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Abstract

Existing, easily applicable methods to calculate the depth and height of breaking waves are hampered by two obstacles. First, the breaker depth
is usually required to compute its height, and vice versa. Second, the equations take into account either the deepwater height to wavelength ratio or
the sea floor slope, but not both. A simple iterative procedure is therefore proposed which incorporates both elements. For fully developed waves
breaking over a nearly horizontal bottom, the breaker height and depth are also direct functions of the deepwater wavelength.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The height and depth of breaking waves are of considerable
interest to coastal engineers, oceanographers and sedimentolo-
gists.Wave height is one of themost important factors influencing
the design of coastal constructions. An overly conservative esti-
mation can greatly increase costs and make projects uneconomi-
cal, whereas underestimation could result in structural failure or
significant maintenance costs (Vincent et al., 2002). Horizontal
water particle velocities also reach their maximum values at the
breakpoint, so that the sea floor beneath the breaker zone is where
the coarsest sediments are entrained or brought into suspension.
Because this zone migrates with tides and variations in the wave
climate, a relatively wide coastal swath is ultimately affected. It is
therefore important that the depth of the breaker zone as a function
of the sea floor slope and wave climate be determined as ac-
curately as possible.

Although a number of equations have been proposed to this
effect, these generally suffer from two serious drawbacks. Most
equations express the breaker height/breaker depth ratio (Hb/db)
as a function of other variables, which means that either the
breaker height is required to obtain the depth, or vice versa. A
second shortcoming of existing methods is that they do not
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employ all the variables affecting the breaker height and depth,
with the result that they apply only to limited conditions. Here, a
simple procedure is proposed that incorporates the most
relevant variables and simultaneously solves for Hb and db.

2. Previous methods

Some of the techniques discussed here were not explicitly
developed to predict breaker height and depth, but rather to
express the maximum Hb/db ratio as a function of other vari-
ables. However, these ratios can be used for such predictions if
one of the two variables can be determined by other means.

Keulegan and Patterson (1940) noted that the Hb/db ratio is
related to wave breaking, which they considered to take place at
values between 0.71 and 0.78.

Miche (1944) gave the maximum steepness for waves
propagating in water depths less than half the deepwater
wavelength (Lo/2) as

Hb=Lb ¼ 0:142 tanh 2kdb=Lbð Þ ð1Þ
where Lb is the wavelength at breaking (i.e., immediately
seaward of the breaker). The value of 0.142 was based on the
theoretical deepwater limit for wave steepness, as proposed by
Michell (1893). Eq. (1) is in agreement with an envelope curve
to laboratory measurements (Dean and Dalrymple, 1991), but is
strictly valid only for a horizontal bottom.
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Collins (1970) was among the first to consider the effect of
the bottom slope (α, in degrees) on wave breaking, but did not
take other variables into account. His equation was expressed
as

Hb=db ¼ 0:72þ 5:6 tan a ð2Þ
which yields a ratio of 0.72 over a horizontal bed, that
increases to 1.21 for a 5° slope.

Komar and Gaughan (1973) derived the following semi-
empirical relationship from linear wave theory:

Hb=Ho ¼ 0:56 Ho=Loð Þ−1=5 ð3Þ

The subscript o denotes deepwater conditions. Although this
equation considers the (Ho/Lo) ratio, it does not take the bottom
slope into account.

One of the most useful equations has been that of Weggel
(1972), who considered the effect of the sea floor slope in
addition to the gravity constant g and wave period Tw.

Hb=db ¼ E1−E2Hb=gT
2
w ð4Þ

where

E1 ¼ 1:56= 1þ e−19:5 tan a
� �

ð5Þ

E2 ¼ 43:75 1−e−19 tan a
� �

ð6Þ

Eq. (4) is valid for tan α≤0.1 (a slope of ≤5.7°) and
Ho/Lo≤0.06. For low steepness waves over a nearly horizontal
bottom, it resolves to an Hb/db ratio of 0.78, but for any positive
angle the water depth is required to solve forHb. Eq. (4) can also
be used to calculate db if Hb is known.

Komar (1998) proposed two separate equations for Hb and
db, respectively.

