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Analysis of the SAR Imaging Process of the
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Abstract—In this paper, the synthetic aperture radar (SAR)
process of the ocean surface mapping is studied using a decompo-
sition based on a Volterra model. By a mathematical expansion
of the complex exponential of the complete SAR transform, these
models decompose the nonlinear distortion mechanisms of the
SAR spectrum over different spectra of polynomial interactions.
Thus, they offer an alternative modeling (to the exact SAR trans-
form) giving a theoretical separation between the SAR Fourier
components linearly derived from the sea surface elevation and
the artifacts created by nonlinearities of the SAR mapping of the
ocean surface. The main results of this paper consist of the sys-
tematic assessment of such an approximation of the ocean surface
SAR imaging process. Higher order statistics (HOS) of the SAR
transform and their calculus and implementation are presented.
In fact, nonlinearity detection, location (in the Fourier domain)
and quantification can only be performed by HOS, reduced here
to a second-order Volterra Model. The Volterra expansion of the
SAR imaging process opens new theoretical inversion schemes
since under certain conditions on the linear part, Volterra models
are easily invertible. Our method is first tested on simulated SAR
images in order to validate the HOS tools. We then show results of
this nonlinearity analysis performed on images from the ERS-1
satellite and we present cases of nonlinearity detection.

Index Terms—Higher order statistics, radar mapping, SAR, sea
surface, Volterra models.

I. INTRODUCTION

A SYNTHETIC aperture radar (SAR) is an active electro-
magnetic instrument which allows the detection of large

scenes with very high resolution. It is independent of the diurnal
cycle and weather conditions. Fig. 1 presents a sea surface im-
agette obtained by the ERS-1 SAR. Visible crest lines of this
radar image are about five kilometers long. Such waves are not
too common and this image can be considered as an illustrative
example of the known distortion associated with SAR mapping
[9]. From the pioneering work of Alpers and Rufenach [1] and
[4], the SAR imaging process of the sea surface has been widely
studied and is indeed known to be nonlinear (i.e., it does not sat-
isfy the classical criteria of linear systems [26]).

Current SAR transform decomposition of the sea mapping
is usually achieved in two steps. The first one consists of the
modulation of the backscattered energy (around its mean)
by the sea surface. This step is divided into two different mech-
anisms: a geometric effect known as the tilt modulation, due
to the variation of the angle between the sea surface and the
radar beam (see [28], [29]) and a hydrodynamic effect due to
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Fig. 1. SAR image of the sea surface.

the non uniformity of the gravity capillary wave spectrum. The
backscattered energy is proportional to this spectrum for Bragg
backscattering [2], [11], [16], [22]. Although many parameters
are still unknown, this latter hydrodynamic modulation is as-
sumed to be linear. Both modulations produce a real aperture
radar (RAR) image, i.e., an image of the frozen sea surface. The
second step in SAR mapping is the modulation associated with
the sea surface motion. Orbital wave velocities produce Doppler
shifts leading to misplacements of the RAR pixel in the
SAR image (so-called “velocity bunching”).

Following Hasselmann and Hasselmann [9], SAR Fourier co-
efficients are given by

(1)

where is a given surface anda two-dimensional (2-D) array
having a range and azimuthal components. For the remaining
part of this paper, will denote the azimuthal component of
the wavenumber vectorwhile will be the range component.
Since the displacement is along the azimuthal axis we then have

. The complete nonlinear transform pre-
sented in (1) includes the decrease in effective resolution caused
by the stretching/contraction of the RAR pixel due to the orbital
velocity dispersion into the radar resolution cell. Following such
a model, the SAR mapping nonlinearity comes from the com-
plex exponential in expression (1).

The first main contribution of this paper is to expose and ex-
amine the approximation of the complete nonlinear transform
by a Volterra model. We list below four reasons why such an
approximation is of interest.

• First, this decomposition will help to better understand the
nonlinear SAR transform. In Volterra models, the non-
linear interactions are explicitly separated into nonlinear
interactions of different orders and consequently the non-
linear interactions are separated in the frequency domain
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as will be seen in Section IV-A. The identification of
different orders of nonlinear interactions (especially the
linear and quadratic components) facilitate the compre-
hension of the nonlinearity analysis (i.e., detection, loca-
tion and quantification of nonlinearity) using higher order
statistics (HOS) as detailed in Section II and enables the
amount of nonlinear energy “created” by the nonlinear
SAR transform to be quantified, and a decision to be made
concerning whether the process is linear or not.

• Although the SAR spectrum expansion has been already
investigated by Krogstad [15] in the one-dimensional
(1-D) case, the 2-D case can present spectrum rotation
(not conveyed in the 1-D case). One of the contributions
of this paper is to better understand such phenomena by
expanding the SAR spectrum over polynomial spectra as
stated above.

• Nonlinear time-series modeling using HOS methods with
an underlying Volterra modeling makes it possible to
estimate unknown Volterra kernels. Applied to the SAR
process, these methods would allow the RAR transfer
function to be identified and then the usual assumption of
linearity at this stage of the SAR imaging process to be
verified. These methods can work whether input data of
the Volterra model, i.e., measured sea elevation, (see for
instance [13], [20], [25]) are available or not ([17]).

