenumber-filtering applied on the frequency-filtered surfaces. Consistently
with the frequency filtering, the wavenumber filter is defined using the linear dispersion
in deep water such that

Ukc(k) = 0.5− 0.5 cos

[

π

δk

(

k

kc
− 1− δk

)]

, (4.26)

with δk =
√
δ. The figure 4.9 shows on the left panels the frequency-filtered sur-

faces which contain non-linear contribution from the larger scale and the wavenumber-
frequency-filtered surfaces (corresponding to the linear waves) on right panels, for differ-
ent 3 wave scales, λ = 1m (i.e. fc = 1.25Hz, kc = 2πrad/m), λ = 3m (i.e. fc = 0.72Hz,
kc = 2π/3rad/m) and λ = 5m (i.e. fc = 0.56Hz, kc = 2π/5rad/m). We note the strong
influence of nonlinear contribution particularly for the wave scale λ = 1m.

The crest length densities are then computed on each surfaces for five wave scale (λ =
1m, 2m, 3m, 4m, 5m) over the wavenumber-frequency-filtered surfaces, then averaged
over the whole image sequence of each acquisitions. The obtained crest length densities
are plotted on the figure 4.10.

4.4 Breaking probabilities

The breaking probabilities are computed in the seven overlapped wave scale defined by
equation 4.25 with fc = 0.55fp, 0.74fp, fp, 1.37fp, 1.86fp, 2.45fp and, 3.45fp. The detected
breaking events are then distributed in various wave scales such that a breaking event
belongs to the wave scale fc if the frequency fb of the breaking wave is in the range
[(1 − δBBY)fc, (1 + δBBY)fc]. Note that with this wave scale, major breaking belongs
in two wave scales. As discussed in the previous paragraph, the smallest wave scales
(in order of some meters wavelength) are strongly influenced by nonlinear contribution,
but nonlinear contribution strongly decreases for the longer wave scale. Therefore, the
nonlinear contributions are removed by applying the wavenumber filtering discussed in the
previous paragraph for the estimation of the crest length and the breaking crest length for
the wave scale in which the wavelengths are included in the surface areas and are neglected
for the other wave scales. Moreover, with the reconstructed surface areas greater than the
half size of the peak wavelength, the non-linear contribution is only neglected in the wave
scale fc = 0.55fp, 0.74fp, fp, 1.37fp, in which non-linear contribution from the harmonics
of the peak waves do not have strong influence.

As stated in the introduction, the breaking probability is generally the ratio between
the number of breaking waves and the total number of waves (breaking or not). The
number of waves is generally computed using a zero up-crossing (or zero down-crossing)
processing of the elevation time series. On a 2D real sea surface, the definition of an
individual wave is more difficult. Therefore, two methods for the probability estimation
are here presented and compared.

The first one is the classical time series analysis. For each point of the filtered surfaces,
the elevation time series is analyzed independently. A zero up-crossing is applied to

145



Chapter 4. Breaking Observation

Figure 4.9: Frequency-filtered surfaces (left panels) and the wavenumber-frequency-
filtered surfaces (right panels) for λc = 1m (top), 3m (middle) and 5m (bottom). The
black points are detected to be wave crest points.

differentiate the individual waves. Then the breaking probability is defined by the ratio
between the number of waves affected by an active breaking and the total number of
waves.

For the second method, the breaking crest length is defined for each image by the
length of crest, as defined previously, which coincides with an active breaking. As for
crest length of wave crest, breaking or not, the breaking crest length density is then
computed by dividing the length of breaking crest by the surface areas and averaged all
the surfaces of each acquisition. We therefore obtain a breaking crest length density for
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Figure 4.10: Obtained crest length densities for the four acquisitions. Black line represents
the crest length densities for monochromatic unidirectional waves.

each wave scale. Finally, the breaking probabilities are defined for each wave scale by the
ration of breaking crest length density to the crest density of wave breaking or not. As
the crest length density is strongly affected by the method of filtering used, only the wave
scales both filtered in frequencies and wavenumbers are used for this estimation.