Hb ¼ 0:39g0:2 TwH
2
o

� �0:4 ð7Þ

db ¼ Hb 1:2 S= Hb=Loð Þ0:5
h i0:27� �

ð8Þ

where S is the sea floor gradient (tan α).
Sakai and Battjes (1980), based on the theory of Cokelet

(1977), plotted a curve of the wave breaking limit as a function
of Hb/Ho against Ho/Lo. This curve can be described by the
following equations:

Hb ¼ Ho 0:3839 Ho=Loð Þ−0:3118
h i

when Ho=Lo < 0:0208 ð9Þ

Hb ¼ Ho 0:6683 Ho=Loð Þ−0:1686
h i

when 0:0208VHo=Lo < 0:1

ð10Þ

Hb ¼ Ho when 0:1VHo=Lo ð11Þ
The same curve in Sakai and Battjes (1980) also represents
the ratio of Hb/Ho against db/Lo, which can be recast into the

equations

Hb ¼ Ho 27429 db=Loð Þ2−773:71 db=Loð Þ þ 7:4343
h i

when db=Lo < 0:011 ð12Þ

Hb ¼ Ho 0:3976 db=Loð Þ−0:3834
h i

when 0:011Vdb=Lo < 0:049

ð13Þ

Hb ¼ Ho 21:867 db=Loð Þ2−7:06 db=Loð Þ þ 1:5573
h i

when

0:049Vdb=Lo < 0:6 ð14Þ

Hb ¼ Howhen 0:6V db=Lo ð15Þ

Although Eqs. (9)–(15) consider the deepwater wave height
and length, the sea floor slope is not taken into account.

Fenton and McKee (1990) determined the greatest (unbro-
ken) wave that could exist as a function of both wavelength and
depth over a nearly horizontal bottom as

Hb ¼ db½0:141063 Lb=dbð Þ þ 0:0095721 Lb=dbð Þ2

þ0:0077829 Lb=dbð Þ3�=½1þ 0:078834 Lb=dbð Þ

þ0:0317567 Lb=dbð Þ2þ0:0093407 Lb=dbð Þ3�

ð16Þ

Again, the sea floor slope is not considered.

3. An iterative approach

In the equations above, the variables used to determine db or
Hb include Lo, Ho, Lb, α (or S), Tw and g. However, in no case
are all these parameters considered together. The acceleration
due to gravity g is constant for any latitude (an average value of
9.81 m s−2 is used here), whereas the wave period Tw does not
change from deep into shallow water. Therefore, only the first
four variables need to be considered.

The deepwater wavelength Lo is a direct function of the
wave period and acceleration of gravity, as given by the
standard equation:

Lo ¼ gT2
w=2k ð17Þ

The deepwater wave height Ho depends on the sea state,
which is a function of the wind velocity, fetch and duration. For
a fully developed sea (FDS), the wave period, length or height
do not increase, regardless of the fetch or duration of the wind
blowing at any specific velocity. However, for fetch or duration-
limited conditions both the wave height and period may have
lower values. Resio et al. (2003), based partly on data gathered
during the Joint North Sea Wave Project (JONSWAP), provide
nomograms plotting wave periods and heights against fetch and



Table 1
Data used in calculating breaker heights and depths for the different equations

Ua10 Tw Hoo HocEq. (18) LocEq. (17) Lb

2.5 1.6 0.14 0.14 4.00 2.67
5.0 3.3 0.6 0.6 17.00 11.33
7.5 5.1 1.4 1.4 40.61 27.07
10.0 6.6 2.5 2.4 68.01 45.34
12.5 8.4 4.1 3.9 110.17 73.45
15.0 11.1 6.4 6.8 192.37 128.25
17.5 11.8 8.2 7.7 217.40 144.93

Observed wave periods (Tw) and deepwater fully developed wave heights (Hob)
are derived from nomograms (Figs. II-2-25 and II-2-26) in Resio et al. (2003).
Deepwater wavelengths (Loc) and wave heights (Hoc) are calculated from Eqs.
(17) and (18), respectively, and breaker wavelengths are obtained from 2Lo /3
(Le Roux, submitted for publication).
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duration for different wind speeds. Table 1 shows their wave
periods and heights for FDS conditions (i.e. where the curves
level off). An analysis of Table 1 indicates that the fully devel-
oped wave height HoFDS under such conditions is given by

