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Analysis of the SAR Imaging Process of the
Ocean Surface Using Volterra Models

Jean-Marc Le Caillec, René Garel®enior Member, IEEEand Bertrand Chapron

Abstract—In this paper, the synthetic aperture radar (SAR)
process of the ocean surface mapping is studied using a decompo-
sition based on a Volterra model. By a mathematical expansion
of the complex exponential of the complete SAR transform, these
models decompose the nonlinear distortion mechanisms of the
SAR spectrum over different spectra of polynomial interactions.
Thus, they offer an alternative modeling (to the exact SAR trans-
form) giving a theoretical separation between the SAR Fourier
components linearly derived from the sea surface elevation and
the artifacts created by nonlinearities of the SAR mapping of the
ocean surface. The main results of this paper consist of the sys-
tematic assessment of such an approximation of the ocean surface
SAR imaging process. Higher order statistics (HOS) of the SAR
transform and their calculus and implementation are presented. Fig. 1.
In fact, nonlinearity detection, location (in the Fourier domain)
and quantification can only be performed by HOS, reduced here
to a second-order Volterra Model. The Volterra expansion of the the non uniformity of the gravity capillary wave spectrum. The
SAR imaging process opens new theoretical inversion schemespackscattered energy is proportional to this spectrum for Bragg
since ur_wde_r cert_ain conditions on.tht_e linear part, Vqlterra models backscattering [2], [11], [16], [22]. Although many parameters
are easily invertible. Our method is first tested on simulated SAR are still unknown, this latter hydrodynamic modulation is as-

images in order to validate the HOS tools. We then show results of . .
this nonlinearity analysis performed on images from the ERS-1 Sumed to be linear. Both modulations produce a real aperture

SAR image of the sea surface.

satellite and we present cases of nonlinearity detection. radar (RAR) image, i.e., an image of the frozen sea surface. The
Index Terms—Higher order statistics, radar mapping, SAR, sea Second step in SAR mapping is the modulation associated with
surface, Volterra models. the sea surface motion. Orbital wave velocities produce Doppler

shifts leading tad(z) misplacements of the RAR pixel in the
SAR image (so-called “velocity bunching”).

Following Hasselmann and Hasselmann [9], SAR Fourier co-

SYNTHETIC aperture radar (SAR) is an active electroefficients are given by
magnetic instrument which allows the detection of large

scenes with very high resolution. It is independent of the diurnal X,,.(k) = |A|~* / Kpar() - 7 F4@) L omi ke gy (1)
cycle and weather conditions. Fig. 1 presents a sea surface im- A
agette obtained by the ERS-1 SAR. Visible crest lines of thighereA is a given surface anda two-dimensional (2-D) array
radar image are about five kilometers long. Such waves are halving a range and azimuthal components. For the remaining
too common and this image can be considered as an illustrapegt of this paperk, will denote the azimuthal component of
example of the known distortion associated with SAR mappinge wavenumber vectdrwhile k,, will be the range component.
[9]. From the pioneering work of Alpers and Rufenach [1] andince the displacement is along the azimuthal axis we then have
[4], the SAR imaging process of the sea surface has been widglyd(x) = k,, - |d(z)|. The complete nonlinear transform pre-
studied and is indeed known to be nonlinear (i.e., it does not seénted in (1) includes the decrease in effective resolution caused
isfy the classical criteria of linear systems [26]). by the stretching/contraction of the RAR pixel due to the orbital

Current SAR transform decomposition of the sea mappinglocity dispersion into the radar resolution cell. Following such
is usually achieved in two steps. The first one consists of themodel, the SAR mapping nonlinearity comes from the com-
modulation of the backscattered energy (around its mgan plex exponential in expression (1).
by the sea surface. This step is divided into two different mech-The first main contribution of this paper is to expose and ex-
anisms: a geometric effect known as the tilt modulation, dignine the approximation of the complete nonlinear transform
to the variation of the angle between the sea surface and Byea Volterra model. We list below four reasons why such an
radar beam (see [28], [29]) and a hydrodynamic effect due &pproximation is of interest.

« First, this decomposition will help to better understand the
Manuscript received April 18, 2000; revised April 9, 2002. nonlinear SAR transform. In Volterra models, the non-
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as will be seen in Section IV-A. The identification ofgiven in the second section. Section lll is devoted to Volterra
different orders of nonlinear interactions (especially theodels and to the SAR transform expansion using these models
linear and quadratic components) facilitate the compréom a theoretical point of view. In Section IV-A, we develop
hension of the nonlinearity analysis (i.e., detection, locacomparison between the SAR spectrum obtained by the com-
tion and quantification of nonlinearity) using higher ordeplete nonlinear transform of (1) and the spectrum of Volterra
statistics (HOS) as detailed in Section Il and enables theodels of different orders in order to examine the validity of the
amount of nonlinear energy “created” by the nonline8AR transform expansion using Volterra models. For this com-
SAR transform to be quantified, and a decision to be magarison, we compute the spectra by assuming the sea surface
concerning whether the process is linear or not. to be Gaussian distributed and derived from a JONSWAP spec-

* Although the SAR spectrum expansion has been alreanlym [12]. Some of the sea states that we will examine are not
investigated by Krogstad [15] in the one-dimensionakalistic especially the combination of certain wavelengths and
(1-D) case, the 2-D case can present spectrum rotatisignificant wave heightdd, (defined asH, = 4/ E{(?(z)}
(not conveyed in the 1-D case). One of the contributionghere {(x) is the sea surface elevation). Nevertheless, since
of this paper is to better understand such phenomenadayr purpose is to examine the SAR transform decomposition on
expanding the SAR spectrum over polynomial spectra &olterra models, feasibility must be verified for all sea states
stated above. within a reasonable sea parameter range petween 0 and

* Nonlinear time-series modeling using HOS methods with0 m and wavelength between 100 and 500 m). Nonlinearity
an underlying Volterra modeling makes it possible tanalysis being necessarily performed with HOS, the validity of
estimate unknown \olterra kernels. Applied to the SAfhe SAR decomposition for third-order statistics is presented in
process, these methods would allow the RAR transf€ection IV-B. This validity is verified from the point of view
function to be identified and then the usual assumption of bispectrum distances and from the point of view of nonlin-
linearity at this stage of the SAR imaging process to bearity statistical index values (used for nonlinearity detection)
verified. These methods can work whether input data of the hypothesis testing framework. Section V presents nonlin-
the Volterra model, i.e., measured sea elevation, (see &arity analysis for real SAR images (from the ERS-1 satellite) in
instance [13], [20], [25]) are available or not ([17]). light of the results presented in the previous sections. We show