The obtained breaking probabilities are plotted on the figure 4.11 with each method.
We note that the highest frequency wave scale covers a large range of frequency in which
both breaking can have been filtered by the threshold on minimum breaking speed and
breaking occurring without formation of bubbles (so not detectable by visual observa-
tions). Also, the active whitecap coverages, computed globally and per wave scales, are
reported in table 4.4. The global active whitecap coverage are in line with the empirical
crest-foam coverage coverage laws derived by Monahan and Woolf (1989) for a tempera-
ture difference about 10◦C.

For the breaking probabilities computed in each wave scale with the classical time
series analysis, the distribution of the breaking directions are plotted in the figure 4.12.
The directionality of breaking increases with the higher frequency as reported in many
studies (Banner et al., 2002; Mironov and Dulov, 2008). This is related to the increasing
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Figure 4.11: Breaking probabilities as ratio of breaking crest length to total crest length,
breaking or not (triangles, dashed-line) and as ratio of number of breaking waves to total
number of waves, breaking or not (square, full line). Number of waves is defined using a
wave-by-wave analysis applied on the time series get from each point of the surface.

Acq. # Wglo W0.55fc W0.74fc Wfc W1.37fc W1.86fc W2.45fc W3.45fc

1 3.5 10−4 - - - 6.3 10−6 5.8 10−5 2.4 10−4 3.0 10−4

2 3.6 10−4 - - 7 10−7 5.9 10−6 1.5 10−4 3.3 10−4 2.0 10−4

3 5.6 10−4 - - - 5.4 10−6 1.5 10−4 4.9 10−4 4.1 10−4

4 4.7 10−4 - - - 1.2 10−6 1.1 10−4 4.0 10−4 3.7 10−4

Table 4.1: Global whitecap coverage (first column) and whitecap coverage by wave scale
(next columns) obtained for each aquisition.

spread over direction of the energy observed with higher frequencies.

4.5 Wave scale analysis

From the non-directional frequency spectra, the breaking probabilities are computed for
each wave scale using the model of Filipot et al. (2010) used in the parameterization of
Filipot and Ardhuin (2012). These breaking probabilities are compared to the observed
ones. The breaking probabilities obtained from the observations are strongly lower than
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Figure 4.12: Directional distribution of the breaking probabilities in each wave scale for
the four acquisitions.

those computed from the model of Filipot et al. (2010), but with a similar shape over
the frequencies. In one hand, we note that Filipot et al. (2010) proposed a model for
the frequency spectrum of the linear waves whereas the frequency spectra used here are
obtained from wave gauges and also contain energy from the non-linear waves. However,
this cannot explain the factor 100. In the other hand, Filipot et al. (2010) used sound
records to detect the breaking waves, in which the precise location of the breaking is not
known. As a result, all detected breaking events were assigned to the closest wave, even is
the breaking did not occur exactly on top of the pressure wave gauge. In our processing,
the breaking is assigned to a wave only if the active breaking occurs at the observed point.
The large difference can so be explained by the ratio between the areas covered by the
sound recorder to the real areas of the active breaking.
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Figure 4.13: Left panel: frequency spectra obtained from wave gauges. Right panel :
comparison of the observed unidirectional breaking probabilities with the modeled prob-
abilities of Filipot et al. (2010) computed using the wave gauge frequency spectra.

4.6 Saturation spectrum

Banner et al. (2000) proposed to rely breaking of peak waves to the non directional
saturation spectrum B at the peak. Then, Banner et al. (2002) extended this work to
the smaller scales, introducing the effect of the directional spreading of the saturation
spectrum. The figure 4.14 shows the saturation spectra (left axis) for each acquisition
in wavenumber (left panel) and frequencies (right panel) compared to the corresponding
breaking PDF (right axis). The breaking speeds Vb are assimilated with the wavenum-
ber (resp. frequency) of the breaking waves, which phase speeds Vp are supposed to be
Vp = Vb/0.8. We note that the short duration of the acquisition 1, with a small number
of breaking events, the statistics obtained for this acquisition could be not significative
and must be analyzed carefully. Note that the figures show the breaking occurrence,
and not the breaking probability. Our observations do not show a direct link between
the non-directional saturation and the breaking occurrence. Indeed, the breaking occur-
rence decreases for shortest frequencies whereas the non-directional saturation keeps an
approximate constant level.