• Finally, the Volterra decomposition makes it possible to
easily invert the SAR transform. Indeed, Volterra models,
under some restrictions on the first kernel, are post-invert-
ible by another Volterra model. This means that the kernels
of this post-inverse model are derived from those of the di-
rect Volterra model. Moreover, this new inversion scheme
can be performed directly on the image and not only on the
spectrum like the regularized inversion process proposed
by Hasselmann and Hasselmann in [9]. Single look com-
plex (SLC) images being widely used nowadays, there is
great interest in finding an inversion process conserving
the phase information (i.e., complex data). However, be-
fore inverting the SAR transform, a systematic verifica-
tion of the validity of the SAR transform expansion using
Volterra kernels must be performed. The main part of this
paper is devoted to this subject.

Another important contribution of this paper lies in the theo-
retical calculation of the SAR transform bispectrum. We recall
that nonlinearity analysis from an observed output of possibly
nonlinear systems without input data (that is generally the case
with SAR image) can only be performed with HOS. Obviously,
both contributions are closely linked since, as will be seen in
Section II-B, the SAR transform bispectrum is not easy to in-
terpret. Volterra models are useful in this case since existing
methods of nonlinear systems identification by HOS usually as-
sume a Volterra modeling. For instance, the methods for nonlin-
earity location and quantification use HOS but also assume that
the nonlinear system is a second-order Volterra model.

When dealing with SAR nonlinearity analysis with Volterra
models and HOS, our first step involves recalling the basic re-
sults of the different domains tackled in this paper. HOS theory
is discussed in the first section, while classical and new results
concerning the SAR transform spectrum and bispectrum are

given in the second section. Section III is devoted to Volterra
models and to the SAR transform expansion using these models
from a theoretical point of view. In Section IV-A, we develop
a comparison between the SAR spectrum obtained by the com-
plete nonlinear transform of (1) and the spectrum of Volterra
models of different orders in order to examine the validity of the
SAR transform expansion using Volterra models. For this com-
parison, we compute the spectra by assuming the sea surface
to be Gaussian distributed and derived from a JONSWAP spec-
trum [12]. Some of the sea states that we will examine are not
realistic especially the combination of certain wavelengths and
significant wave heights (defined as
where is the sea surface elevation). Nevertheless, since
our purpose is to examine the SAR transform decomposition on
Volterra models, feasibility must be verified for all sea states
within a reasonable sea parameter range (between 0 and
10 m and wavelength between 100 and 500 m). Nonlinearity
analysis being necessarily performed with HOS, the validity of
the SAR decomposition for third-order statistics is presented in
Section IV-B. This validity is verified from the point of view
of bispectrum distances and from the point of view of nonlin-
earity statistical index values (used for nonlinearity detection)
in the hypothesis testing framework. Section V presents nonlin-
earity analysis for real SAR images (from the ERS-1 satellite) in
light of the results presented in the previous sections. We show
that we can detect nonlinear events when they are present in the
images.

II. NONLINEARITY ANALYSIS AND HIGHER ORDERSPECTRA

When dealing with nonlinearity issues, we must first address
the problem of the presence or the absence of nonlinearity in
the observed signal. If nonlinearities are present, we then have
to identify which Fourier component artifacts it has produced.
A second step of the analysis thus consists of a nonlinearity
location in the Fourier domain and we finally have to perform
the estimation of the Fourier component energy part provided
by this nonlinearity, i.e., the quantification of the nonlinearity.
This nonlinearity analysis can only be performed with higher
order spectra.

A. Definitions and Properties

In the Fourier domain, the information concerning the signal
is divided into the magnitude and phase of the Fourier coeffi-
cients. The spectrum can be defined as the Fourier transform of
the autocorrelation function or as the mathematical expectation
of the Fourier transform coefficients

with

and (2)

A spectrum, being real valued, does not provide phase informa-
tion but, polyspectra and especially bispectra can convey phase
information (these quantities being complex valued). The third-
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order moment of a stationary signal is expressed as the mathe-
matical expectation of the triple product of the discrete signal

(3)

The third-order cumulant is then defined by

(4)

where is the mean of the process.
For zero mean processes, the third-order cumulant and mo-

ment are then equal. A fundamental property of the third-order
cumulant is that it is null for Gaussian processes [19], [21].
The bispectrum can be defined as the Fourier transform of the
third-order cumulant or as the mathematical expectation of the
Fourier transform of the signal

(5)

Mechanisms for nonlinearity detection using phase coupling
detection (i.e., phase coherence detection) are explained in
Appendix A and are detailed again on a second-order Volterra
model in Section III-A.