« Finally, the Volterra decomposition makes it possible tthat we can detect nonlinear events when they are present in the
easily invert the SAR transform. Indeed, Volterra modelémages.
under some restrictions on the first kernel, are post-invert-
ible by another Volterra model. This means that the kernel§. NONLINEARITY ANALYSIS AND HIGHER ORDER SPECTRA
of this post-inverse model are derived from those of the di- . . . . )
rect Volterra model. Moreover, this new inversion schem When dealing with nonlinearity issues, we must f|rs_t add_res_s
can be performed directly on the image and not only ontﬁ%e problem of the presence or the absence of nonlinearity in

spectrum like the regularized inversion process propos%? obsgrved _S|gnal. IT nonlinearities are presgnt, we then have
) identify which Fourier component artifacts it has produced.

by Hasselmann and Hasselmann in [9]. Single look co 2 : . : .
plex (SLC) images being widely used nowadays, there § second step of the analysis thus consists of a nonlinearity

great interest in finding an inversion process conservir# cation in the Fourier domain and we finally have to perform

the phase information (i.e., complex data). However, b 1e estimation of the Fourier component energy part provided

fore inverting the SAR transform, a systematic verificag/ this nonlinearity, i.e., the quantification of the nonlinearity.

tion of the validity of the SAR transform expansion usin his nonlinearity analysis can only be performed with higher
\olterra kernels must be performed. The main part of th der spectra.
paper is devoted to this subject.

Another important contribution of this paper lies in the the
retical calculation of the SAR transform bispectrum. We recall In the Fourier domain, the information concerning the signal
that nonlinearity analysis from an observed output of possiby divided into the magnitude and phase of the Fourier coeffi-
nonlinear systems without input data (that is generally the cagents. The spectrum can be defined as the Fourier transform of
with SAR image) can only be performed with HOS. Obviouslyfhe autocorrelation function or as the mathematical expectation
both contributions are closely linked since, as will be seen & the Fourier transform coefficients
Section 1I-B, the SAR transform bispectrum is not easy to in- Yoo
terpret. Volterra models are useful in this case since existing S(k) = Z M (n)e™9*" = {X(k) ~X*(k)}
methods of nonlinear systems identification by HOS usually as- s
sume aVoIt_erra modeling._ For_ instance, the methods for nonliWith MQX(H) —E{X(i)- X(i +n)}
earity location and quantification use HOS but also assume that oo
the nonhnear.syste.m isa secon_d-order VoIterrg mpdel. andX (k) = Z X(n)e=3kn, @)

When dealing with SAR nonlinearity analysis with Volterra
models and HOS, our first step involves recalling the basic re-
sults of the different domains tackled in this paper. HOS theoAyspectrum, being real valued, does not provide phase informa-
is discussed in the first section, while classical and new resuiisn but, polyspectra and especially bispectra can convey phase
concerning the SAR transform spectrum and bispectrum andormation (these quantities being complex valued). The third-

OA. Definitions and Properties

n=—o0
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order moment of a stationary signal is expressed as the mathe-nonlinear. Two important parameters for statistical hypoth-
matical expectation of the triple product of the discrete signaksis testing are as follows.
« “Type | Error” probability: That is the probability of

X _ FATR Py . g
Mg (ny,n2) = E{X(1) - X (0 +n1) - X (0 4+n2)}. (3) declaring an image to be nonlinear although it is linear.

The third-order cumulant is then defined by The probability is then given byl (- «). 3
« “Type Il Error” probability: That is the probability of clas-
C5 (n1,n2) = M3* (ny,n2) — Io - M5* (ng —ng) sifying an image as linear although nonlinear. The proba-
—Iy- M5¥ (ny) — Io - M5* (np) + 213 (4) blllty is denoted;. _ _
For a fixed value oty, the smaller3 is, the easier the detec-
wherel, is the mean of the process. tion of nonlinearity will be, since errors of misclassification are

For zero mean processes, the third-order cumulant and meduced. Thes parameter depends on the theoretical spectrum
ment are then equal. A fundamental property of the third-ordand bispectrum of data contrary 49 which depends only on
cumulant is that it is null for Gaussian processes [19], [21fhe fact that the bicoherence is flat.

The bispectrum can be defined as the Fourier transform of the
third-order cumulant or as the mathematical expectation of tBe Spectrum and Bispectrum of the Complete SAR Transform

Fourier transform of the signal From (1), the SAR spectrum can easily be calculated using a
+oo oo Gaussian assumption for the sea surface [9], [14]
B (ky,k2) = C?f( (n1,n2) eI (Frnathe o) - 2
n1;o<> n2;oo Ssar(k) =K {‘Xsar(k)‘ }
—E {X (k1) - X (ko) - X* (b1 + kQ)} 2 {6_(,%)24@(0)
—Io-S(k‘l)(S(/ﬁ—i-kQ)—IO'S(/{Jl)(S(/{JQ) N
— Iy S (k2)6 (k) + 2136 (k1) 6 (k) (5) . / BN @G (3 k) - eI R — §(k)
Mechanisms for nonlinearity detection using phase coupling o @)

detection (i.e., phase coherence detection) are explained in
Appendix A and are detailed again on a second-order VolteM4th
modﬁl in Segtion III-Ai o . Gl(a?,km)z(l—i—M;’(aﬁ)‘f‘j'k“f'(Mgd(a?)—M;d(—QT))
When studying nonlinearities, bicoherence is a fundamental 9 rd rd rd d
quantity which can be derived from higher order spectra. It can +kz - (M34(0) = M3*(x) - (M3°(0) — M3* (=)
be seen as the normalized bispectrum, and is defined by ~ whereM""(z) = E{X..,(0)X,a:(z)} is the RAR image au-
) tocorrelation, M™% (z) = E{X,..(0)X4(z)} is the cross cor-
| B (k1, ko)) (6) relation between the RAR image and the displacement due to
S (k1) S (k2) - S (ky+ k) velocity bunching and/?4(z) = E{X4(0)X is the dis-
1 2 1+ k2 y bunching an (z) {X4(0) d(x?} is the dis

da

. .. 2
In the case of a linear process, the bicoherence becomes ficementautocorrelation. The_coefnmenf‘r 1.\42 © conveys
i.e., constant for all pairsk(, k») [8]. The nonlinearity index, the loss of resolution due to azimuth smearing. Assuming that

proposed by Subba Rao and Gabr in [27] and recalled in Atg;_e RAR function is linear, th(_a bispectrum is given by (8) shown
pendix A, tests whether the estimated bicoherence samples Haviie bottom of the page, with
the same mean (flatness test). This is a statistical hypothe:sis(k1 12.2,2) =1 +j<k1 (M™ (2! — 2) - M™ (')

P (ki ke) =

testing providing only a probability,, generally equal to 0.9 @2 e
or 0.95 (and called the “significance level”), that the signal is

linear. The usual procedure for hypothesis testing is to set up + k2 (M7(0) — M™ (x’))>
this probability and to theoretically derive a reference threshold

of the statistical index from its theoretical pdf, under the hypothg (/%iﬁ k2, z,a') =1+ <k}0 (Mrd(()) — Mrd(x))

esis that the signal is linear. If the measured index is lower than

this threshold, the image is declared to be linear with a proba-

2 rd AN rd
bility o« while if it is greater, the observed image is declared to +hy (M (@ —a) =M (x))>