The figure 4.15 shows that the directional saturation decreases with higher frequencies
due to the large directional energy spreading, which certainly reliable to the breaking
occurrence decreasing. For the parameterization TEST451, Ardhuin et al. (2010) used
a directional saturation spectrum B′(k, θ), partially integrated over directions between
θ −∆θ and θ + ∆θ, with ∆θ = 80◦ (see Eq. 2.11). The directional breaking probability
Pb(k, θ) is then defined by the excess of B′(k, θ) compared to a threshold (see Eq. 2.14).
The directional breaking PDF are compared to the saturation spectra B(k, θ) = k4E(k, θ)
and partially integrated saturation spectra B′(k, θ) as defined by equation 2.11 on the
figure 4.15. The value of the threshold in not discussed here but the figures show that
the directional spreading of the breaking PDF are in line with the partially integrated
saturation spectra B′(k, θ).
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Figure 4.14: Saturation spectra (left axis) for each acquisition in wavenumber (left panel)
and frequencies (right panel) compared to the corresponding breaking PDF (right axis)

4.7 Conclusion

This chapter presents the threshold method for the detection of breaking waves on the
video images that maximally eliminates human influence of Mironov and Dulov (2008).
The observed active whitecap coverages are consistent with the model of Monahan and
Woolf (1989). Then reprojected on the reconstructed sea surfaces, the speed and the
direction of the breaking events can be estimated. The obtained distribution over speed
and direction are in line with the observations of Mironov and Dulov (2008). In the similar
study using a single camera of Mironov and Dulov (2008) in which the breaking detected
on the images are projected into the mean sea plane, the elevation of the breaking waves
involves errors in the estimation of the speed and the direction of the breaking.

A large number of acquisitions are needed to draw firm results. However, an overview
of the various observable parameters shows that the stereo observation of wave breaking
can provide an interesting new world of information for the improvement of the breaking
parameterization in the spectral model. In particular, we observed that the wave scale
analysis of Filipot et al. (2010) provides a smooth breaking probability over wavenum-
ber consistently with the observations. However, the large difference of absolute break-
ing probability level between the model and the observations must be studied further.
Moreover, the use of the partially integrated saturation spectrum over direction for the
modeling of the breaking probability is also consistent with our observations. The used
of wave scales (or saturation spectrum) partially integrated on both wavenumbers and
direction should be interesting direction for the improvement of the dissipation source
term in the spectral wave model and the methods presented here should help for such an
investigation.
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Figure 4.15: Comparison of the direction-wavenumber PDF of the detected breaking
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for each acquisition.
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Chapter 5

Conclusion

Starting from an analysis of the capability of spectral wave models to reproduce the evo-
lution of the sea state, this work first focus on the dissipation source term associated to
wave breaking in the energy balance equation. This source term have been for long time
used as tuning knob balancing the other better understand source terms, but recent efforts
have been done to make it closer than the physical processes involved by the wave break-
ing. Two recent wave breaking parameterizations based on observations were a major
focus of the first chapter. The model accuracy is generally evaluated through its ability
to reproduce observed wave heights and spectral evolution. Nevertheless, considering only
the integration of the whole set of source terms, these validations fails to validate inde-
pendently each one. Although the explicit modeling of whitecap properties is a constraint
on the model dissipation source terms, these recent dissipation parameterizations have
seldom been verified in these terms. Therefore, the breaking crest lengths distributions,
the whitecap coverage and the foam thickness are extracted from the parameterizations
of the wave breaking dissipation and compared to observations.