When studying nonlinearities, bicoherence is a fundamental
quantity which can be derived from higher order spectra. It can
be seen as the normalized bispectrum, and is defined by

(6)

In the case of a linear process, the bicoherence becomes flat,
i.e., constant for all pairs ( , ) [8]. The nonlinearity index,
proposed by Subba Rao and Gabr in [27] and recalled in Ap-
pendix A, tests whether the estimated bicoherence samples have
the same mean (flatness test). This is a statistical hypothesis
testing providing only a probability , generally equal to 0.9
or 0.95 (and called the “significance level”), that the signal is
linear. The usual procedure for hypothesis testing is to set up
this probability and to theoretically derive a reference threshold
of the statistical index from its theoretical pdf, under the hypoth-
esis that the signal is linear. If the measured index is lower than
this threshold, the image is declared to be linear with a proba-
bility while if it is greater, the observed image is declared to

be nonlinear. Two important parameters for statistical hypoth-
esis testing are as follows.

• “Type I Error” probability: That is the probability of
declaring an image to be nonlinear although it is linear.
The probability is then given by ( ).

• “Type II Error” probability: That is the probability of clas-
sifying an image as linear although nonlinear. The proba-
bility is denoted .

For a fixed value of , the smaller is, the easier the detec-
tion of nonlinearity will be, since errors of misclassification are
reduced. The parameter depends on the theoretical spectrum
and bispectrum of data contrary to, which depends only on
the fact that the bicoherence is flat.

B. Spectrum and Bispectrum of the Complete SAR Transform

From (1), the SAR spectrum can easily be calculated using a
Gaussian assumption for the sea surface [9], [14]

(7)

with

where is the RAR image au-
tocorrelation, is the cross cor-
relation between the RAR image and the displacement due to
velocity bunching and is the dis-
placement autocorrelation. The coefficient conveys
the loss of resolution due to azimuth smearing. Assuming that
the RAR function is linear, the bispectrum is given by (8) shown
at the bottom of the page, with

(8)
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(9)

and , are the azimuthal component of the wavenumber vec-
tors , , respectively. This result is achieved by introducing
(1) into the second definition of the bispectrum definition (see
(5)) and proceeding like Krogstad [14] (see Appendix B). Ex-
tracting information from the complete transform bispectrum
is not easy, because of the complexity of the expression. In-
deed, higher order moments are expressed as a product of the
second-order moments of Gaussian fields, i.e., the displacement
of the RAR pixel and the RAR pixel itself which are both lin-
early linked to the sea surface. Furthermore, because the bis-
pectrum support is a four-dimensional (4-D) structure, a simple
analysis is not possible. However for the quasi-linear transform
[9], obtained by expanding the exponential in (8) (and
small), bispectrum is found to be null, since the SAR image is
thus a linear filtering of a Gaussian sea surface.

III. V OLTERRA MODELS

A. Definition and Properties

Volterra models are commonly used for nonlinearity analysis
and have been developed by Schetzen [26]. In these models, the
output values can be expressed as a polynomial of input
data

(10)

with

(11)

or in the Fourier domain

(12)

with

(13)

and . The term is the th-order kernel of
the Volterra series (which generalizes the Taylor development)
and its Fourier transform. We
can interpret Volterra models as a bank of filters, extending the
linear case [seen as a first-order Volterra model (FOVM)]. The
main idea behind Volterra models is to relate the usual transfer
function concept to more general cases involving nonlineari-
ties and to describe simply the frequency behavior of this non-

linear transfer function. For instance, an analytic expression of
the second-order Volterra model (SOVM) in the Fourier domain
is given by (setting in (10))

(14)

The output of the quadratic kernel is the interaction between
two harmonics of the input signal weighted by ,
the wavenumber sum of these two waves being equal to. The
spectrum of the Volterra model of order can be written
by introducing (10) in (2) as

(15)

where is the cross spectrum between the interactions of
orders and as seen in Appendix C. Under the Gaussian input
data assumption, is non null only if is even (see
also Appendix C). For instance, the SOVM spectrum is given
by

(16)

The SOVM spectrum is thus the sum of a linear “spectrum”
and a “quadratic” spectrum. As discussed in [18], the quadratic
interactions of a real finite bandwidth signal, such as the sea
surface, are divided into two spectra.

• One is located over the low wavenumber components
(called destructive interactions, because they are produced
by two waves with opposite wavenumbers).

• The other, the constructive interaction spectrum, is cen-
tered on twice the dominant wavelength of the original
spectrum.

The third-order Volterra model (TOVM) spectrum, the
TOVM model being deduced from the SOVM by adding a
cubic kernel, is also the sum of linear, quadratic and cubic
spectra, and a supplementary cross linear-cubic spectrum.

In the same manner, the bispectrum of a Volterra model of
order can be calculated by introducing (14) into (5) and is
given by

(17)

in which is the bispectrum of interactions of or-
ders , , . As for the spectrum, the bispectrum is non null only
if is even (see Appendix C). For instance, the SOVM
bispectrum is given by (18) shown at the bottom of the next
page. We verify that two kinds of phase coupling are detected
by the bispectrum.

• Primary phase-coupling phenomena (PPCP,
) occurring between two waves and their quadratic

interactions.



LE CAILLEC et al.: SAR IMAGING PROCESS OF THE OCEAN SURFACE 679

• Secondary phase-coupling phenomena (SPCP,
) existing between three waves created by

quadratic interactions.