HoFDS ¼ Lo=9k ð18Þ
The observed and calculated values correspond exactly for

wind velocities up to 7.5 m s−1 (Fig. 1), but differ by up to 6%
for higher wind speeds, which can be attributed to the fact that
the nomograms become less accurate and more difficult to read
for higher wind velocities due to the logarithmic scale
employed. However, separate curves fitted to the two sets of
data give exactly the same equation (HoFDS=0.0542Tw

2.0156).
Combining Eqs. (17) and (18), this means that the Ho/Lo

ratio under FDS conditions is given by 1/9π or 0.0354.
The breaker wavelength Lb should be a direct function of the

sea floor gradient. For fully developed waves over nearly
horizontal slopes, Le Roux (submitted for publication) showed
that

Lb ¼ 2Lo=3 ð19Þ
This corresponds to within 5% to the breaker wavelength

according to cnoidal theory. Under these circumstances Lb can
therefore be calculated and used in Eq. (1), for example. On
steep slopes, however, the breaker would be in shallow water
while the next wave crest seaward thereof would still be in deep
Fig. 1. Plot of wave heights as predicted by Eq. (18) (black diamonds) and wave
heights indicated by Resio et al. (2003) (open circles) against wave period.
water. This crest would therefore be affected less by bottom
friction, advancing faster than would be the situation on a nearly
horizontal slope. Lb should therefore be shorter on steep slopes
than on gentle slopes. Although the exact amount of shortening
is uncertain, Lb should nevertheless be a direct function of Lo
and α, so that it should be sufficient to consider only the
latter two parameters together with Ho as the most important
variables.

Sakai and Battjes (1980), based on Cokelet (1977), pub-
lished a 3-dimensional graph showing plots of different Ho/Lo
ratios against Hw/Ho and d/Lo. Recast into equations consider-
ing all three ratios simultaneously,Hw (which is the wave height
in any water depth) can be calculated by

Hw ¼ Ho A exp Ho=Loð ÞB½ �f g ð20Þ
where A and B are coefficients given by

A ¼ 0:5875 d=Loð Þ−0:18 when d=LoV0:0844 ð21Þ

A ¼ 0:9672 d=Loð Þ2−0:5013 d=Loð Þ þ 0:9521

when 0:0844 < d=LoV0:6
ð22Þ

A ¼ 1when d=Lo > 0:6 ð23Þ

B ¼ 0:0042 d=Loð Þ−2:3211 ð24Þ

However, the actual breaking limit for any specific Ho/Lo
ratio is determined by the bottom slope, which is not considered
in these equations.

Laboratory tests of periodic waves with periods from 1–6 s
on slopes varying from 0° to 11.3° (Shore Protection Manual,
1984) showed that the Hb/db ratio varied from 0.83 to 1.32.
Using their tabulated values, this can be expressed as

Hb ¼ db −0:0036a2 þ 0:0843aþ 0:835
� � ð25Þ

which levels off at 1.3282 and a slope of 12° (Fig. 2). Grilli et al.
(1997) found that no wave breaks on slopes steeper than 12°,
which means that Hb/db cannot exceed 1.3282. Eq. (2) of
Collins (1970) can therefore only be valid up to a slope of 6.2°.
Fig. 2. Plot of Hb/db ratio as a function of bottom slope (data from Shore
Protection Manual, 1984).



Table 2
Comparison of breaker heights and depths for fully developed waves (Ho/Lo=0.0354) with different periods over different slopes

Tw Col Mic S&B1 S&B2 K&G Kom F&M LR Weg Kom LR

Hb Hb Hb Hb Hb Hb Hb Hb db db db

1×10−6° slope
1.6 0.14 0.17 0.16 0.18 0.15 0.15 0.15 0.17 0.22 0.00 0.20
3.3 0.61 0.71 0.70 0.76 0.66 0.66 0.63 0.71 0.91 0.01 0.85
5.1 1.46 1.69 1.69 1.81 1.57 1.58 1.50 1.69 2.17 0.02 2.03
6.6 2.44 2.82 2.83 3.04 2.63 2.65 2.50 2.83 3.63 0.04 3.39
8.4 3.96 4.57 4.58 4.91 4.26 4.29 4.06 4.59 5.88 0.06 5.50
11.1 6.91 7.98 7.98 8.56 7.43 7.47 7.09 8.02 10.28 0.11 9.60
11.8 7.81 9.02 9.03 9.68 8.40 8.45 8.01 9.06 11.62 0.13 10.85