The two recent parameterizations investigated in this work are the directional satura-
tion based parameterization of Ardhuin et al. (2010) and the parameterization of Filipot
and Ardhuin (2012), based on the non directional observations of breaking probabilities
per wave scale of Filipot et al. (2010). These parameterizations have been first slight
modified in terms of swell dissipation and the physical relationship that intrinsically links
spontaneous breaking dissipation and dissipation induced by breaking waves have been
made self consistent in the second one. Validated using the classical ways, these slight
modifications improve the global accuracy of the models. Nevertheless, these modifica-
tions do not influence on the breaking statistics, which are the main purpose of this work.
It is found that the breaking parameterization by Filipot and Ardhuin (2012) produces
breaking crest length distributions that are in better qualitative agreement with obser-
vations, contrary to the parameterization of Ardhuin et al. (2010) which fails to produce
smooth Λ-distributions. This difference is clearly associated with the breaking probabil-
ities computed over wave scales compared to those linked the local saturation. The esti-
mation of the breaking parameters after smoothing the local saturations over frequencies
could lead to better Λ-distributions (Banner and Morison, 2010). Inversely, the isotropic
distribution of the breaking probabilities over frequency afflicting the parameterization of
Filipot and Ardhuin (2012) compared to the directional distribution of the breaking done
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in the parameterization by Ardhuin et al. (2010), linked to the partial integration over
directions of the directional saturation spectra. Indeed, combined with the cumulative
effect parameterization, the isotropic distribution of breaking, moreover not observed,
tends to reduce the width of the directional spectrum. Inversely, despite producing unre-
alistic unsmoothed crest lengths distributions, the directional breaking distribution of the
parameterization by Ardhuin et al. (2010), linked to the directional saturation spectra,
provides spectra directional spreading more in line with the observations. A combination
of these two approaches, using directional wave scales or directional saturation partially
integrated over both directions and frequencies should leads to better distribution of the
breaking.

Comparing the modeled global whitecap coverage to the observations observations
from satellite radiometers interpreted by Anguelova and Webster (2006), it is shown that
any parameterization reproduce the large variability of the observations. Nevertheless,
it is find that joint estimates of the whitecap coverage and foam thickness could be an
interesting way to discriminate between different sea states or parameterizations. Recent
results by Reul et al. (2006) with L-band radiometric measurements in Hurricanes using
the Soil Moisture and Ocean Salinity space mission, combined with radiometric measure-
ments from different bands should provide information on the distribution of the breaking
foam and should be a interesting way to even more constraint the dissipation source terms
in the spectral wave models. This deficiency is both attributed to the bad modeling of the
breaking in the model, but also to the lack of physical process and external parameters
in the model which strongly influence on the quantity of created foam by breaking wave
and its lifetime.

The analysis of the existing parameterization shows the need of the synchronized
observations of wave spectra and breaking wave distributions. These two parameters
can be observed using the stereo observation of the sea. Indeed, recent method were
developed to reconstruct accurate wavy sea surface from the standard stereo triangulation
well known in computer vision. Moreover the breaking waves which produce white foam
patches over the darker water surface are easily detectable, providing the new world of
information combining the observation of the breaking wave and the time-space evolution
of the underlying sea surface.

The existing methods of sea surface reconstruction provide good results in term of sea
elevation statistics and spectra. Nevertheless, it is shown in this work that the presence
of foam patches on the sea surface strongly disturbs the local shape of the surface. The
first effort was to improved the existing reconstruction methods to provide realistic sea
surface shape around the foam patches. Four stereo video acquisitions are investigated
and a validation of the reconstructed surfaces obtained with the improved method is given
by comparison with wave gauge data. The observation of the 3D direction-wavenumber-
frequency spectra obtained from the time-space evolution of the surface shows that the
reconstructed surfaces shows the coherence of the surfaces up to f = 1.6Hz (λ ≈ 60cm).

