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OCEAN WAVES: A SURVEY OF SOME RECENT RESULTS* 

PAUL H. LEBLOND~AND LAWRENCE A. MYSAK$ 

Abstract. A broad survey of the theory of ocean waves is presented, with special emphasis on recent 
developments. After a brief review of the classical wave modes in the ocean, a discussion of several recently 
discovered modes of oscillation is given. This is followed by a description of (1) finite-amplitude effects on 
each of these modes and (2) nonlinear interactions between different modes. Various types of wave-media 
interactions are next reviewed: refraction, scattering and diffraction, critical layer absorption and shear flow 
instability. A number of ocean wave problems which involve statistical and probabilistic aspects are also 
discussed. The different mechanisms for wave generation are described, but only the wind-wave generation 
problem is discussed in detail. The paper concludes with a list of challenging problems that are of current 
interest to the oceanographic community. 

1. Introduction. The subject of ocean waves has been studied by mathematicians, 
physicists and engineers for centuries. In spite of these extensive efforts, many new 
phenomena relating to the familiar types of ocean waves have been discovered only in 
the last two decades. Also, during this same period, whole new classes of ocean wave 
modes have been found. The main purpose of this review is to introduce the reader to a 
number of these recent developments in the theory of ocean waves. 

Many of the new theoretical developments can be directly attributed to experi- 
ments conducted in the laboratory and the ocean. Further, many recent theoretical 
discoveries have in turn provided the impetus for carrying out new, more refined 
experiments. This active interplay between theory and experiment is best illustrated by 
three examples. 

1. The Stokes' expansion for a propagating two-dimensional sinusoidal surface 
gravity wave is a regular perturbation solution of an inherently nonlinear problem 
involving a moving, a priori unknown free surface (Lamb [135, p. 4171). It was proved 
by Levi-Civita [I451 and Struik [292] that this expansion converges provided the wave 
slope a k  (a =wave amplitude, k =wavenumber) is sufficiently small. However Ben- 
jamin and Feir [18] and Feir [59] discovered by experiment and theory that the 
convergence of this solution did not guarantee its stability. Indeed, they found that such 
a wave becomes unstable to side-band perturbations whenever k H  > 1.363 ( H  = mean 
water depth), the instability being due to nonlinear interactions. This instability is now 
referred to as "side-band instability" and can be understood within the framework of 
wave-wave interactions (see § 3). Yet even this discovery proved to be only part of the 
story. Just recently it was found by numerical and laboratory experiments that after a 
period of exponential growth, the above unstable solution would demodulate and 
return to a near-uniform state (Yuen and Lake [326], Lake et  al. [134]). The energy in 
the wave train, which is initially confined to a few low modes centered about the carrier 
wave with wavenumber k, would spread to many higher modes, but would eventually 
regroup into the original low modes. Such a process repeats periodically in time and is 
known as "recurrence", named after the now familiar Fermi-Pasta-Ulam recurrence 
phenomenon (see [200] for a detailed discussion and references). In a numerical study 
of the long time evolution of a nonlinear mass-spring system, Fermi, Pasta and Ulam 
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found that the energy deposited initially in the lower modes did not spread irreversibly 
(thermalize) to all higher modes by the nonlinear interactions, but periodically returned 
to the original low modes. 

2. In the course of analyzing tide gauge data along the east Australian coast, 
Hamon [92], [93] observed a northward-propagating, low-frequency signal in the daily 
mean sea level. Subsequently Robinson [260] showed that a narrow continental 
shelf/slope region could indeed act as a wave guide for the unidirectional propagation 
of such low-frequency (several days period) energy in the ocean. H e  called such 
low-frequency wave motions "continental shelf waves". (It is of historical interest to 
note here that a similar type of trapped wave (a "quasi-geostrophic wave") on a sloping 
shelf of semi-infinite width was discovered theoretically several years previously by 
Reid [253].) After this discovery of continental shelf waves off the east Australian coast, 
they were observed at several other locations in the world: the west and east coasts of 
the United States (Mooers and Smith [203], Mysak and Hamon [219]), the west coast of 
Scotland (Cartwright [42]), the north Mediterranean coast (Saint-Guily and Rouault 
[267]), Lake Ontario (Csanady [51]), and the Florida Strait (Schott and Diiing [271], 
Brooks and Mooers [36]). Although first regarded primarily as interesting curiosities by 
the oceanographic community, continental shelf waves are now believed to play an 
important role in such phenomena as the meandering of western boundary currents and 
coastal upwelling (see the review by LeBlond and Mysak [I411 for details). 