Beo (K1, k2) — 53 . o ()P (kD) +hy K2)- M7 (0)

o

oo oo i 1 2 id 1 2 dd 1 2
. / / (M (=2 ) by kg =M (w1)-(hy — k3 ) -k M (w2)- (kg +57)-ka)
— o0 — o0

[M””(a:) A (ks B2,z 2y + M () B (kL k2, 2) + M7 (x— 2) C (K, k2, %, 2')

X e X e x) e

X e x) e x) e

— O'OS (k‘g) -6 (k‘l) — O'OS (k‘l) M (5(]()2) — O'OS (k‘l) 6(/6‘1 + kQ) — O'g M (5(]()1) (5(]()2) (8)

i ARy KR 0 a') B (K k2 w,0') - O (kK ) | - e/ Bromthem) o,y



678 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 27, NO. 3, JULY 2002

C (k;7 k2, x) -1 +j<k; (M1,d(_x) _ M”d(O)) linear transfer function. For instance, an z_inalytic ex_pression_of
the second-order Volterra model (SOVM) in the Fourier domain
is given by (settingV = 2 in (10))
+oo

andkL, k2 are the azimuthal component of the wavenumber veb*) = Hi (k)X (k) + - Hy (kj k= ky) X (F5)
torsky, ko, respectively. This result is achieved by introducing X (k—k;)dk;.  (14)

(1) into the second definition of the bispectrum definition (see I

(5)) and proceeding like Krogstad [14] (see Appendix B). EXFhe output of the quadratic kernel is the interaction between
tracting information from the complete transform bispectrumvo harmonics of the input signal weighted By (kj, k — k),

is not easy, because of the complexity of the expression. e wavenumber sum of these two waves being equial The
deed, higher order moments are expressed as a product ofghectrunsy (k) of the Volterra model of ordeV can be written
second-order moments of Gaussian fields, i.e., the displacemgpintroducing (10) in (2) as

of the RAR pixel and the RAR pixel itself Wh|ch are both lin-

R (M (=) — M"%O))) ©)

early linked to the sea surface. Furthermore, because the bis- ‘ N o2
pectrum support is a four-dimensional (4-D) structure, a simple = Z Z Sp,q (15)
analysis is not possible. However for the quasi-linear transform p=lg=l

[9], obtained by expanding the exponential in (8} @nd%Z  wheres, (k) is the cross spectrum between the interactions of
small), bispectrum is found to be null, since the SAR image #dersp andq as seen in Appendix C. Under the Gaussian input

thus a linear filtering of a Gaussian sea surface. data assumptiors,, ,(k) is non null only ifp + ¢ is even (see
also Appendix C). For instance, the SOVM spectrum is given
lll. V OLTERRA MODELS by
A. Definition and Properties Sy (k) =81 1(k) + Sa2(k)
Volterra models are commonly used for nonlinearity analysis . 2 +0o0
and have been developed by Schetzen [26]. In these models, the |Hi(k)|" E {‘X ‘ } +/ |Ha (kj, k — k)|

output values’(n) can be expressed as a polynomial of input

~ ~ 2
data -E{‘X(kj)X(k—kj)‘ }dkj. (16)
Y(n)=ho+ Z fi (X(n) (10) The SOVM spectrum is thus the sum of a linear “spectrum”
i=1 and a “quadratic” spectrum. As discussed in [18], the quadratic

interactions of a real finite bandwidth signal, such as the sea
surface, are divided into two spectra.

* One is located over the low wavenumber components
Z Z hi(ni, ..., ni) OV .
oo (called destructive interactions, because they are produced
X (n—n1)-X(n—mn;) (11) by two waves with oppos_ite yvavenumbers). _
_ _ _ » The other, the constructive interaction spectrum, is cen-
or in the Fourier domain tered on twice the dominant wavelength of the original
. . N spectrum.
Y (k) = hod(k) + Hi(F)X (k) + > _TF(fi(X(n))) (12)  The third-order Volterra model (TOVM) spectrum, the
i=2 TOVM model being deduced from the SOVM by adding a
with cubic kernel, is also the sum of linear, quadratic and cubic
TF(fi (X spectra, and a supplementary cross linear-cubic spectrum.
n In the same manner, the bispectrum of a Volterra model of

:/+o<> . “/-I-oo <k ikz,/ﬁ’ ki 1) order N can be calculated by introducing (14) into (5) and is

with

given by

P q
</€ Zkl> . /ﬁ k17k2 ZZZquv klakQ (17)

p=1g=1r=1

"X (kima) dby - dhioy (13) " in which By, 4.+ (k1, k2) is the bispectrum of interactions of or-
andi > 2. The termh;(ny, ..., n;) is thei th-order kernel of dersp, q, 7. As for the spectrum, the bispectrum is non null only
the \olterra series (which generalizes the Taylor developmefity + ¢ + 7 is even (see Appendix C). For instance, the SOVM
and H;(k — E; i/w,kl, .., k;i_1) its Fourier transform. We bispectrum is given by (18) shown at the bottom of the next
can interpret \olterra models as a bank of filters, extending th@ge. We verify that two kinds of phase coupling are detected
linear case [seen as a first-order Volterra model (FOVM)]. TH the bispectrum.
main idea behind Volterra models is to relate the usual transfer « Primary phase-coupling phenomena (PPCP;: ;
function concept to more general cases involving nonlineari- (%, k2)) occurring between two waves and their quadratic
ties and to describe simply the frequency behavior of this non- interactions.
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» Secondary phase-coupling phenomena (SPBP,»> over the complex plane. The discrete space formula of (1) can
(k1,k2)) existing between three waves created blye written as

guadratic interactions. . . 4 .
. L Xoar (k) = Z Xiar(d) - ofhedli) o e
The advantage of phase—coupling phenomena duality is 7

that nonlinearity detection is still possible even if the linear +o0 B o

kernel is identically null, i.e., if all original signal waves  With X:ax(2) =00 [1+/ T (k)X (k) - /" dk
have been removed. This case occurs in the SAR transform R oo o

since for some cases the linear contribution is approximately andd(i) =— D)X (k) - & . (20)
null. The drawback lies in the difficulty in identifying what —o0

kind of phase coupling is detected by the bispectrum, i.eche R/V ratio defines an intrinsic parameter of the data ac-
if the detected phase coupling can be interpreted or not @sisition as it relates the radial distance from the satellite to
the phase coupling of two original signal waves and theffie ground to the speed of the spacecraft. The SAR \olterra
quadratic interaction. The identification of the kind of phaskernel expression is achieved by expanding the relationship be-
coupling is important for distinguishing the linear compotween the sea surface Fourier coefﬁcieﬂtsk) and the SAR
nents (i.e., linear spectrum) from the quadratic artifacts pdSeurier coefﬁcientsf(sar(k) on the polynomial basis. By ex-
sibly observed in a 2-D signal. The use of homogeneopanding (20), into (21) shown at the bottom of the next page
bicoherence tables (HBTs) see Appendix A or [18]) is reBnd by comparing this result and the theoretical Volterra ker-
evant for determining the kind of phase coupling detectedgls given in (13), the SAR Volterra kernels can be identified as
the PPCP and the SPCP not being located at the same place

in these tables. As a matter of fact, in these two tablgs, (x, ... k,) =
the linear signal components cross the linds = k2 and .