Then, the breaking waves are detected on the images using the threshold method of
Mironov and Dulov (2008) that maximally eliminates human influence, then reprojected
on the reconstructed sea surfaces. The speed and the direction of the breaking events
are computed. The obtained distribution over speed and direction are in line with the
observations of Mironov and Dulov (2008). We highlight that the access to the sea surface
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elevation in this work allows a better calculation of the breaking speed and direction than
in the single camera observations of Mironov and Dulov (2008) in which the breaking
detected on the images are projected into the mean sea plane, involving errors related to
the elevation of the breaking waves.

In addition to the quantification of the breaking and its precise distributions over
wave scales and directions, it was shown that the stereo observation allows the analysis
the breaking at the scale of the single breaking waves and thus opens a new world of
information about the space-time evolution of the breaking waves for large range of wave
scales. Despite these aspects were not addressed in this work, the stereo observation
provides the necessary information to study the dissipation of the breaking waves and
the quantification of the possibly associated cumulative effect observed by (Banner et al.,
1989). A large number of acquisitions is needed to draw firm results, however the provided
overview of the various observable parameters shows that the method developed here
can provide large information for the validation and the improvement of the breaking
parameterization in the spectral model. Moreover, the stereo observations at microwave
scale with high resolution camera of Yurovskaya et al. (2013) should also be used to
quantify the generation of short waves in all directons from the breaking of long waves.
This generation of short waves, also detected on the acoustic measurements of Duennebier
et al. (2012), could have a important effect on the transfer of the energy from the wind
to the waves.

Finally, a new experiment was done on September 2013 from the scientific platform of
Katsively in Ukraine, with a larger range of wind and wave conditions. Two synchronized
stereo video systems were deployed with different lenses to observe different wave scales.
In addition to the wind and wave measurements also available for the present study, joint
measurement have been done with Ka-band radar and stereo-photo. The processing of
the data is in progress. Interesting informations over a larger range of wave scales are
expected in terms of distribution of wave breaking but also on the relationship of the
breaking with the spectrum shape.
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Monahan, E. C. and I. Ó. Muircheart, 1981: Optimal power-law description of oceanic
whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 2094–2099.

Monahan, E. C. and D. K. Woolf, 1989: Comments on ”variations of whitecap coverage
with wind stress and water temperature”. J. Phys. Oceanogr., 19, 706–709.

Munk, W., 2008: An inconvenient sea truth: Spread, steepness, and skewness of surface
slopes. Annual review of marine science, 1, 377–415.

Newell, A. C. and V. E. Zakharov, 1992: Rough sea foam. Physical review letters , 69,
1149.

Phillips, O. M., 1957: On the generation of waves by turbulent wind. J. Fluid Mech., 2,
415–417.

164



BIBLIOGRAPHY

— 1984: On the response of short ocean wave components at a fixed wavenumber to
ocean current variations. J. Phys. Oceanogr., 14, 1425–1433.

— 1985: Spectral and statistical properties of the equilibrium range in wind-generated
gravity waves. J. Fluid Mech., 156, 505–531.

Pierson, W. J., 1952: A unified mathematical theory for the analysis, propagation and
refraction of storm generated ocean surface waves, parts {I} and {II}.

Pierson, W. J., Jr and L. Moskowitz, 1964: A proposed spectral form for fully developed
wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69,
5,181–5,190.
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eter database for geophysical applications. part 1: wave-current-turbulence interaction
parameters for the open ocean based on traditional parameterizations. Ocean Modelling ,
25, 154–171, doi:10.1016/j.ocemod.2008.07.006.

Raubenheimer, B., R. Guza, and S. Elgar, 1996: Wave transformation across the inner
surf zone. Journal of geophysical research, 101, 25589–25.

Reul, N. and B. Chapron, 2003: A model of sea-foam thickness distribution
for passive microwave remote sensing applications. J. Geophys. Res., 108, 3321,
doi:10.1029/2003JC001887.