The advantage of phase–coupling phenomena duality is
that nonlinearity detection is still possible even if the linear
kernel is identically null, i.e., if all original signal waves
have been removed. This case occurs in the SAR transform
since for some cases the linear contribution is approximately
null. The drawback lies in the difficulty in identifying what
kind of phase coupling is detected by the bispectrum, i.e.,
if the detected phase coupling can be interpreted or not as
the phase coupling of two original signal waves and their
quadratic interaction. The identification of the kind of phase
coupling is important for distinguishing the linear compo-
nents (i.e., linear spectrum) from the quadratic artifacts pos-
sibly observed in a 2-D signal. The use of homogeneous
bicoherence tables (HBTs) see Appendix A or [18]) is rel-
evant for determining the kind of phase coupling detected,
the PPCP and the SPCP not being located at the same place
in these tables. As a matter of fact, in these two tables,
the linear signal components cross the lines and

and thus the linear spectrum can be located by
using this property as will be seen in Sections IV-B and V.
However, this method assumes implicitly that the nonlinear
system is an SOVM, and for this reason we need to decom-
pose the SAR transform into Volterra models. Finally, the
quantification is done by also assuming an SOVM with some
restrictions and by estimating the quadratic spectrum by [see
(16)]

(19)

where is the cross bicoherence table (CBT) as
proved in Appendix A.

B. Application to the SAR Transform

The SAR transform expressed in (1) can always be expanded
over Volterra models since the exponential expansion is valid

over the complex plane. The discrete space formula of (1) can
be written as

with

and (20)

The ratio defines an intrinsic parameter of the data ac-
quisition as it relates the radial distance from the satellite to
the ground to the speed of the spacecraft. The SAR Volterra
kernel expression is achieved by expanding the relationship be-
tween the sea surface Fourier coefficients and the SAR
Fourier coefficients on the polynomial basis. By ex-
panding (20), into (21) shown at the bottom of the next page
and by comparing this result and the theoretical Volterra ker-
nels given in (13), the SAR Volterra kernels can be identified as

(22)

Using this expansion, we obtain the same results as Hassel-
mann and Hasselmann [9]. The SAR spectrum is found to be
the sum of an infinite number of terms implying the cross cor-
relation between the RAR image and the displacement field and
the autocorrelation of the displacement field. This result on the
SAR spectrum can also be retrieved by directly expanding the
SAR spectrum (7), thus explaining the increase in the spec-
tral tails due to higher order nonlinearity as already reported
by Krogstadet al. in [15]. For discrete space formalism, az-
imuth smearing is not included in the kernel of (22) (the orbital
velocity being uniform inside the sampled cell resolution), and
must be taken into account by multiplying all the Volterra ker-
nels of (22) by a coefficient . The spectrum show
then a decrease equal to . This modeling of the Az-
imuth Smearing agrees with the loss in resolution for the bis-
pectrum, since

(18)
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which is the decrease of
resolution of the bispectrum (8).

IV. THEORETICAL RESULTS

In order to validate the SAR expansion using Volterra
models, we computed the spectral and bispectral distances
between Volterra models of different orders and the complete
SAR transform of (1). The spectrum and the bispectrum of
the complete transform were computed using expression (7)
and (8), respectively. The SAR spectrum and the bispectrum
of the SAR Volterra models were computed by introducing the
expression of the Volterra models (12), using the kernels de-
duced from the SAR transform (22) in the spectrum definition
(2). Similarly, the bispectrum was computed by introducing
the SAR kernels in definition (5). We also estimated the
spectrum and bispectrum by averaging the Fourier Transform
of simulated images. Since results are quite close we only
display the theoretical ones. Tests were performed for values
of the significant waveheight equal to 3, 5, 7, and 9 m, and
the wavelength values were chosen to be 100, 200, and 500 m
with the angle of propagation with respect to the range axis
being between 0 and 90 . The radar parameters, especially
the incidence angle and the ratio, were set to be equal
to the ERS-1 parameters (i.e., an incidence angle of 23and

). Because our goal is to compare several stochastic
processes (the complete SAR transform and its approximation
by Volterra models) with an underlying physical process, we
chose the spectral distance between a spectrum and a
spectrum to be:

(23)

among all the possible definitions of spectral distance collected
by Basseville in [6]. Moreover, in order to better understand the
SAR spectrum shape and the order of the nonlinear interactions
involved in this shape we defined the spectrum weight of the
interactions of order and order [see (15)] as

(24)

The collection of weights of the different subspectra of a spec-
trum of a Volterra model of order (defined in (24)) is called

the “energy distribution”. Similar to the spectral distance, we
define the bispectral distance between a bispectrum
and a bispectrum as

(25)
The next two sections give deeper insight into the approxima-
tion of the SAR transform by Volterra models. Section IV-A
presents the spectral comparison between the spectrum of the
complete SAR transform and the spectra of Volterra models of
different orders whilst Section IV-B gives some results derived
from nonlinearity indices and bicoherence tables.

A. Spectral Analysis

Figs. 2–5 present the spectral and bispectral distances in deci-
bels and “energy distribution” for a wavelength of 200 m, and
for significant waveheights of , 5, 7, and 9 m. Figs. 7–12
present the spectra of a complete SAR transform (used as the
reference) and Volterra models up to the fifth order. The con-
tribution of each kernel can be deduced by comparing different
Volterra model spectra as discussed in this section. We present
these configurations because the SAR transform changes from
a quasi-linear behavior to a strongly nonlinear one as explained
below. For these results, we can formulate the following six
conclusions.