5° slope
1.6 0.20 0.16 0.19 0.15 0.15 0.19 0.18 0.15 0.16
3.3 0.84 0.70 0.81 0.66 0.66 0.81 0.77 0.64 0.69
5.1 2.00 1.69 1.95 1.57 1.58 1.93 1.83 1.52 1.65
6.6 3.35 2.83 3.27 2.63 2.65 3.23 3.07 2.55 2.77
8.4 5.43 4.58 5.29 4.26 4.29 5.23 4.97 4.13 4.49
11.1 9.48 7.98 9.22 7.43 7.47 9.14 8.69 7.20 7.83
11.8 10.71 9.03 10.43 8.40 8.45 10.33 9.82 8.14 8.85

10° slope
1.6 0.16 0.20 0.15 0.15 0.20 0.18 0.15
3.3 0.70 0.84 0.66 0.66 0.85 0.77 0.65
5.1 1.69 2.00 1.57 1.58 2.04 1.84 1.55
6.6 2.83 3.36 2.63 2.65 3.41 3.08 2.59
8.4 4.58 5.43 4.26 4.29 5.53 4.99 4.19
11.1 7.98 9.47 7.43 7.47 9.65 8.70 7.32
11.8 9.03 10.71 8.40 8.45 10.91 9.84 8.27

Col = Collins (1970); Mic = Miche (1944); S&B1 = Eqs. (9)–(11), Sakai and Battjes (1980); S&B2 = Eqs. (12)–(15), Sakai and Battjes (1980); K&G = Komar and
Gaughan (1973); Kom = Komar (1998); F&M = Fenton and McKee (1990); LR = this paper; Weg = Weggel (1972).
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In Eqs. (20)–(25), the values of Lo and Ho are fixed by
the deepwater wave climate, so that only d and Hw can change
as the wave moves into shallow water. For any Ho/Lo ratio, the
Hw/Ho ratio would thus vary with depth as expressed in d/Lo,
until the breaking limit is reached and Hw becomes Hb. The
latter would lie along the trajectory of any specific Ho/Lo ratio
as modeled in Eq. (20), but would ultimately be determined
by the bottom slope. Iterating d in Eqs. (20) and (25) until the
calculated breaker heights coincide, thus provides a simulta-
neous solution for both db and Hb. This can easily be done on a
spreadsheet.

4. Hb and db for fully developed waves over slopes of 0–10°

As shown above, the Ho/Lo ratio of fully developed waves
is 0.0354. Using this ratio and iterating Eqs. (20) and (25)
with different water depths until the breaker heights coincide,
yield the heights and depths shown in Table 2. First, a nearly
horizontal slope of 1×10−6° was used, this value being chosen
only to avoid dividing by zero and to actually cause wave
breaking, which would not occur on an absolutely horizontal
bottom.

An analysis of the obtained values indicates that there is a
direct relationship of Hb with the deepwater wavelength Lo. The
breaker height is given by

Hb ¼ Lo=24 ð26Þ
Further analysis of Table 2 indicates that the breaker depth
can be obtained by

db ¼ Lo=20:0392 ð27Þ

Combining Eq. (26) with Eq. (19) also shows that

Hb=Lb ¼ 1=16 ¼ 0:0625
ð28Þ

Similarly, Eq. (27) can be combined with Eq. (19) to yield

db=Lb ¼ 0:0749 ð29Þ

Finally, it can be shown from Eqs. (26) and (19) that

Hb=db ¼ 1=1:2 ¼ 0:8333
ð30Þ

Eq. (30) agrees with the experimental value of 0.83 reported
for a 0° slope in the Shore Protection Manual (1984).

It should be emphasized that Eqs. (19), (26)–(30) are only
valid for fully developed waves breaking over a nearly hori-
zontal bottom.

Table 2 also compares the obtained values with those given
by the other equations mentioned above. The only of these
equations strictly applicable to a horizontal bottom are those of
Miche (1944) and Eqs. (9)–(11) of Sakai and Battjes (1980), in
which case the breaker heights show an excellent correlation with
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Eqs. (20) and (25) or (26) throughout the range of wave climates,
with the difference never exceeding 4 cm.

