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Abstract -~ Phase information is relevant either for detect-
ing and quantifying nonlinearities in a stochastic process
or for reconstructing nonminimal phase linear systems.
Higher Order Spectra (contrary to the spectrum) preserve
the phase information and consequently can be used for
both problems quoted previously. Knowing Higher Order
Statistics have already provided good resnlts in sea surface
classification [1], the natural following step is to take into
account spatial context by using the bispectrum in order
to study nonlinearities in the S.A.R mapping process of
the ocean surface.
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INTRODUCTION

We have divided this paper into three parts, the first one
deals with moment and bispectrum definitions and prop-
erties and also about nonlinearities detection and uantifi-
cation problem, the second part is devoted to study SAR
images nonlinearities in the case of waves traveling in the
range direction and comparison with theoretical ocean sur-
face SAR. irages bispectrum is roughed out in the third
and last part.

BISPECTRUM DEFINITIONS AND PROPERTIES

During these last ten years, Higher Order Spectra anal-
ysis has allowed to progress in noulinear systems detection
and identification. As a matter of fact, the capability of
Higher Order Spectra to estimate the signal phase, permits
to detect and ¢uantify phase coupling induced by nonlin-
earities as described below. For a 2D signal, third order
moment can be defined as:

f\ﬁx (ny,n2,ma,ng) =
E{X(,)).X(i+mn1,7+n2).X(E+ns,5+n4)}

The bispectrum can be defined by two different, ways [2],
[3], either as the Fourier transform of the third order mo-
ment.
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or as the mathematical expectation of the Fourier coeffi-
cients triple product.

B(wy,wa,ws,wa) = B{X (wi,wz) X (ws,ws) X*(w) + wr,wz +wa)}
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With X(w),w2) = DFT(X(:,5)). To explain, as clearly as
possible, how bispectrum can provide information about
the process nonlinearity, one can consider the following
signal:

X(i,7) = cos(kLi+ kb.g + 1) + cos(hZ.i + k2 + ¢2)
Feos((kL+k2) i+ (ky +k2).i+pa) +eos(ky i+ky.j+ea)

Feos(kY itk j+ps)+eos((ki+k3) i+ (ky+ky )i +eates)

Where ¢; are random phases uniformly distributed over
[0, 2.7].
Sinusoids of wave vector k%, k%, k% are said to be " quadrat-

ically phase coupled”. For such a signal, the third order
moment, is equal to:

1
]W3X(7L1 SN, Mg, Tg) = Z[

<:us(k;.nl - (L‘é + ki).n;; + kg.ng - (k'; + k’i)ﬂq)
+cos(kl g — (k2 + A:’ Yoy + A‘:Z g~ (kz + /\:;’ ).nz)
+cos(kd .y — (ki + kD )ona+ Lf, iy — (A‘,; + k;).n”
+ co.y(ki Ly — (ki + k; Yoy +/c; g — (k‘; +k§).n2)
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Only the phase coupled signal part appears in the third
order moment and thus, from several signal trials (i.e. with
different, phases), the bispectrum can discriminate the sig-
nal part with phase coupling from the one without phase
coupling. It must be noted that the bispectrum presents
a peak at the bifrequency: w) = ki, wp = kj,wa = KS wp = K
(i.e. the joined frequency of the first two sinusoids). Sinu-
soids passing through a quadratic filter generate sinusoids
which phases and frequencies are the sum of the phases
and frequencies of the original sinusoids. So output sinu-
soids and input sinusoids are quadratically phase coupled,
and for this reason, we assume a nonlinear system model
which is divided into a linear system in parallel with a
quadratic system as depicted in figure 1. It can be inter-
esting to quantify which part of energy is provided by each
system with the bicoherency function defined as {2], [3]:

Blwi,wy, w3, wy)

Plwy,wz,ws,wq) = , ————=
\/S(Wl\W'Z)-S(WS‘WQ)-S(WI + wy, wy + wy)

For instance, in the following signal:

X(i,5) = Ap.cos(kha 4+ kboi+01) + Az cos(k2 i+ kg + v2)
+ Aa.cos((kh +k2).i + (ky +k5).7 421 + w2)

+ B cos((ky+k2).0+ (k) +k2).5+6)
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Figure 1: Nonlinear model.

where ¢; and 6 are random phases uniformly distributed

over [0, 2.7], the first of the two sinusoids which frequency
is expressed as a sum can be seen as the quadratic filter
output generated by sinusoids of wave vector k!, k? and
the second one as the linear filtering of the sinusoid of
wave vector k! + k?. A second order analysis does not
separate each part, whereas a bispectral analysis takes into
account, only the quadratic phase coupled part and thus
using previous results, the bicoherency is equal to:

2

Plw) =k} wy = k;,wg = k%, wy = ch) = %

More generally a signal is said "linear”, if its bicoherency
is flat [2], [3]. However to extract information from a
four dimensional structure remains difficult, but a solu-
tion already given in [4] uses bicoherency standard devi-
ation in two dimensional slices to visualize peaks in the
bicoherency.