• The cross spectra , such as the linear-cubic spec-
trum or the quadratic-tetric spectrum, are negative (as seen
in the energy distribution of Figs. 2–5 since and
are negative for all cases). This is logical since the inter-
actions of orders and are in phase opposition (due
to in the exponential expansion; see (22)). This remark
explains (with some other reasons detailed below) why in-
teractions of orders greater than three do not contribute
strongly to the SAR spectrum shape (as seen below) since

and cancel each others out as seen, for
instance, in the symmetry of and or and

of the energy distribution in Figs. 2–5.
• For common sea states, i.e., smaller than 5 m and

wavelengths greater than 200 m, the SAR process is
widely dominated by the linear kernel (see in the
energy distribution in Fig. 2). In the spectral distance of
Fig. 2, there are few improvements produced by higher

(21)
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Fig. 2. Spectral and bispectral distances and energy distribution forH = 3 and a wavelength of 200 m.
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Fig. 3. Spectral and bispectral distances and energy distribution forH = 5 and a wavelength of 200 m.
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Fig. 4. Spectral and bispectral distances and energy distribution forH = 7 and a wavelength of 200 m.
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Fig. 5. Spectral and bispectral distances and energy distribution forH = 9 and a wavelength of 200 m.
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Fig. 6. Second error type� for � = 0:9, � = 0:95, � = 0:99.
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order kernels since all the spectral distance curves are
quite close as depicted in Fig. 2. However, the corrections
due to the cubic kernel cannot be neglected and, even if
they are weak, they contribute to the decrease of spectral
peaks which are stronger in the FOVM spectrum than in
the SAR spectrum [see Fig. 7(a) and (b)].

• For high sea states, we can see a behavior change, since
the spectrum turns from a linear mode observed for small
dominant wave direction angles (below 55for
and below 45 for , ) to a quadratic mode.
Equivalent linear and quadratic spectra exist for a narrow
range of angles generally centered around 45, as seen in
Figs. 9 and 10. In fact, for all these sea states, the SAR
spectrum shape is very close to the SOVM shape while the
FOVM spectrum is almost null [compare Fig. 11(a), (b),
and (c)]. Moreover, as seen in Figs. 4 and 5, the weight
of the linear spectrum ( ) decreases to zero while the
quadratic spectrum ( ) is close to 100. This quasi-bi-
modal behavior, which passes within a small range of
angles from a linear mode to a quadratic mode, can be
explained by two competitive phenomena. They are as
follows.

1) When the original spectrum is closer to the azimuth
axis, more quadratic interactions are created. The
quadratic spectrum is located on a strip in the
azimuth direction. The high azimuthal components
are eliminated by azimuth smearing (so there
are few constructive quadratic interactions in the
SAR process) while the low azimuthal quadratic
components are removed due to the factor
in the quadratic kernel (see (22) for ). This
low–high quadratic component removal explains
the shape of the destructive quadratic interaction
spectrum which is divided into almost symmetrical
spectra (Figs. 11 and 12) and presents a large
bandwidth in the range direction (see Figs. 9–12).
Consequently, a large range bandwidth (or as
mentioned by some authors, “cigar” shape [5]) is
characteristic of the quadratic mode.

2) The linear components are removed by azimuth
smearing as the propagation angle increases. See
for instance, Fig. 9, in which the dominant wave
in the linear spectrum has an angle of 20(while
the input spectrum propagation angle was 45)
and thus seems to have turned toward the range
axis (this point is retrieved even when the SAR
process is linear). We note that azimuth smearing
is a nonlinear phenomenon, but does not produce
interactions. Therefore, this phenomenon is not
detectable nor quantifiable by HOS methods.

• Higher order nonlinearities are also limited in a strip since
low azimuthal components are eliminated by and
high azimuthal components are removed by the azimuth
smearing. The contributions of these interactions are
then located in the SAR spectrum “basis” (i.e., the small
spectrum values located over all the frequency plane
[see Figs. 7(a), 9(a), 11(a)]. This explains why these

nonlinearities, even if they do not contribute to the SAR
spectrum shape, are not necessary negligible.

• As already noted [9], [14], the predominant phenomenon
is so-called Velocity Bunching, which defines the shape
of the SAR spectrum. The RAR modulation thus con-
tributes to spectral asymmetries with regard to the range
axis. As explained by Hasselmann and Hasselmann [9]
for the quasi-linear transform (Figs. 7 and 8), the two
spectral peaks are not strictly symmetrical. The phenom-
enon is also present for the quadratic kernel, the quadratic
spectrum not being symmetrical with regards to the az-
imuthal axis (Figs. 9–12). A process solely dominated by
the velocity bunching interactions could not lead to such
asymmetries.