ki = k% and thus the linear spectrum can be located by (G- kat)” T (k1) D (k2) ... D (k)
using this property as will be seen in Sections IV-B and V. (n—1)! ’
However, this method assumes implicitly that the nonlinear (22)

system is an SOVM, and for this reason we need to decom- ) . ]
pose the SAR transform into Volterra models. Finally, thE/SiNg this expansion, we obtain the same results as Hassel-

quantification is done by also assuming an SOVM with sonjg@nn and Hasselmann [9]. The SAR spectrum is found to be

restrictions and by estimating the quadratic spectrum by [s sum of an infinite numper of terms implying the cross cor-
(16)] relation between the RAR image and the displacement field and

the autocorrelation of the displacement field. This result on the
SAR spectrum can also be retrieved by directly expanding the
Sa5(k) = S2(k).Tra(k) (19) SAR spectrum (7), thus explaining the increase in the spec-
tral tails due to higher order nonlinearity as already reported
where Tra(k) is the cross bicoherence table (CBT) aby Krogstadet al.in [15]. For discrete space formalism, az-
proved in Appendix A. imuth smearing is not included in the kernel of (22) (the orbital
velocity being uniform inside the sampled cell resolution), and
must be taken into account by multiplying all the Volterra ker-
B. Application to the SAR Transform nels of (22) by a coefficient—*-Mx*(9)/2_ The spectrum show
then a decrease equaldo®: Mx*(0) This modeling of the Az-
The SAR transform expressed in (1) can always be expandedith Smearing agrees with the loss in resolution for the bis-
over \olterra models since the exponential expansion is vafpectrum, since-((k2)? + (k2)2 + (kL +k2)?) - M$4(0)/2 =

(- kL) D (ky)...D (k)
n!

+

By (ky,k2) =B 1,1 (ki ko) + B o (K1, k2)

=H, (k) - Hy (ko) - H} (k1 ko) E{

()|

Jx [}

+ Hy (k1) - HY (k1 +k2) - H2 (=Fk1, k1 + ko) E{

+ Hy (ko) - HY (k1 + k2) - Ha (=k2, k1 + k) E{

+oo
+ H, (—kg + kj,kl + ko — /%J) - H> (k‘j, ko — /%J) . H; (k‘j,kl + ko — /%J)
~ 2 - 2 - 2
~E{‘X(k2—kj) ~‘X(k1+k2—kj) .‘X(kj) }dkj (18)
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—((KL)? + (k2)? + kL - k2) - M44(0) which is the decrease of the “energy distribution”. Similar to the spectral distance, we
resolution of the bispectrum (8). define the bispectral distance between a bispectByiii,, k2)
and a bispectrun®, (k1, ko) as
IV. THEORETICAL RESULTS

In order to validate the SAR expansion using \olterra B “Foo pFeo B (b k Ba (ke b2 dbes b
models, we computed the spectral and bispectral distancéd? = /700 - | By (k1, ka) — B (kv k2)|” dkadks.

between Volterra models of different orders and the complete (25)

SAR transform of (1). The spectrum and the bispectrum The next two sections give deeper insight into the approxima-
the complete transform were computed using expression figh of the SAR transform by Volterra models. Section IV-A
and (8), respectively. The SAR spectrum and the bispectrigresents the spectral comparison between the spectrum of the
of the SAR Volterra models were computed by introducing thebmplete SAR transform and the spectra of Volterra models of
expression of the Volterra models (12), using the kernels dgifferent orders whilst Section IV-B gives some results derived
duced from the SAR transform (22) in the spectrum definitiofiom nonlinearity indices and bicoherence tables.

(2). Similarly, the bispectrum was computed by introducing

the SAR kernels in definition (5). We also estimated th®  Spectral Analysis

spegtrum and_ b|spectrum by averaging the F ourter TransforrnFigS_ 2-5 present the spectral and bispectral distances in deci-
of simulated images. Since results are quite close we OrE)Igls and “energy distribution” for a wavelength of 200 m, and
display the theoretical ones. Tests were performed for valugs ™. = .~ gy ) g . '

of the significant waveheightZ, equal to 3, 5, 7, and 9 m, and Or significant waveheights off, = 3,5, 7,and 9 m. Figs. 7-12

the wavelength values were chosen to be 100, 200, and 506Jresent the spectra of a complete SAR transform (used as the

with the angle of propagation with respect to the range ax[ie erence) and Volterra models up to the fifth order. The con-

being between Dand 90. The radar parameters, especially(i?buuon of each kemel can _be deducc_ad by comparing different
= . olterra model spectra as discussed in this section. We present
the incidence angle and theg/V" ratio, were set to be equal

to the ERS-1 parameters (i.e., an incidence angle 6fz28i these configurations because the SAR transform changes from

- . guasi-linear behavior to a strongly nonlinear one as explained
R/V = 115). Because our goal is to compare several stochasfic . .
. . elow. For these results, we can formulate the following six
processes (the complete SAR transform and its approximation .
: . : conclusions.
by VWolterra models) with an underlying physical process, wé

chose the spectral distance between a spectuh) and a  ° 1€ Crossspecti,» ,(k), such as the linear-cubic spec-

spectrumSs (k) to be: trum or the quadratic-tetric spectrum, are negative (as seen
in the energy distribution of Figs. 2-5 sindé; ; andVy »
+oo are negative for all cases). This is logical since the inter-
AS = \// |S1(k) — Sa(k)|? dk (23) actions of orderg + 2 andp are in phase opposition (due

to j in the exponential expansion; see (22)). This remark
among all the possible definitions of spectral distance collected —€xplains (with some other reasons detailed below) why in-
by Basseville in [6]. Moreover, in order to better understand the ~ teractions of orders greater than three do not contribute
SAR spectrum shape and the order of the nonlinear interactions  strongly to the SAR spectrum shape (as seen below) since
involved in this shape we defined the spectrum weight of the ~ Sp—2(k) ands,, ,(k) cancel each others out as seen, for

interactions of ordep and order; [see (15)] as instance, in the symmetry &% 3 andW3 ; or W, , and
oo W, » of the energy distribution in Figs. 2-5.
W =100 J2 o Spq(k)dk ” « For common sea states, i.é4, smaller than 5 m and
pa ' fj;o Sn(k)dk (24) wavelengths greater than 200 m, the SAR process is

widely dominated by the linear kernel (sé§, ; in the
The collection of weights of the different subspectra of a spec- energy distribution in Fig. 2). In the spectral distance of
trum of a Volterra model of ordeV (defined in (24)) is called Fig. 2, there are few improvements produced by higher

(1)
_:.../;“
+<j.R"/k“’>n/_:o.../_:on(ko)...D(kn)~X(k0)...X(kn)

et Rotkiteth) gp o dk”]) Lo Ik (22)

1
0
n!