STUDY OF BICOHERENCY IN A SPECIAL CASE

When waves propagate perpendicularly to the satellite
track (1.e. in the range direction) a well known phe-
nomenon is the spectrum splitting due to the mapping
process nounlinearities {5]. In the spectriun, two peaks can
be observed with a rather weakest one. Our purpose is
to compare phases of both peaks, using the bicoherency,
to estimate if the waves have been generated by two inde-
pendent waves on the sea surface, or by a unique one. If
SAR image waves arise from the mapping of two indepen-
dent ocean waves, no constant phase relation between the
waves exists in several signal trials, whereas this relation
exists in the case where SAR image waves are produced
by an unique ocean wave. To estimate the bispectrum and
consequently the bicoherency, we used two conventional
methods presented in {2], [3] and extended to the two di-
mensional signal case in [6]. The direct method consists
in the averaging of the Fourier coefficients (second defini-
tion), meanwhile bispectrum is obtained by Fourier trans-
form of third order moment. in the indirect method (first
definition). Bicoherency is estimated using spectrum pe-
riodogram estimator with direct method and correlogram
estimator with indirect method. In order to work on sev-
eral trials we have divided our original 256X256 1image
into 128X 128 nine subimages with overlap, and assumed
thus to analyze independent trials. Bispectrum and con-

sequently bicoherency are estimated on a [64]* grid, the
frequency samples number being dictated by memory lim-
itations and time computation, and so the spectrum is
also estimated on a [64)? grid. In table 1 and table 2,
we have summarized four information obtained from six
ERS-1 256X256 subimagettes, the spectrum peaks local-
ization, the maximum bicoherency peak localization, the
maximum bicoherency value and the bicoherency value at
the bifrequency formed by the joined two spectrum peak
frequencies. For legibility reasons, we give the peak posi-
tion in the grid (1.e. in integer), for the spectrum two pairs
are related (one for each peaks!) and in each pair the first
integer 1s the frequency along the range (real frequency is
obtained by dividing the integer by 64 multiplied by the
corresponding ERS-1 resolution, 20 meters for the range
and 16 meters for the azimuth), for bicoherency integers
in odd position correspond to the range frequencies.

First conclusion is that the two methods don’t give

Spectrum | Maximum | Maximum | Bifrequency

peaks peak value value
11 5-380 5-470 0.36 0.23
2] 3-48-2 8§-28-2 0.36 0.18
3] 6-37-2 86-53 0.32 0.24
4 5-371 5-482 0.39 0.24
5] 5-261 8242 0.31 0.21
6 5-371 0692 0.37 0.27

Table 1: bicoherency peaks localization (direct method)

Spectrum | Maximum | Maximum | Bifrequency

peaks peak value value
1 5-380 1090 0.85 0.62
21 4-47-2 | 82-112 0.90 0.52
31 6-38-2 3-318 0.97 0.68
41 5-382 7-360 1.57 1.09
51 3-261 141-91 1.00 0.85
6 5-471 5-591 1.05 0.84

Table 2: bicoherency peaks localization (indirect method)

the same bicoherency rate, but it remains more or less
equal for a given estimation method. But the important
point 1s that bicoherency is rather high in both methods
(especially at the bifrequency formed by the joined spec-
trum peak frequencies) and two independent waves which
phases have been estimated over nine independent trials
can’t provide a so high bicoherency rate (on simulated im-
ages of [6], we have found a bicoherency rate of 10=% for
both methods). As it was already well-known, owing to
the phase content, we have found that both waves have
been generated by an nonlinear process from an unique
original wave. However some results remain unexplained,
for instance, in some images a rather high bicoherency at
high frequencies (waves less than 100 meters). This is one
example of the possible use of phase information for SAR
image of ocean surface study, and in the following section,
we introduce the theoretical bispectrum of SAR 1mage of
sea surface.
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THEORETICAL BISPECTRUM OF SAR IMAGES