• A final conclusion, drawn from those above, is that the
SAR spectrum shape is generally given by the linear
Volterra kernel spectrum and in some cases by the
quadratic kernel spectrum. The contribution of higher
order interactions is mainly located in the spectrum basis
and is sensitive up to the tenth order (for higher orders the
corrections are negligible). This latter result thus gives
an idea of the possible truncation order for an acceptable
approximation of the SAR process by Volterra models
and consequently gives a first design for the possible
post-inverse Volterra model (not discussed in this paper).

B. Bispectral and Nonlinearity Analysis

The nonlinearity analysis was performed for three cases: a
linear one (with m, a wavelength of 200 m and an angle
of 0 ), a mixed case with both a linear spectrum and a quadratic
one ( m, a wavelength of 200 m and an angle of 45), and
a quadratic case ( m, a wavelength of 200 m and an angle
of 90 ). The SAR spectrum decompositions for these three cases
are depicted in Figs. 7–12, respectively, with the Volterra model
spectrum up to the fifth order.

• The calculated bispectrum values [using (8)] are quite
small and consequently the deduced values of the bico-
herence [using (6)] are also small. The Volterra model
bispectrum [using (17)] and bicoherence [using (6)]
values are generally much greater. For this reason, the
bispectrum closest to the SAR bispectrum is generally
the FOVM bispectrum which is null (see Figs. 2–5).
Moreover the bispectral distance increases with the
Volterra model order and we have to add high order
interactions for converging to the SAR bispectrum. As
a first conclusion we can state that, even if the higher
order interactions do not contribute strongly to the spec-
trum shape, their contribution is more important for the
bispectrum. However, the bispectrum of SOVM is also
quite close to the SAR bispectrum and the approximation
of the SAR transform by a SOVM is then most valid for
Volterra kernel identification by the methods cited in the
introduction [13], [17], [20], [25].

• Results on the nonlinearity detection by the statistical
index of Subba Rao and Gabr [27] are quite satisfactory
since the Type II Error probability is generally below
0.1 for and below 0.2 for (see Fig. 6).
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Fig. 7. (a) Spectrum of the complete SAR transform; (b) Volterra model of order 1; (c) Volterra model of order 2; for swell propagating along the range
axis (Hs = 7 m and for a wavelength of 200 m).
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Fig. 8. (a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating along the range axis
(Hs = 7 m and for a wavelength of 200 m).
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Fig. 9. (a) Spectrum of the complete SAR transform; (b) Volterra model of order 1; (c) Volterra model of order 2; for swell propagating with an angle of
45 with regards to the range axis (Hs = 7 m and for a wavelength of 200 m).
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Fig. 10. (a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating with an angle of
45 with regards to the range axis (Hs = 7 m and for a wavelength of 200 m).
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Fig. 11. (a) Spectrum of the complete SAR transform; (b) Volterra model of order 1; (c) Volterra model of order 2; for swell propagating along the
azimuthal axis (Hs = 7 m and for a wavelength of 200 m).
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Fig. 12. (a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating along the azimuthal
axis (Hs = 7 m and for a wavelength of 200 m).
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TABLE I
TYPE II ERROR PROBABILITY , FOR THE CST

AND VOLTERRA MODEL UP TO THESIXTH ORDER

An important point is that the classification between linear
and nonlinear images does not depend on the nonlinearity
energy since detection performance is quite good for both
quasi-linear systems and for quadratic systems. Results
of nonlinearity detection obtained on Volterra models are
not as good although the bispectrum and the bicoherence
values are stronger (see Table I). These values are quite
similar and the bicoherence is flatter than the bicoherence
of the SAR transform.

• Although bicoherence tables, tested on simulated images,
are not a reliable tool for nonlinearity detection (due to the
bicoherence variance estimation), they can provide a reli-
able location of the linear spectrum. Fig. 13 illustrates the
linear spectrum location in the case of a mixed mode. The
detection of the maximum values along the lines
and leads to a linear component with a projec-
tion of about 150 m in the range direction and 600 m in
the azimuth one. In Fig. 9(b), we verify that the “linear”
spectrum is located at this wavenumber. However, the au-
tomatic linear spectrum determination, from the HBTs is
not necessarily a trivial task, because linear and quadratic
spectra can be connected (see Figs. 9 and 10) or the linear
spectrum can be split (see Figs. 7 and 8).

• Nonlinearity quantification by using (19) is, in practice,
the most difficult goal to achieve due to the high variance
of the bicoherence estimates. Results obtained on simu-
lated images give a nonlinear energy overestimation. Since
the linear and the quadratic spectra are generally not lo-
cated at the same place in the frequency domain, we can
get around the quantification problem by simple location
and delimitation of both spectra by using the results of
Section IV-A under the restrictions noted above.

V. RESULTS ONERS-1 IMAGES

The nonlinearity analysis method was tested for four ERS-1
(400 600) imagettes (the parameters are recalled in Table II).
These imagettes were segmented into sixteen 128128 subim-
agettes with some overlapping. The spectrum and bispectrum
of the image were estimated by averaging and

calculated on each sub-image.

Fig. 13. HBTs for SAR simulated image, mixed mode (Range-Range top,
Azimuth-Azimuth bottom).