3. Rossby or planetary waves consist of westward-propagating lateral meanders in 
the current field of a thin layer of fluid lying on a rotating sphere (Rossby [264], 
Longuet-Higgins [154], [ I S ] ) .  In the atmospheric context they are sometimes called 
"weather waves" or "cyclone waves", and through their interactions with the zonal 
winds at mid-latitudes they are known to play an important role in the general 
circulation of the atmosphere (Starr [284], Pedlosky [23 11, Dickinson [56]). It had been 
conjectured for some time that Rossby waves also occur in the open ocean. However, it 
was not until two large-scale, multi-buoy experiments were performed in the North 
Atlantic (the so-called Polygon (Brekhovskikh et  al. [28], Koshlyakov and Grachev 
[131]) and M O D E  (Gould et al. [84], Freeland et  al. [63]) experiments) could such a 
hypothesis be thoroughly tested. The data collected in these experiments indicate that 
the long-period fluctuations of the open ocean are, in fact, most aptly described in terms 
of large two-dimensional eddies that slowly drift westward. It has been shown that such 
eddies can be described kinematically as a superposition of several plane Rossby waves 
(McWilliams and Robinson [191], McWilliams and Flier1 [190]). Also, it has been 
argued that they could originate from baroclinically unstable Rossby waves extracting 
energy from the mean flow (Gill et  al. [go]) or be due to a resonant triad of Rossby waves 
(Pedlosky [232]). Finally, it has been suggested that these eddies may not be Rossby 
waves at all but may represent thadecay of two-dimensional turbulence (Rhines [258]) 
or the transient response of the open ocean to meteorological forcing (Philander [235]). 
T o  test these various theories, a new multi-national large-scale experiment (called 
POLYMODE) has been conducted in the central North Atlantic during 1978. 

Before discussing the properties of ocean waves and their interactions, we briefly 
review the basic restoring forces that exist in the ocean, giving rise to different wave 
types. The ocean basins are filled with a slightly compressible and electrically conduc- 
ting liquid lying on the surface of a weakly magnetized rotating sphere. Compressibility 
allows for the existence of sound waves. Electrical conductivity in the presence of a 
magnetic field leads to the possibility of AlfvCn waves and also splits the basic sound 
wave into a fast and slow mode (Cabannes [41]). However, because the Earth's 
magnetic field is so weak, the associated electromagnetic restoring forces are 
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insignificant compared to elastic, gravitational and the other restoring forces in the 
ocean. Gravity waves arise through the restoring action of gravity on water particles 
displaced vertically from equilibrium levels, such as a free surface or a geopotential 
surface in the ocean's interior. A t  the interface between two fluids (such as air and 
water), surface tension also acts as a restoring force and gives rise to capillary waves. 
Rotation introduces the Coriolis force which allows for the existence of inertial or 
gyroscopic waves. Finally, variations in the equilibrium potential vorticity (see 3 2) give 
rise to Rossby or planetary waves. 

The five basic types of oceanic waves identified above-sound, capillary, gravity, 
gyroscopic and planetary-generalty occur simultaneously, with the five basic restoring 
forces acting together to produce more complicated mixed types of waves. The relative 
importance of each restoring force in any given case depends on the properties of the 
fluid, the geometry of the container and the period and wavelength of the oscillation. In 
particular, the effects of bottom topography and the continental margins are most 
important. As well as modifying several of the basic wave types introduced above, 
topographical and coastal features can also give rise to whole new classes of trapped 
waves such as Kelvin, edge, shelf and bottom-intensified waves. 

The choice of topics that can be discussed in a review paper on the theory of ocean 
waves is clearly far from unique. Our  choice was based on both our own experience and 
research interests and on the fact that it is on these topics (outlined below) that much of 
the current research on ocean wave theory is being done by applied mathematicians and 
physical oceanographers. However, we note here that there are two important topics 
that are not discussed in this review: ( I )  oceanic sound waves, a subject of considerable 
technological importance (e.g., see Caruthers [43]) and (2) the existence and unique- 
ness theory of evolution equations that describe different wave classes (e.g., see 
Marchuk [176], Kordzadze [129], Bona and Smith [23], Shinbrot [275], Ton [303], 
[3041, [3051). 