Reul, N., J. Tenerelli, B. Chapron, D. Vandemark, Y. Quilfen, and Y. Kerr, 2006: Smos
satellite l-band radiometer: A new capability for ocean surface remote sensing in hur-
ricanes. J. Geophys. Res., 117, C02006.

Rogers, W. E., A. V. Babanin, and D. W. Wang, 2012: Observation-consistent input and
whitecapping dissipation in a model for wind-generated surface waves: Description and
simple calculations. J. Atmos. Ocean Technol., 29, 1329–1346.

Rozenberg, A. and M. Ritter, 2005: Laboratory study of the fine structure of short
surface waves due to breaking: Two-directional wave propagation. J. Geophys. Res.,
110, C02011.

Ruessink, B. G., D. J. R. Walstra, and H. N. Southgate, 2003: Calibration and verification
of a parametric wave model on barred beaches. Coastal Eng., 48, 139–149.

Saha, S., S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler,
J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-T.
Hou, H. ya Chuang, H.-M. H. a. J. S. Juang, M. Iredell, R. Treadon, D. Kleist, P. V.
Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. van den
Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-K. Schemm,
W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen,

165



BIBLIOGRAPHY

Y. Han, L. Cucurull, R. W. Reynolds, G. Rutledge, and M. Goldberg, 2010: The NCEP
Climate Forecast System Reanalysis. Bull. Amer. Meterol. Soc., 91, 1015–1057.

Scaramuzza, D., A. Martinelli, and R. Siegwart, 2006: A flexible technique for accu-
rate omnidirectional camera calibration and structure from motion. Computer Vision
Systems, 2006 ICVS ’06. IEEE International Conference on, 45–45.

Sénéchal, N., H. Dupuis, P. Bonneton, H. Howa, and R. Pedreros, 2001: Observation of
irregular wave transformation in the surf zone over a gently sloping sandy beach on the
french atlantic coastline. Oceanol. Acta, 24, 545–556.

Sharma, J. N. and R. G. Dean, 1993: Second order directional wave kinematics in shallow
water. Ocean wave measurement and analysis, Proc. WAVES’93 Conf., 165–179.

Shih, S.-W., Y.-P. Hung, and W.-S. Lin, 1993: Accurate linear technique for camera
calibration considering lens distortion by solving an eigenvalue problem. Optical Engi-
neering , 32, 138–149.

Smith, J., 1986: Short surface waves with growth and dissipation. J. Geophys. Res., 91,
2616–2632.

Smith, M., P. Park, and I. Consterdine, 1993: Marine aerosol concentrations and esti-
mated fluxes over the sea. Quarterly Journal of the Royal Meteorological Society , 119,
809–824.

Song, J.-B. and M. L. Banner, 2002: On determining the onset and strength of breaking
for deep water waves. Part I: Unforced irrotational wave groups. J. Phys. Oceanogr.,
32, 2541–2558.

St Denis, M. and W. J. Pierson Jr, 1953: On the motions of ships in confused seas.
Technical report, DTIC Document.

Stansell, P. and C. MacFarlane, 2002: Experimental investigation of wave breaking criteria
based on wave phase speeds. J. Phys. Oceanogr., 32, 1269–1283.

Stewart, R., 1960: Changes in the form of short gravity waves on long waves and tidal
currents. J. Fluid Mech, 8, 565–585.

Stoyanov, D., 2010: Camera calibration toolbox for matlab. Royal Society/Wolfson Foun-
dation Medical Image Computing Laboratory, Imperial College London, UK .

Stramska, M. and T. Petelski, 2003: Observations of oceanic whitecaps in the north polar
waters of the atlantic. Journal of Geophysical Research: Oceans , 108.

Strobl, K., W. Sepp, S. Fuchs, C. Paredes, and K. Arbter, 2006: Camera calibration
toolbox for matlab. Pasadena, CA.