TABLE II
ERS-1 IMAGE DATA: DAY, HOUR, LATITUDE, LONGITUDE,

DOMINANT WAVELENGTH (DW), ESTIMATED AZIMUTH CUTOFF (ACO),
ESTIMATED NONLINEARITY INDEX q̂

Results on these real SAR images agree with both the spectral
and bispectral calculations, and with the nonlinearity index cal-
culation. Here, we present the spectrum, the CBT and in one
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Fig. 14. Top: Spectrum and CBT for image 1. Bottom: Spectrum and CBT for image 2.

case the HBTs for these four images. The nonlinearity index es-
timates ( ) in Table II lead to a conclusion of linearity with a
significance level (if under the conditions
given in Appendix A).

• The first image presents a spectrum with a narrow band-
width in the azimuth direction ( ), with a peak around
400 m (see Fig. 14) and the estimated azimuth cut-off
around 100 m. The spectrum does not contain quadratic
components (either scattered in the spectrum basis or lo-
cated in a dominant quadratic spectrum). In the CBT rep-
resentation (see Fig. 14), some components are darker than
in the spectrum but this is due to bicoherence estimate
variance rather than to nonlinearity detection. This image
illustrates the case of a linear image of waves traveling
in the azimuth direction, thus demonstrating that the SAR
process for such a configuration can be linearly modeled.

• The second image has a dominant wavelength in the
Range direction and the nonlinearity index leads to the
conclusion of a nonlinear signal (see Table II). The
comparison between the spectrum and the CBT (Fig. 14,
second line) indicates stronger values (darker compo-
nents) in the CBT for azimuthal components around
300 m, verifying the nonlinearity location along this

axis as seen for simulated images. However, a nonlinear
energy quantification by (19) leads to a low amount of
nonlinear energy, thus proving that this image can also be
considered as representative of the linear mode defined in
Section IV-B.

• For the third image, the nonlinearity index also indicates
a nonlinear signal, but the spectrum and the bicoherence
table do not provide information about the nonlinearity
location (all the Fourier components having nonlinearly
interacted). From the HBTs of Fig. 15, we deduce that
the linearly filtered original spectrum has a wavelength
projection on the range axis around 150 and 500 m on
the azimuth axis. Consequently, the spectral peak, in the
45 direction, is a quadratic artifact of the SAR process.
This spectrum is close to the one of Fig. 9 for an orig-
inal wave spectrum propagating in the 45direction. We
note that the quadratic kernel asymmetry is more impor-
tant here than for the calculated spectra of Section IV-A,
thus meaning that RAR modulation can be assumed to be
different from the one used for our calculations.

• The fourth and last signal is also nonlinear according to the
nonlinearity index (see Table II). The spectral tail (with re-
gards to radial bandwidth) is unusually long. This tail can
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Fig. 14. (Continued)Top: Spectrum and CBT for image 3. Bottom: Spectrum and CBT for image 4.

be interpreted as constructive interactions, as verified on
the HBTs. The fact that the spectrum is close to the range
axis without spectrum splitting leads us to assume that the
original spectrum has been compressed onto the range axis
under Azimuth Smearing effects, a result verified by the
high estimated azimuth cutoff (see Table II). We found a
similar SAR spectrum for high and for waves prop-
agating with an angle of 30, the proximity of the orig-
inal wave spectrum to the range axis explains why no de-
structive quadratic interactions are detected. This image is
an illustration of the nonlinearity quantification problem
of Azimuth Smearing nonlinear effects, since SAR non-
linearities have not created nonlinear interactions for this
image but have only filtered original components out. The
image in Fig. 1 presents this kind of nonlinearity.

VI. DISCUSSION ANDCONCLUSION

The results presented in this paper detail SAR transform
modeling by a Volterra expansion for a better understanding
of SAR spectral distortion. We show in this paper that the
specific SAR mapping can be stated as being bimodal (ei-
ther linear or quadratic). Tools derived from HOS, such as

the nonlinearity index of Subba Rao and Gabr [27] or bico-
herence tables, give fairly robust nonlinearity detection and
location even if they are both disturbed by an intrinsic es-
timate variance problem (already reported by [7], [23], and
[24]). This estimate variance prevents nonlinearity quantifi-
cation. The tools used for nonlinearity location and detec-
tion assume Volterra modeling (up to the second order) and
thus need the results of the decomposition of the SAR trans-
form on Volterra models in order to give coherent results.
A next step will be to use the Volterra model in the SAR
inversion problem. But, in order to retrieve the sea spec-
trum from the SAR spectrum by post-inverse Volterra fil-
tering, the direct linear kernel must not be null. This condi-
tion is not satisfied for the SAR linear kernel due to Azimuth
Smearing. However, unlike linear systems, the loss of infor-
mation by filtering (such as Azimuth Smearing) is not nec-
essarily definitive for nonlinear systems. Indeed, the removed
input Fourier components were somehow “recoded” by con-
volution of the quadratic kernel with other input Fourier com-
ponents in the frequency domain, and could be recovered
from this quadratic kernel. Thus the use of Volterra models,
especially the SOVM, for SAR transform inversion, with a
more sophisticated method, remains an open question.
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Fig. 15. HBTs for the third image (Top: Range–Range, Bottom: Azimuth–
Azimuth).