In § 2, we give a brief overview of the basic classical linear wave modes in the 
ocean, together with a short introduction to several new classes of waves discovered 
during the last two decades. In a few cases, these "new" waves are in fact only 
embellishments of earlier results long forgotten in the literature. In § 3, the effects of the 
nonlinear terms on a number of these linear modes are discussed. In particular we give a 
brief survey of some of the recent work on solitary waves and wave-wave interactions in 
the oceanic context. In § 4, we examine various interaction processes that commonly 
occur in the ocean: refraction of waves by topography and mean currents; scattering of 
waves by topographic and coastal features and by inhomogeneities in the medium; 
absorption of waves by mean currents; and the growth of waves due to unstable mean 
shear flows. In $ 5 ,  we introduce the concept of a wave spectrum and other statistical 
and probabilistic ideas used in ocean wave theory. In 5 6, we discuss the general 
energetics of the ocean and give a brief survey of our present day understanding of 
surface wave generation. Finally, in § 7 we discuss a number of research topics now 
being actively pursued by oceanographers and wave theoreticians. 

2. Oceanic normal modes. 
Plane waves. It is well known (Yih [324]) that a stably density-stratified fluid in a 

gravity field can support propagating vibrations, commonly called internal gravity 
waves, which arise because of the restoring effect of buoyancy. Some of the properties 
of internal gravity waves have been illustrated most vividly in the experiments of 
Mowbray and Rarity [205]. In a rotating fluid (see Greenspan [85, p. 511) the Coriolis 
force keeps displaced particles in orbit about their equilibrium position and permits the 



292 PAUL H. LEBLOND AND LAWRENCE A. MYSAK 

propagation of gyroscopic waves; these may be viewed as vibrations of the vortex lines 
which permeate a rotating fluid. In both physical systems, the wave propagation is 
anisotropic, there existing preferred directions along the gradient of density or the 
rotation vector, respectively. The strong analogies between stratified and rotating 
systems have been reviewed by Veronis [312]. 

The ocean is rotating and stratified: free waves travelling in its midst (and of scales 
smaller than the ocean depth, so as not to be affected by boundaries) will be a mixture of 
internal gravity and gyroscopic waves. The angular rate of rotation of the earth about 
the polar axis is specified by the constant vector R ;  the density stratification is 
commonly expressed in terms of the Brunt-Vaisala frequency, defined for an 
incompressible fluid by N = where g is the acceleration of gravity and p the[g .v ~ / ~ ] " ~  
basic-state density of water. Plane mixed gyroscopic-internal gravity waves (of angular 
frequency w and wavenumber vector k) satisfy the dispersion relation (see Tolstoy 
[302], LeBlond and Mysak [142, p. 461): 

where the vector N has magnitude N and the same direction as V p and N is assumed to 
be constant or slowly varying. 

The dispersion relation (2.1) describes the propagation of plane wave Fourier 
components emerging from an arbitrary disturbance through a uniformly rotating 
spherical shell of stratified fluid. The progress of the waves away from their source may 
be followed by using ray-theory. Although fi is a uniform vector, N is a function of 
position and refraction takes place, so that the rays are curved. The rays soon intersect 
the boundaries of the ocean and must be extended by reflection rules appropriate to a 
rigid boundary (at the ocean bottom) or to a free surface (at the air-sea interface). These 
reflection rules are discussed by Phillips [239] and Sandstrom [269]. Equation (2.1) has 
been used by Hughes [ I  141 to trace the propagation of gyroscopic-internal waves from 
low latitudes up to critical latitudes (58,) at which the polewards component of the 
group velocity vanishes. Free waves of frequencies such that ( @ , I <  7r/2 cannot prop- 
agate poleward of these critical latitudes. 