%

+oo

B =3 ( 5
n=0

+

D(ky)...D(ky)- X (k1) ... X (k)@ ®toth) g dk,
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order kernels since all the spectral distance curves are
quite close as depicted in Fig. 2. However, the corrections
due to the cubic kernel cannot be neglected and, even if ¢
they are weak, they contribute to the decrease of spectral
peaks which are stronger in the FOVM spectrum than in
the SAR spectrum [see Fig. 7(a) and (b)].

For high sea states, we can see a behavior change, since
the spectrum turns from a linear mode observed for small
dominant wave direction angles (belowsfer H, = 5

and below 45 for H, = 7, H, = 9) to a quadratic mode.
Equivalent linear and quadratic spectra exist for a narrow
range of angles generally centered arount 45 seen in
Figs. 9 and 10. In fact, for all these sea states, the SAR
spectrum shape is very close to the SOVM shape while the
FOVM spectrum is almost null [compare Fig. 11(a), (b), -
and (c)]. Moreover, as seen in Figs. 4 and 5, the weight
of the linear spectrumi¥; ;) decreases to zero while the
quadratic spectrumi¥; ») is close to 100. This quasi-bi-
modal behavior, which passes within a small range of
angles from a linear mode to a quadratic mode, can be
explained by two competitive phenomena. They are as
follows.

1) When the original spectrum is closer to the azimuth
axis, more quadratic interactions are created. The
guadratic spectrum is located on a strip in the
azimuth direction. The high azimuthal components

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 27, NO. 3, JULY 2002

nonlinearities, even if they do not contribute to the SAR
spectrum shape, are not necessary negligible.

As already noted [9], [14], the predominant phenomenon
is so-called Velocity Bunching, which defines the shape
of the SAR spectrum. The RAR modulation thus con-
tributes to spectral asymmetries with regard to the range
axis. As explained by Hasselmann and Hasselmann [9]
for the quasi-linear transform (Figs. 7 and 8), the two
spectral peaks are not strictly symmetrical. The phenom-
enon is also present for the quadratic kernel, the quadratic
spectrum not being symmetrical with regards to the az-
imuthal axis (Figs. 9-12). A process solely dominated by
the velocity bunching interactions could not lead to such
asymmetries.

A final conclusion, drawn from those above, is that the
SAR spectrum shape is generally given by the linear
Volterra kernel spectrum and in some cases by the
quadratic kernel spectrum. The contribution of higher
order interactions is mainly located in the spectrum basis
and is sensitive up to the tenth order (for higher orders the
corrections are negligible). This latter result thus gives
an idea of the possible truncation order for an acceptable
approximation of the SAR process by Volterra models
and consequently gives a first design for the possible
post-inverse Volterra model (not discussed in this paper).

are eliminated by azimuth smearing (so therE- Bispectral and Nonlinearity Analysis

are few constructive quadratic interactions in the The nonlinearity analysis was performed for three cases: a
SAR process) while the low azimuthal quadratidinear one (withH#, = 7 m, a wavelength of 200 m and an angle
components are removed due to the fadter)? of 0°), a mixed case with both a linear spectrum and a quadratic
in the quadratic kernel (see (22) far= 2). This one , = 7m, awavelength of 200 m and an angle of}%nd
low-high quadratic component removal explaina quadratic caséd, = 7 m, a wavelength of 200 m and an angle
the shape of the destructive quadratic interactiasf 90°). The SAR spectrum decompositions for these three cases
spectrum which is divided into almost symmetricaare depicted in Figs. 7-12, respectively, with the Volterra model
spectra (Figs. 11 and 12) and presents a larggectrum up to the fifth order.

bandwidth in the range direction (see Figs. 9-12). . The calculated bispectrum values [using (8)] are quite

Consequently, a large range bandwidth (or as
mentioned by some authors, “cigar” shape [5]) is
characteristic of the quadratic mode.

2) The linear components are removed by azimuth
smearing as the propagation angle increases. See
for instance, Fig. 9, in which the dominant wave
in the linear spectrum has an angle of ZWhile
the input spectrum propagation angle was’)45
and thus seems to have turned toward the range
axis (this point is retrieved even when the SAR
process is linear). We note that azimuth smearing
is a nonlinear phenomenon, but does not produce
interactions. Therefore, this phenomenon is not
detectable nor quantifiable by HOS methods.

« Higher order nonlinearities are also limited in a strip since

low azimuthal components are eliminated &y, )™ and

high azimuthal components are removed by the azimuth
smearing. The contributions of these interactions are ¢
then located in the SAR spectrum “basis” (i.e., the small
spectrum values located over all the frequency plane
[see Figs. 7(a), 9(a), 11(a)]. This explains why these

small and consequently the deduced values of the bico-
herence [using (6)] are also small. The Volterra model
bispectrum [using (17)] and bicoherence [using (6)]
values are generally much greater. For this reason, the
bispectrum closest to the SAR bispectrum is generally
the FOVM bispectrum which is null (see Figs. 2-5).
Moreover the bispectral distance increases with the
\olterra model order and we have to add high order
interactions for converging to the SAR bispectrum. As
a first conclusion we can state that, even if the higher
order interactions do not contribute strongly to the spec-
trum shape, their contribution is more important for the
bispectrum. However, the bispectrum of SOVM is also
quite close to the SAR bispectrum and the approximation
of the SAR transform by a SOVM is then most valid for
Volterra kernel identification by the methods cited in the
introduction [13], [17], [20], [25].

Results on the nonlinearity detection by the statistical
index of Subba Rao and Gabr [27] are quite satisfactory
since the Type Il Error probability is generally below
0.1 for = 0.9 and below 0.2 forx = 0.99 (see Fig. 6).
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Fig. 7. (a) Spectrum of the complete SAR transform; (b) Volterra model of order 1; (c) Volterra model of order 2; for swell propagating along the range
axis (Hs = 7 m and for a wavelength of 200 m).
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(b)

Fig. 8. (a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating along the range axis
(Hs = 7 m and for a wavelength of 200 m).
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Fig. 9. (a) Spectrum of the complete SAR transform; (b) Volterra model of order 1; (c) Volterra model of order 2; for swell propagating with an angle of
45° with regards to the range axi&ls = 7 m and for a wavelength of 200 m).
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Fig. 10. (a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating with an angle of
45° with regards to the range axi&/ = 7 m and for a wavelength of 200 m).
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Fig. 11. (a) Spectrum of the complete SAR transform; (b) Volterra model of order 1; (c) Volterra model of order 2; for swell propagating along the
azimuthal axis s = 7 m and for a wavelength of 200 m).
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(a)

(c)