Sutherland, P. and W. K. Melville, 2013: Field measurements and scaling of ocean surface
wave-breaking statistics. Geophysical Research Letters .

166



BIBLIOGRAPHY

Tanaka, M., 1983: The stability of steep gravity waves. J. Phys. Soc. Japan, 52, 3047–
3055.

— 1985: The stability of steep gravity waves. Part 2. J. Fluid Mech., 156, 281–289.

Terray, E., M. Donelan, Y. Agrawal, W. Drennan, K. Kahma, A. Williams, P. Hwang, and
S. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves.
Journal of Physical Oceanography , 26, 792–807.

Thomson, J., J. R. Gemmrich, and A. T. Jessup, 2009: Energy dissipation and the spectral
distribution of whitecaps. Geophysical Research Letters , 36, L11601.

Thomson, J. and A. T. Jessup, 2008: A fourier-based method for the distribution of
breaking crests from video observations. J. Atmos. Ocean Technol., 26, 1663–1671.

Thornton, E. B. and R. T. Guza, 1983: Transformation of wave height distribution. J.
Geophys. Res., 88, 5,925–5,938.

Tsai, R., 1987: A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lenses. Robotics and Automation,
IEEE Journal of , 3, 323–344.

Tulin, M. P. and T. Waseda, 1999: Laboratory observations of wave group evolution,
including breaking effects. Journal of Fluid Mechanics , 378, 197–232.

Unna, P., 1947: Sea waves. Nature, 159, 239–242.

van der Westhuysen, A. J., M. Zijlema, and J. A. Battjes, 2005: Implementation of local
saturation-based dissipation in SWAN. Proceedings of the 5th International Symposium
Ocean Wave Measurement and Analysis, Madrid, june 2005 , ASCE.

— 2007: Saturation-based whitecapping dissipation in SWAN for deep and shallow water.
Coastal Eng., 54, 151–170.

van Vledder, G. P., 2006: The WRT method for the computation of non-linear four-wave
interactions in discrete spectral wave models. Coastal Eng., 53, 223–242.

Vandemark, D., B. Chapron, J. Sun, G. H. Crescenti, and H. C. Graber, 2004: Ocean wave
slope observations using radar backscatter and laser altimeters. J. Phys. Oceanogr., 34,
2825–2842.

Vezhnevets, V., 2005: Gml matlab camera calibration toolbox.

Webb, S. and C. Cox, 1986: Observations and modeling of seafloor microseisms. Journal
of Geophysical Research: Solid Earth (1978–2012), 91, 7343–7358.

Wei, G.-Q. and S. Ma, 1993: A complete two-plane camera calibration method and ex-
perimental comparisons. Computer Vision, 1993. Proceedings., Fourth International
Conference on, IEEE, 439–446.

167



BIBLIOGRAPHY

Wheatstone, C., 1853: On the binocular microscope, and on stereoscopic pictures of
microscopic objects. Transactions of The Microscopical Society & Journal , 1, 99–102.

Wilson, D. K., G. V. Frisk, T. E. Lindstrom, and C. J. Sellers, 2003: Measurement
and prediction of ultralow frequency ocean ambient noise off the eastern u.s. coast. J.
Acoust. Soc. Am., 113, 3117.

WISE Group, 2007: Wave modelling - the state of the art. Progress in Oceanography , 75,
603–674.

Young, I. R. and A. V. Babanin, 2006: Spectral distribution of energy dissipation of wind-
generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36, 376–394.

Yurovskaya, M. V., V. A. Dulov, B. Chapron, and V. N. Kudryavtsev, 2013: Directional
short wind wave spectra derived from the sea surface photography. J. Geophys. Res.,
in press.

Zakharov, V. E., 1968: Stability of periodic waves of finite amplitude on the surface of a
deep fluid. J. Appl. Mech. Tech. Phys., 2, 190–194.

Zhang, Z., 1999: Flexible camera calibration by viewing a plane from unknown orien-
tations. Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on, volume 1, 666–673 vol.1.

168