APPENDIX I

In order to illustrate the mechanisms which have some effects
on phase coupling detection, we consider the following signal:

(26)

where are random phases uniformly distributed over [0, 2].
By using the bispectrum definition (5), we find that only the
quadratically phase coupled part interferes in the bispectrum as

, while the spectrum is the sum
of both components . For gen-
eral variables, the bicoherence expression does not lead to inter-
esting results

(27)

but if we made the assumptions that and
the are independent Rayleigh variables (i.e., the input data
are Gaussian), then the bicoherence gives the ratio of nonlinear
energy over total energy at wavenumber

(28)

As seen in Section III, the assumption is verified
for the second-order Volterra Model and the relation (28) is only
valid for this model.

• Bicoherence being a 4-D structure, the information of the
bicoherence is not immediately accessible for a global
analysis. We thus propose to compress the bicoherence in-
formation, by summation along one of the three pairs of
non redundant axes ( ), ( ), ( ), into 2-D
structures, the bicoherence tables. The bicoherence tables
are consequently defined as (see [18])

(29)

The CBT, range-azimuth, , gives the ratio of the
total nonlinear energy over the total energy. In fact, by
using (28) the complete quadratic energy is given by the
sum of all quadratic interactions over the Fourier domain
(i.e., for each pair of wavenumbers, the sum of which is
equal to ). The ratio of quadratic energy is given
by . By bispectral symmetry
[see definitions (5) and (6)], we obtain

(30)

and thus, the total quadratic energy is quantified by

(31)

• The homogeneous tables ( and
) have a different interpretation but they can

be seen as the amount of energy between two waves, the
azimuthal component of which is equal to and (
and , respectively). Especially, two harmonics of an
original signal with a limited bandwidth spectrum have
close wavenumber and their interactions are located in the
homogeneous tables along the line (respectively,

). This property is useful for recovering the
linearly filtered original spectrum location.

• The index proposed by Subba Rao and Gabr begins by
choosing values of different sample of the estimated bi-
coherence and forming the vector colon
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and by constructing around each point
a fine frequency grid with

with

(32)

The distance between the points must be chosen in such
a way that:

(33)

see [27] or [10] for a discussion of this condition. We then
obtain trials of . The problem is to test
whether all the variables have the same mean and it is a
well-known problem of symmetry addressed by Anderson
in [3]. Since the mean of this value is not known, Subba
Rao and Gabr define the matrix by

...
(34)

and we calculate . This array of variables
is zero mean under the null hypothesis, i.e., the signal is
linear. The remaining part of the test is based on the
Hostelling test. It needs to introduce the variables

and (35)

where denotes the transposed matrix. TheHostelling
statistics , is then

(36)

and follows, under the null hypothesis, a central
distribution where and

are the degree of freedom of the distribution. The central
F distribution with and degrees of freedom is
given by

(37)

Obviously, when the hypothesis is verified, is close
to zero and this hypothesis is then accepted ifis lower
than any threshold determined by the significance
level .

(38)

For instance, for , with and (we
use these values for the tests of Section IV-B) then

. When the signal is nonlinear is a noncentral F
distribution, the noncentrality parameter being

(39)

where is the true mean vector andthe true covariance
matrix of random variable array. The non central F-dis-
tribution (with noncentrality parameter and and
degrees of freedom) is given by

(40)

The type II error probability is thus given by

(41)

APPENDIX II

By applying the bispectrum definition (5) to the SAR expres-
sion of (1)

(42)

Proceeding as Krogstad in[14], we have (43) shown at
the bottom of the page. By applying the stationarity of

(43)
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the sea surface up to the order 3,(43) can berewritten
as

with

This expression can be calculated by considering the six-ele-
ment random array

(44)

of mean vector

(45)

and of covariance matrix By considering the first character-
istic function we get (46) shown at the bottom of the page,

and observing that can be calculated with the
derivative of its first three variables

(47)

we obtain (8).

APPENDIX III

The cross spectrum between the interactions of orderand
is obtained by introducing (13) in the second definition of the

spectrum (see (2)). We obtain

if and

else (48)

with (49) shown at the bottom of the page. Under the Gaussian
assumption of the input signal (the sea surface is assumed to be
Gaussian as in [9] or [14]), is complex, jointly Gaussian
and can be considered as independent of if

[19], [21]. If one Fourier component independent of the
other Fourier components is present in (49), then the mathemat-
ical expectation can be expressed as the product of the mean
of this Fourier component with the mean of the product of the
other Fourier components. Since is zero mean, the ex-
pectation in (49) is null. Then, the expectation in the last part
of (49) is not null only if all the Fourier components can be

(46)

(49)
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grouped by pair, the elements of this pair being complex conju-
gate (i.e., the wavenumber vectors are opposite). This yields to
the expression given in (16) for instance. Moreover, when the
number of Fourier components involved in the expectation of
(49) is odd (i.e., is odd), this condition is never satisfied
and the spectrum is always null. In the same way, the bispec-
trum of the Volterra model is calculated by introducing (13) in
(5) and the bispectrum is non null only if is even.
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