Fig. 12. (a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating along thelazimutha
axis (Hs = 7 m and for a wavelength of 200 m).
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TABLE |
TYPE Il ERROR PROBABILITY, FOR THE CST
AND VOLTERRA MODEL UP TO THESIXTH ORDER

Linear mode | Mixed mode | Quadratic mode
CST 0.04 0.04 0.08
Order 2 0.10 0.10 0.10
Order 3 0.30 0.19 0.24
Order 4 0.28 0.40 0.28
Order 5 0.86 0.86 0.86
Order 6 0.50 0.53 0.59

An important point is that the classification between linear
and nonlinear images does not depend on the nonlinearity
energy since detection performance is quite good for bott
quasi-linear systems and for quadratic systems. Resul
of nonlinearity detection obtained on Volterra models are
not as good although the bispectrum and the bicoherenc
values are stronger (see Table I). These values are qui
similar and the bicoherence is flatter than the bicoherenc
of the SAR transform.
 Although bicoherence tables, tested on simulated image: /

are not a reliable tool for nonlinearity detection (due to the

| Pl

bicoherence variance estimation), they can provide a reli

able location of the linear spectrum. Fig. 13 illustrates the

linear spectrum location in the case of a mixed mode. Th¢

detection of the maximum values along the lihés= k2

andk, = k leads to a linear component with a projec-

tion of about 150 m in the range direction and 600 m in

the azimuth one. In Fig. 9(b), we verify that the “linear”

spectrum is located at this wavenumber. However, the aL

tomatic linear spectrum determination, from the HBTs is

not necessarily a trivial task, because linear and quadrati

spectra can be connected (see Figs. 9 and 10) or the linec

spectrum can be split (see Figs. 7 and 8). Fig. 13. HBTs for SAR simulated image, mixed mode (Range-Range top,
» Nonlinearity quantification by using (19) is, in practice Azimuth-Azimuth bottom).

the most difficult goal to achieve due to the high variance

of the bicoherence estimates. Results obtained on simu- TABLE Il

lated images give a nonlinear energy overestimation. Since ERS-1 MAGE DATA: DAY, HOUR, LATITUDE, LONGITUDE,

the linear and the quadratic spectra are generally not |0-DOMINANT WAVELENGTH (DW), ESTIMATED AZIMUTH CuTOFF (ACO),

cated at the same place in the frequency domain, we can ESTIMATED NONLINEARITY INDEX

get around the quantification problem by simple location

and delimitation of both spectra by using the results of v

Section IV-A under the restrictions noted above. 1 6 Oct. 93 | 23:39:36 | 24.72 | 34118 | 417 | 147 | 4.38

Number Day Hour Lat. Long | DW | ACO (| ¢

2 30 Sep. 93 | 23:35:27 | 50.62 | 336.80 | 68 246 | 6.42

V. RESULTS ONERS-1 MAGES 3 29 Sep. 93 | 12:16:27 | 22.16 | 313.80 | 229 | 371 | 8.08

The nonlinearity analysis method was tested for four ERS-1 4 50ct. 93 | 0:41:02 | 18.34 | 326.81 | 226 | 593 | 9.31
(400x 600) imagettes (the parameters are recalled in Table II).
These imagettes were segmented into sixteen<1238 subim-
agettes with some overlapping. The spectrum and bispectr®esults on these real SAR images agree with both the spectral
of the image were estimated by averagiigk) - X*(k) and and bispectral calculations, and with the nonlinearity index cal-
X (k1) - X(k2) - X*(k1 + ko) calculated on each sub-imageculation. Here, we present the spectrum, the CBT and in one
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Fig. 14. Top: Spectrum and CBT for image 1. Bottom: Spectrum and CBT for image 2.

case the HBTSs for these four images. The nonlinearity index es-
timates ;) in Table Il lead to a conclusion of linearity with a
significance leveby = 0.97 (if ¢1 < 5.693 under the conditions
given in Appendix A).

» The first image presents a spectrum with a narrow band-
width in the azimuth directioni(.), with a peak around .
400 m (see Fig. 14) and the estimated azimuth cut-off
around 100 m. The spectrum does not contain quadratic
components (either scattered in the spectrum basis or lo-
cated in a dominant quadratic spectrum). In the CBT rep-
resentation (see Fig. 14), some components are darker than
in the spectrum but this is due to bicoherence estimate
variance rather than to nonlinearity detection. This image
illustrates the case of a linear image of waves traveling
in the azimuth direction, thus demonstrating that the SAR
process for such a configuration can be linearly modeled.

« The second image has a dominant wavelength in the
Range direction and the nonlinearity index leads to the
conclusion of a nonlinear signal (see Table Il). The
comparison between the spectrum and the CBT (Fig. 14,
second line) indicates stronger values (darker compo- ¢
nents) in the CBT for azimuthal components around
300 m, verifying the nonlinearity location along this

axis as seen for simulated images. However, a nonlinear
energy quantification by (19) leads to a low amount of
nonlinear energy, thus proving that this image can also be
considered as representative of the linear mode defined in
Section IV-B.

For the third image, the nonlinearity index also indicates
a nonlinear signal, but the spectrum and the bicoherence
table do not provide information about the nonlinearity
location (all the Fourier components having nonlinearly
interacted). From the HBTs of Fig. 15, we deduce that
the linearly filtered original spectrum has a wavelength
projection on the range axis around 150 and 500 m on
the azimuth axis. Consequently, the spectral peak, in the
45° direction, is a quadratic artifact of the SAR process.
This spectrum is close to the one of Fig. 9 for an orig-
inal wave spectrum propagating in the°4direction. We
note that the quadratic kernel asymmetry is more impor-
tant here than for the calculated spectra of Section IV-A,
thus meaning that RAR modulation can be assumed to be
different from the one used for our calculations.

The fourth and last signal is also nonlinear according to the
nonlinearity index (see Table Il). The spectral tail (with re-
gards to radial bandwidth) is unusually long. This tail can
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Fig. 14. (Continued)Top: Spectrum and CBT for image 3. Bottom: Spectrum and CBT for image 4.

be interpreted as constructive interactions, as verified ¢lre nonlinearity index of Subba Rao and Gabr [27] or bico-
the HBTSs. The fact that the spectrum is close to the rangerence tables, give fairly robust nonlinearity detection and
axis without spectrum splitting leads us to assume that tleeation even if they are both disturbed by an intrinsic es-
original spectrum has been compressed onto the range diigate variance problem (already reported by [7], [23], and
under Azimuth Smearing effects, a result verified by thg4]). This estimate variance prevents nonlinearity quantifi-
high estimated azimuth cutoff (see Table Il). We found @ation. The tools used for nonlinearity location and detec-
similar SAR spectrum for higtH, and for waves prop- tion assume \Volterra modeling (up to the second order) and
agating with an angle of 30 the proximity of the orig- thus need the results of the decomposition of the SAR trans-
inal wave spectrum to the range axis explains why no d&srm on Volterra models in order to give coherent results.
structive quadratic interactions are detected. This imageAsnext step will be to use the Volterra model in the SAR
an illustration of the nonlinearity quantification problemnversion problem. But, in order to retrieve the sea spec-
of Azimuth Smearing nonlinear effects, since SAR nortrum from the SAR spectrum by post-inverse \olterra fil-
linearities have not created nonlinear interactions for thisring, the direct linear kernel must not be null. This condi-
image but have only filtered original components out. Thigon is not satisfied for the SAR linear kernel due to Azimuth
image in Fig. 1 presents this kind of nonlinearity. Smearing. However, unlike linear systems, the loss of infor-
mation by filtering (such as Azimuth Smearing) is not nec-
essarily definitive for nonlinear systems. Indeed, the removed
input Fourier components were somehow “recoded” by con-