For this situation, the equation of Collins (1970) consistently
yields the lowest breaker height, followed by Fenton andMcKee
(1990). Eqs. (12)–(15) derived from Sakai and Battjes (1980)
yield the highest breakers, showing a maximum difference of
66 cm with Miche (1944) for an 11.8 s wave period. The
equations of Komar andGaughan (1973) andKomar (1998) give
very similar Hb values that fall between those of Fenton and
McKee (1990) and Miche (1944).

As concerns breaker depth, the method proposed here gives
consistently lower values than that of Weggel (1972), but the
difference does not exceed 77 cm. The Hb/db ratio of Weggel is
about 0.78, as compared to 0.83 for this paper, the latter being in
accordance with experimental measurements over a horizontal
bottom (Shore Protection Manual, 1984). The equation of
Komar (1998) does not yield realistic values for a horizontal
bed.

For a slope of 5°, Eqs. (20) and (25) indicate a significant
increase in breaker height as compared to a horizontal bottom,
as also shown by the equation of Collins (1970) and Eqs. (12)–
(15) derived from Sakai and Battjes (1980). Eqs. (9)–(11) of
Sakai and Battjes (1980), Komar and Gaughan (1973), and
Komar (1998) record no difference.

Eqs. (20) and (25) indicate that the breaker depth decreases
for the same wave periods at higher slopes, as confirmed by the
equation of Weggel (1972). The Hb/db ratio for Weggel varies
around 1.05, as compared to 1.16 for Eqs. (20) and (25), the
Table 3
Comparison of breaker heights and depths for developing waves (Ho/Lo=0.05) with

Tw Col Mic S&B1 S&B2 K&G

Hb Hb Hb Hb Hb

1×10−6° slope
1.6 0.13 0.17 0.16 0.18 0.15
3.3 0.56 0.71 0.70 0.78 0.66
5.1 1.32 1.69 1.69 1.88 1.57
6.6 2.24 2.82 2.83 3.12 2.63
8.4 3.65 4.57 4.58 5.05 4.26
11.1 6.35 7.98 7.98 8.81 7.43
11.8 7.19 9.02 9.03 9.96 8.40

5° slope
1.6 0.18 0.16 0.20 0.15
3.3 0.76 0.70 0.85 0.66
5.1 1.78 1.69 2.04 1.57
6.6 3.04 2.83 3.39 2.63
8.4 4.93 4.58 5.49 4.26
11.1 8.60 7.98 9.58 7.43
11.8 9.73 9.03 10.82 8.40

10° slope
1.6 0.16 0.20 0.15
3.3 0.70 0.87 0.66
5.1 1.69 2.10 1.57
6.6 2.83 3.49 2.63
8.4 4.58 5.64 4.26
11.1 7.98 9.85 7.43
11.8 9.03 11.13 8.40

Abbreviations as in Table 2.
latter being in accordance with laboratory observations (Shore
Protection Manual, 1984). Komar (1998) in this case yields
more realistic values.

For a 10° slope, the different equations record only very
moderate changes in the breaker height as compared to a 5°
slope, with the exception of a dramatic increase shown by the
equation of Collins (1970). However, as mentioned above, Eq.
(2) should only be valid for slopes up to 6.2°. In this case Eqs.
(12)–(15) of Sakai and Battjes (1980) continue to correlate well
with this paper, with a maximum difference of 20 cm. Komar
and Gaughan (1973), Komar (1998), and Eqs. (9)–(11) of Sakai
and Battjes (1980) record no changes.

The method proposed here underestimates the breaker depths
given by Weggel (1972) by up to 102 cm, but such a slope is
outside the original range considered valid by the latter author.
However, the Hb/db ratio of 1.32 is in accordance with
laboratory observations for a slope of about 10° (Shore
Protection Manual, 1984), whereas this ratio as obtained from
Weggel (1972) would be about 1.16. Komar (1998) now seems
to somewhat overestimate the breaker depths.