Study of the spectrum allows to recover some parame-
ters linked to sea surface parameters, but this study re-
mains limited the mere fact that all the information is
contained only in the spectrum magnitude, meanwhile it
is transcribed in the magnitude and the phase of the bis-
pectrum. For this reason it is interesting to calculate the-
oretical bispectrum of SAR images of ocean surface, using
the classical RAR-SAR decomposition of [5] and the sec-
ond definition of the bispectrum, as for the spectrum is
calculated. Thus theoretical bispectral expression is equal
to:

Blhy, hy) = 1?//;4(:«1.1-).(—z(kz.mf—[<k§+k;+k..~z)].mw>
6,[pdd(x—m’),(kwkz).k,+pdd(m),(k,+k2).ﬂc2—pdd(m'),k,.k;.].
(H}(.’If, .’17/) -+ 113(.’(77 .T.", k1, /\72)
+i(Hy(w, 2’ ky, ky) + Ha(e, o'k, k-z)))da:.(]:r,’

Where Hi(x, 2’ ky, k2) is given in appendix A, [, is the
RAR image intensity average, pgi(x) is the correlation
function of the stochastic field of azimuth shift induced
by the orbital surface velocity. A special interesting case
1s when waves propagates in the azimuthal direction, (i.e.
ky =~ 0 and k2 ~ 0), thus the bispectrum is given by the
Fourier transf/orm of an even function, and consequently
the bispectrum is real. A verification of our assumptions
and the ones of [5] is given in table 3, in which phase av-
erage and phase standard deviation are related for both
conventional methods. Results on four images agree with

Direct Method Indirect Method
Average | Standard | Average | Standard
deviation deviation

1 ~3°21 10°61 0°22 10°86

2 —3°15 10°63 0°17 10°85

3 —~3°81 10°44 —0°16 10°87

4 ~3°69 10°4% —-0°11 10°87

Table 3: Phase average and phase standard deviation

the expected theoretical behavior of the phase (and with
our assnmptions) with an average about equal to zero and
a weak standard deviation, even if for some frequencies,
the phase is quite different from zero. Beyond this ex-
ample, combination of bispectrum phase and magnitude
contents (and spectrum magnitude) can provide new in-
teresting results about SAR mapping process of the ocean
surface.

CONCLUSIONS

As already sald in introduction, Higher Order Spec-
tra are a theory which has been developed during these
last ten years and 2D signal bispectrum applications are
very seldom. However, phase content i1s a very interest-
ing field of research and an attractive alternative tool to

the spectrum analysis. But, and it is an important limita-
tion, Higher Order Spectra estimators suffer of higher vari-
ance than spectrum ones, and phase content is extracted
with more difficulty than spectrum magnitude. Moreover,
for 2D signals, information is distributed over a four di-
mensional structure and its exploitation is not immediate.
Nonlinearities quantification and nonlinear system identi-
fication remain for the moment the more promising field of
Higher Order Spectra analysis for sea surface SAR images.

Appendix A

Hi(w,#") = 14 py1(e’ = z) = pri(2') = py1()
H3(m,m',k1,k2) =
= [H(01a0) = p1a(=" = 2)) + B (p1a(e’) ~ prala’ - 2))].

(kY (prate = ') = p14(0)) + K3 (p14(=) ~ p14(0))]
~ (K (p1a(0) ~ prals’ = 2)) + K (pra(e’) ~ pra(a’ — z))]-

(kY (pra(~2") = pra(==)) + K (014(0) ~ pra(~2))]

= B (pra(z ~ 2") = p1a(0)) + k¥ (p1a() = pra(0))].

[ (pra(=2") = p1a(=2)) + K (p1a(0) ~ pra(~=))]
Ho(e,a' ky ko) =
[1 + />11(-’l?)].[k:{
+ [1 + prr(z)|.
+[14prrz—a')

p1a(0) ~ pra(a’ — ) + k2 (pra(z') ~ prale’ — :p))]
K (prale = =") = pra(0)) + k3 (p1a(=) = p1a(0))]
[k (ora=2") = pra(e)) + K (p1a(0) - pra(-z))]

(
[
]
Hy(w, o' ky ky) =

[} -(pra(e = =) = 01a(0)) + K (p1a(=) ~ p1a(0))]-

[ (pra(=2") = pra(~=)) + k¥ (p14(0) = pra(~2))]-

[k (01a(0) = prale’ = ) + kY (pra(z') = pra(s’ - x))]

pri{x) is the correlation function of the RAR image inten-
sity field (assumed to be gaussian), and prg(x), the cross
correlation function between the RAR image intensity field
and the azimuth shift field.
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