The results presented in this paper detail SAR transfowolution of the quadratic kernel with other input Fourier com-
modeling by a Volterra expansion for a better understandipgnents in the frequency domain, and could be recovered
of SAR spectral distortion. We show in this paper that thieom this quadratic kernel. Thus the use of Volterra models,
specific SAR mapping can be stated as being bimodal (especially the SOVM, for SAR transform inversion, with a
ther linear or quadratic). Tools derived from HOS, such amore sophisticated method, remains an open question.

VI. DIScussiION ANDCONCLUSION
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but if we made the assumptions that = « - 4; - A, and

the A; are independent Rayleigh variables (i.e., the input data
are Gaussian), then the bicoherence gives the ratio of nonlinear
energy over total energy at wavenumber- k-

E {BQ} _ Sgua (k1 + k2)
E{AZ+ B2} S(k+ko)
As seenin Section lll, the assumptiGh= «- A; - A, is verified
for the second-order Volterra Model and the relation (28) is only
valid for this model.

 Bicoherence being a 4-D structure, the information of the

P ki, ko) =

(28)

Fig. 15.
Azimuth).

HBTSs for the third image (Top: Range—Range, Bottom: Azimuth—

APPENDIX |

In order to illustrate the mechanisms which have some effects
on phase coupling detection, we consider the following signal:

X(n) =A;dFrnten) g, pilkente:)

+ Agej((kl-l-kz)-n-l"?s) + B- ej((k1+k2)-n+991+992)
(26)

wherey; are random phases uniformly distributed over [0].2

By using the bispectrum definition (5), we find that only the
guadratically phase coupled part interferes in the bispectrum as
B(ki,k2) = E{A, - A> - B}/8, while the spectrum is the sum

of both component$(ky + k;) = E { A3 + B?} /4. For gen-

eral variables, the bicoherence expression does not lead to inter-
esting results

(E{A;- Ay - BY)? .

P (ki ko) = E{A?} E{AZ}-E{AZ+

@

+oo + oo
Taa (k3 k) / /

TRR If

+oo + oo
Tra (k3. ky) / /

.

bicoherence is not immediately accessible for a global
analysis. We thus propose to compress the bicoherence in-
formation, by summation along one of the three pairs of
non redundant axes:{, k2), (k1. k), (k. k2), into 2-D
structures, the bicoherence tables. The bicoherence tables
are consequently defined as (see [18])
kl kL k2 K2

z My oy oy

) dkLdk?

1 5.1 5.2 1.2
ka}v kyv ka;v ky

le

y’y

+oo —|—o<>
/ / ) diLdk?
kl kL k2 K2

z My oy oy

) di2dk2.
(29)

The CBT, range-azimutl¥’z.4 (%), gives the ratio of the
total nonlinear energy over the total energy. In fact, by
using (28) the complete quadratic energy is given by the
sum of all quadratic interactions over the Fourier domain
(i.e., for each pair of wavenumbers, the sum of which is
equal tok; + k2). The ratio of quadratic energy is given
by ff;’: P(ky + ko — k;, k;)dk;. By bispectral symmetry
[see definitions (5) and (6)], we obtain

+oo

P(kl + ko — kj, /%J)dkj

+oo
/ P(kl —I—kg,/%‘l—l—kg—kj)dkj

oo oo
/ / kl ) dk? dk’

=Tra (k1 +k2) (30)

and thus, the total quadratic energy is quantified by

+E2 R+ R KR

x Yy Yy ey ty

Squa (k1 + ko) =S (ki + ko) Tra (k1 + k2) (31)
The homogeneous tables T'{4 (k,k2) and
Trr (ky, k7)) have a different interpretation but they can

be seen as the amount of energy between two waves, the
azimuthal component of which is equalkg andk? (k,

and k2 respectively). Especially, two harmomcs of an
orlglnal signal with a limited bandwidth spectrum have
close wavenumber and their interactions are located in the
homogeneous tables along the life= k2 (respectively,

ky k2). This property is useful for recovering the
linearly filtered original spectrum location.

The index proposed by Subba Rao and Gabr begins by
choosingp values of different sample of the estimated bi-
coherencef’(kl, k>) and forming the vector cololr =
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(Y1,Y>,...,Y,)T and by constructing around each point Obviously, when the hypothest, is verified, T is close

(K1, k=) afine frequency grid with to zero and this hypothesis is then acceptéfiis lower
Lo, mk-d-x than any threshold:, determined by the significance
ky (m}) =kb+ Tk (my) = )+ level .
2.4. m2.-d-r e
K2 (m2) =k2 + _mmN Lok (m) =k ¥ /0 F(z)dz = a. (38)
with For instance, fory = 0.97, withn = 17 andp = 7 (we
ml=—J—J+1,...,0,...J—-1J use these values for the tests of Section IV-B) thgr=
mi=—J—J+1,...,J—1,0 m2+#0 5.693. When the signal is nonlinedy is a noncentral F
m; T —J4+1,..0,. . J—1.J distribution, the noncentrality parameter being
2 =5y (39)

mi=—J,—J+1,...,J—-1J m]#0 (32)

The distancel between the points must be chosen in such wherev is the true mean vector arftlthe true covariance

matrix of random variable arraﬁ. The non central F-dis-

Aa way that: tribution (with noncentrality paramete? andp andn —p
E {B (k3 (my) Ky (my) k3 (m2) k] (mg))} degrees of freedom) is given by
72/2
=Bki,ka) ¥ (mimymZm?)  (33) prer e/ _

see [27] or [10] for a discussion of this condition. We then (n =1L (T)
obtainn = 8J + 1 trialsY; of Y. The problem is to test oo (ﬁ)z [ 2 }(1/2)p+z‘—1 P (2 4d)
whether all the variables have the same mean and it is a 2 (n—1) (40)
well-known problem of symmetry addressed by Anderson = a0 (2 4d) [1 4o :|P/2+i
in [3]. Since the mean of this value is not known, Subba A2 (n—1)
Rao and Gabr define theX (p — 1) matrix by The type Il error probability is thus given by

1 -1 0 0 - 0 e

0 1 -1 0 - 0 /3—/0 Fe(2)dz (41)