5. Hb and db for developing waves over slopes of 0–10°

Fetch or duration-limited (developing) waves are normally
shorter and steeper than fully developed waves. For example, a
wave forming at a wind velocity of 10 m s−1 blowing over a
fetch of 10 km, will have a height of 0.5 m as compared to 2.4 m
under FDS conditions (Resio et al., 2003, Fig. II-2-23). The
different periods over different slopes

Kom F&M LR Weg Kom LR

Hb Hb Hb db db db

0.15 0.13 0.15 0.22 0.00 0.18
0.66 0.58 0.65 0.91 0.01 0.80
1.58 1.37 1.53 2.17 0.07 1.83
2.65 2.32 2.60 3.63 0.04 3.12
4.29 3.77 4.23 5.88 0.06 5.06
7.47 6.58 7.37 10.28 0.11 8.83
8.45 7.44 8.34 11.62 0.13 9.99

0.15 0.17 0.16 0.15 0.15
0.66 0.73 0.68 0.64 0.63
1.58 1.72 1.59 1.52 1.47
2.65 2.93 2.72 2.55 2.51
4.29 4.75 4.41 4.13 4.08
7.47 8.29 7.70 7.20 7.11
8.45 9.38 8.71 8.14 8.04

0.15 0.18 0.18 0.14
0.66 0.77 0.77 0.58
1.58 1.81 1.84 1.37
2.65 3.08 3.08 2.34
4.29 5.00 4.99 3.79
7.47 8.71 8.70 6.61
8.45 9.86 9.84 7.48
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wave period in this case will be 2.2 s (Resio et al., 2003, Fig. II-
2-24), so that Lo will be 7.56 m and Ho/Lo 0.0661 as compared
to the FDS ratio of 0.0354. Such steeper waves will behave
differently from fully developed waves, e.g. manifesting as
plunging instead of spilling breakers on the same slope.

The total energy of a wave is the sum of the potential energy,
which is directly proportional to its height, and the kinetic
energy, which is a direct function of its celerity. Developing
waves have shorter wavelengths than fully developed waves,
whereas their wave heights should not exceed those of the latter
for the same wind speed. The total energy of such high-
steepness waves will therefore be less than that of fully
developed waves, so that they should have lower breakers on
the same slope. To test this hypothesis, the same deepwater
wave heights were used as in Table 2, but the Ho/Lo ratios were
increased to 0.05 by shortening the wavelength. Table 3 shows
the results of this exercise.

On a nearly horizontal bottom, there is a decrease of about
8% in the breaker height compared to fully developed waves,
with a similar decrease in the breaker depth. A decrease in
breaker height is also shown by Collins (1970) and Fenton and
McKee (1990).

For a 5° slope, the wave height is about 12% higher than for a
nearly horizontal bottom, but there is a decrease in breaker
height and depth of about 9% with respect to fully developed
waves. Such a decrease in breaker height is also shown by
Collins (1970). The breaker depths given by the method
proposed here correspond closely to those given by Komar
(1998), but somewhat underestimate Weggel (1972).

Over a slope of 10°, breaker heights increase only slightly
(about 5%) with respect to a 5° slope, whereas the breaker depth
decreases further. Eqs. (12)–(15) of Sakai and Battjes (1980)
also show a slight increase in breaker height.

6. Discussion and conclusions

For fully developed waves breaking over a nearly horizontal
bottom, the breaker wavelength, height and depth show definite
and simple relationships with the deepwater wavelength. This
indicates that the db/Lb, Hb/Lb and Hb/db ratios also have fixed
values under these conditions, as supported by recent experi-
mental studies using video image processing (comment by
anonymous reviewer). From Table 3 it can also be seen that the
Hb/db ratio apparently does not change much (if at all) for high-
steepness waves over a nearly horizontal bottom, averaging
0.8315 as compared to 0.8333 for fully developed waves.
However, for sloping bottoms the Hb/db ratio increases with the
slope angle and Lb changes by an as yet unknown factor.

The equation of Collins (1970) correlates well with the
method proposed here on a slope of 5° for both developing and
fully developed waves, but appears to underestimate breaker
heights somewhat over a nearly horizontal bottom. It also
predicts lower breaker heights for developing waves. However,
this method is only valid up to a bottom slope of 6.2°. Miche
(1944) likewise correlates very well with the proposed method
for fully developed waves over a nearly horizontal bottom, but
does not take the Ho/Lo ratio into account and therefore shows
no difference between developing and fully developed waves.
Furthermore, as this method requires the breaker wavelength
Lb, which presently can only be determined accurately for a
nearly horizontal bottom (Eq. (19)), it cannot be applied to
slopes. Eqs. (9)–(11) derived from Sakai and Battjes (1980) also
show an excellent correlation with the proposed method for
fully developed waves over a nearly horizontal bottom, but
because these equations take neither the slope nor the Ho/Lo
ratio into account, no differences are indicated for higher slopes
or developing waves. Eqs. (12)–(15) deduced from Sakai and
Battjes (1980), on the other hand, show an excellent correlation
with the proposed method for fully developed waves on any
positive slope, although they seem to overestimate the breaker
heights somewhat for a nearly horizontal bottom. For develop-
ing waves, however, this method indicates higher breaker
heights than for fully developed waves, which is contrary to the
expected trend. Komar and Gaughan (1973), and Komar (1998)
also do not consider the bottom slope, and although these
methods give reasonable values for a horizontal bottom, they
increasingly underestimate the breaker height for higher slopes.
They also show no difference between developing and fully
developed waves. The equation of Fenton and McKee (1990)
appears to consistently underestimate breaker heights in com-
parison with the other methods and also requires the breaker
wavelength, so that it can be applied only to nearly horizontal
bottoms.

As concerns breaker depth, Weggel (1972) shows a decrease
in depth with an increase in slope, in accordance with the
method proposed here. However, it is applicable only to a
maximum slope of 5.7°. Komar (1998) gives completely
unrealistic values for a nearly horizontal bottom, but shows a
fair correlation with the present method over a 5° slope. For
higher slopes, however, it seems to overestimate the breaker
depth. It also indicates no difference between developing and
fully developed waves.

An obvious concern in using the method proposed here is
whether laboratory observations can be applied directly to field
conditions. For a nearly horizontal bottom, Eqs. (20) and (25)
yield a Hb/db ratio of 0.83, which is considerably higher than
the ratios of 0.71–0.78 normally considered to be the breaking
limit (Keulegan and Patterson, 1940; Wiegel, 1960; Collins,
1970; Weggel, 1972; Fenton and McKee, 1990). A possible
explanation for this discrepancy may be that the still water level
(SWL) under field conditions may be considered to lie halfway
between the breaker crest and trough. However, in the case of
cnoidal waves (which generally represent the wave form just
before breaking) the water surface is distributed asymmetrically
about the SWL and the wave trough actually lies closer to the
SWL than the wave crest (Korteweg and De Vries, 1895;
Demirbilek and Vincent, 2002). For example, for 6.6 s waves
formed under FDS conditions, the breaker height and depth
over a sea floor with a 1° slope would be 2.93 m and 3.20 m,
respectively. Using cnoidal theory (see Figs. II-1-13 and II-1-14
in Demirbilek and Vincent, 2002, for example) the height of the
wave crest and trough are calculated to be 5.52 and 2.59 m from
the sea floor, respectively. Taking the SWL at (5.52−2.59) /2+
2.59 would place the SWL at 4.06 m. The calculated Hb/db ratio
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would therefore be 0.72 instead of 0.92, possibly accounting for
the low ratios reported by some authors.

Other factors that probably have some influence on the
breaker height and depth, such as the bottom roughness, the
type of wave, and the effect of waves reflected from the beach
onto the incident waves, were not examined for the purposes
of this paper. The four major types of breakers generally
recognized, namely spilling, plunging, collapsing, and surging
breakers (Patrick and Wiegel, 1955; Wiegel, 1964; Galvin,
1968), also depend on the beach slope, wavelength and period
(Brown et al., 1999) and may therefore be accounted for in the
method proposed here. However, this aspect needs to be
investigated further. Advanced numerical models of Boussi-
nesq, Navier–Stokes or RANS type were also not considered
for the purpose of this paper, which was to provide an easily
applicable method that takes only the most important controls
on breaker height and depth into account.

For engineering applications, it should be stressed that the
maximum breaker heights occur during fully developed sea
conditions and on higher slopes, whereas the breaker depth
decreases for developing waves and on increasing slope angles.
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