B= } (34)
0O --- 0 0 1. -1 APPENDIX I

and we calculatd” = B - W. This array of variables ~BY applying the bispectrum definition (5) to the SAR expres-
is zero mean under the null hypothesis, i.e., the signal§#n of (1)
linear. The remaining part of the test is based onffie B, (ki, k)

Hostelling test. It needs to introduce the variables ~ ~ ~
1 i g 1 n - {Xsar (kl) ’ Xsa (k2) Xsar (kl + kQ)}
> = St
V=g and 2= (oY) (oY) @) B { Ko (2) - Ko )} B { K O 4 k2>}
wheret denotes the transposed matrix. TheHostelling -F {Xsar (ky) - X2, (k1 + ko) } E {X }
statisticsI? = Y- ~1Y?, is then i
e (npD) ) — B {Xoar (h2) - Xl (k1 + ko) | - B { Ko (k1) }
(p_ 1) . +2'E{Xsar (kl)} 'E{X';ar }
and follows, under the null hypothesis, a central
Flp—1,n—p+1)(x) distribution wherep — 1 andn — p + 1 -E {X;“‘ar (k1 + k2)}
are the degree of freedom of the distribution. The central .
F distribution withp andn — p degrees of freedom is =FE {Xsar (k1) Xoar (b2) - Xy (b1 + k‘z)}
given by . — 00+ Suae (1) 8 (1 + k2) — 00 - Suae (k2) 6 (k1)
. ((nzjl))” T (2) — 0o Ssar (k)6 (k) +2-03-6(k1)-6(ks). (42)
F(z) = (n—1)-T (u) ’ o, o\n/2-1° @37) Proceeding as Krogstad iii4], we have(43) shown at
2 r (%) (1 + (rf_1)) the bottom of the page. By applying the stationarity of

E {X';ar (kl) Qar (kQ) X:(ar (kl + k?)}

=i 2 / / / B {7 R D) D) X (1) - K () X (1))
| | |A| - +OO z€EA Jx'eA S eA ( ) ( ) ( )

Fos /7 S //7
_ijkl(ac Jz)_e j-ko-(z x)dx'dx/'dx//

L" . 7 . 77
— —_ Lm x x x , , . C_ R1-\r —=T 'C_ MO AR 5 —r x' x . x
A 3 1" ]ﬂ/; kx j-ki(2'—x) j-ko(z ’I‘)d d ! d 1" (43)
|A| i +OO rcA Jr'c A m”EA”
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the sea surface up to the order(33) can berewritten and observing thakl (x, ', kL, k?) can be calculated with the

as derivative of its first three variables
PP (w1, w2, ws, ws, Wz, we)
E { sar(k'l) sar k2) sar(kl + k?)} awlaw28w3 0,00,k o s ko
a2, / / (w0 KL, ) e~ =j-H (e, .}, k5) (47)
|A| — o0 acE—l xz'cAl e

! g g we obtain (8).

with APPENDIX Il
The cross spectrum between the interactions of opdand
H (z,2', kL, k2) ¢ is obtained by introducing (13) in the second definition of the
_E {X (&) Xenela) - X (O)G—J-ki-(d(o)—d(w’)) spectrum (see (2)). We obtain
—j-kz-(d(O)—d(a}))} Sp,q(k) :’Vp,q(k) + 7;,(1(]{;) if p 7£ q and
-C * .

Sp,q(k) :’Yp,q(k) else (48)
This expression can be calculated by considering the six-eéth (49) shown at the bottom of the page. Under the Gaussian
ment random array assumption of the input signal (the sea surface is assumed to be

Gaussian as in [9] or [14])X( ;) is complex, jointly Gaussian
X = (Xpar(2), Xpar(2), Xrar(O),d(a:),d(a:’),d(O))T (44) andX(kl) can be considered as mdependenﬁcﬁf@) if by #
+ks [19], [21]. If one Fourier component independent of the
of mean vector other Fourier components is present in (49), then the mathemat-
ical expectation can be expressed as the product of the mean
w = [o0, 00, 00,0, 0,0] (45) of this Fourier component with the mean of the product of the
other Fourier components. Sinéé(k) is zero mean, the ex-
and of covariance matrix By considering the first charactepectation in (49) is null. Then, the expectation in the last part
istic function we get (46) shown at the bottom of the pagef (49) is not null only if all the Fourier components can be

ogM3T(0)  ofMjT(x — ') ogM5T () ooM340)  ooMi4(x — ') UoM«Ed(x)
ogMs" (' —x) o M37(0) opM3"(a') oMU’ —w)  ooM3H0)  ooM3U(a’)

5 og Mj" (x) op M3" (") ogMzm(0)  ooMU(—zx)  ooMzi(—a')  ooM3(0)
ooMz4(0)  ooMzH(a' —x) oMy (—x) M3(0) Mgtz —a')  Mg(x)
aoMz(z —a')  ooMzH(0)  aoMiU(—a') Mz —2') Mg(0) Mg (')
ooM34(x) ooM34(z') oo M34(0) Mg () Mg (") M54(0)
é (wl’w27 w3, Wi, Ws, WG) —E {Cj(wl-Xrar(ac)-l-wz-er(q;’)—l—ws -Xrar(0)+w4-d(a:)+w3-d(a:')-l—we-d(O))} (46)

+oo +oo p—1
() :E{/ / H, <k—2kl,k1, )X <k Zkl> X (k)X (kyet) dhy - dEpy.

+oo +o0 a!
/ / H <k— A N )X* <k—2k ) XK X (K i, - dk’ql}

g—1
E{X <k— k,) X (k) X (kpo1) X7 <k— > k;n> XK X ;1)}dk1...dkp1dk’l...dk’ql
(49)
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grouped by pair, the elements of this pair being complex conjup1] C. L. Nikias and A. P. Petropuliiigher Order Spectra Analysis -A
gate (|e, the wavenumber vectors are Oppos|te) This y|e|ds to Nonlinear Slgnal Processing FrameworkEngIewood Cliffs, NJ: Pren-

the expression given in (16) for instance. Moreover, when the,,

tice-Hall, 1993.
W. J. Plant, “A two-scale model of short wind-generated waves and scat-

number of Fourier components involved in the expectation o terometry,”J. Geophys. Resvol. 90, no. C9, pp. 10 735-10 749, 1986.
(49) is odd (i.e.p + ¢ is odd), this condition is never satisfied [23] M. Rosenblattand J. W. Van Ness, “Estimation of the bispectrémif.

and the spectrum is always null. In the same way, the bispe

_ Math. Stat, pp. 1120-1136, 1965.
?24] M. Rosenblatt,Stationary Sequences and Random Field8oston,

trum of the Volterra model is calculated by introducing (13) in MA: Birkhauser, 1985,
(5) and the bispectrum is non null onlyzif+ ¢ + » is even. [25] A.K.SwainandS. A. Billings, “Weighted complex orthogonal estimator

(1]

(2]

(3]
(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(23]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

for identifying linear and nonlinear continuous time models from gener-
alized frequency response functionsléch. Syst. . Signal Processol.
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