The ocean is relatively thin (compared to its lateral dimensions) and, over much of 
its depth, strongly stratified (N  >>2R). It may be shown that this combination of 
circumstances inhibits the effect of that component of fiwhich is parallel to the Earth's 
surface (see Veronis [310], Needler and LeBlond [224]). On a local plane approxima- 
tion to the Earth's surface (the f-plane), the rotation vector fi has components 
(0, R cos 8, R sin 8)  in the eastward, northward and upward directions, respectively 
(8 = latitude). Dropping the northward component of R from (2.1) and using subscripts 
V and H to denote the vertical and horizontal components of the wavenumber vector, 
(2.1) takes the f-plane form 

This specialized form of the dispersion relation for gyroscopic internal waves has been 
used by Magaard [172], Sandstrom [270] and Baines [6] to investigate wave prop- 
agation in an ocean of nonuniform depth; it has also been used by Rattray et al. [250], 
Prinsenberg and Rattray [248] and Baines [7] to examine the generation of internal 
tides on continental slopes. Note that for kH = 0, w = *2R sin 8 ;  this is the "inertial 
frequency" associated with purely horizontal movements of the water and which plays 
an important role in oceanography. 
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Normal modes. Most of the interest in oceanic wave motion lies in the horizontal 
propagation of waves from one area of the ocean to another. The ocean may then be 
considered as a wave guide for gyroscopic-internal gravity waves. Solutions satisfying 
top and bottom boundary conditions may then be found by superposing pairs of waves 
satisfying (2.2). Since N is in general a function of depth, the rays are curved and this 
superposition is not usually straightforward. For a flat-bottomed ocean, however, the 
linearized momentum and mass conservation equations may be separated, following a 
method introduced by Taylor [294] (see also Kamenkovich [122]), into their vertical 
and horizontal dependence. For motions cC e-I"', the vertical dependence W(Z) of the 
vertical velocity in a fluid of depth H is then found to satisfy (see LeBlond and Mysak 
~ 4 2 ,P. 701) 

subject to the boundary conditions 

(2.4a) W = 0 on a flat bottom z = -H 

W [ 
u(w2-4f12 sin2 8)  I(2.4b) W,-- g +  =0 at the free surface, z = 0. 

shfl gphn 

The z subscripts in (2.3) and (2.4) denote differentiation. The surface boundary 
condition (2.4b) includes the effects of gravity (through g )  and of surface tension 
(through the coefficient u ) .  

The quantity h, is a separation constant which depends on the frequency as well as 
on the form of the stratification N(z) ;  h, appears also in the horizontal dependence 
equation 

where P(x, y )  is the horizontal dependence of the vertical velocity. 
Given a vertical stratification N ( z )  and a frequency w, the eigenfunctions W(Z) 

and eigenvalues h, of (2.3)-(2.4) form a complete and nondegenerate set. The 
eigenfunctions are called vertical modes and include a barotropic (or surface) mode 
(horizontally propagating for frequencies such that w 2212 sin 8 )  and a series of 

N,,, where N,,, is the maximum value of N ( z )  in -H 5 z 5 0). The barotropic mode is 
strongly trapped near the free surface at high frequencies (wind waves), but nearly 
depth-independent at low frequencies: there is no reversal of direction of horizontal 
currents with depth for the surface mode. The baroclinic modes exhibit a vertical 
structure which increases in complexity with mode number: the nth mode has n nodes 
of horizontal velocity over the depth. Of particular interest is the strong concentration 
of baroclinic mode motions which can occur in the vicinity of maxima of N(z) ,  i.e. in 
layers of density gradients (pycnoclines). In the limit of discontinuous changes in 
density, the baroclinic modes become interfacial waves, such as are commonly observed 
in sharply stratified coastal areas (see Ape1 et al. [4] or Samuels and LeBlond [268]). A n  
example is shown in Fig. 1. 

All the vertical modes obey the same type of horizontal dependence given by (2.5), 
the only difference being the value of h, entering that equation. Wave-type solutions of 
(2.5), representing horizontal propagation, are all normally dispersive, with speeds 
decreasing with increasing vertical mode number. Note that for long surface waves, 

5w5 6' baroclinic (or internal) modes (horizontally propagating in the range 212 sin 
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FIG.1. Aerial photograph o f  internal waves, as seen by their surface effects, in the southern Strait o f  Georgia, 
British Columbia. Photo taken on May 29, 1968, from an altitude of approximately 750 m. The camera points 
eastward and the distance between the first two bands in the wave group is about 100 m. From Samuels and 
LeBlond [268]. 

h, -.H (the depth of the fluid), and it is thus natural to call h, the "equivalent depth" for 
this as well as for the other modes. 

The solutions of the system (2.3)-(2.5) include all the small-amplitude free wave 
solutions of super-inertial frequency (w 2 212 sin 8 ) ; forced wave solutions may also be 
represented in terms of such free waves. These waves are basically gravity waves (except 
for capillary effects) modified by the Earth's rotation; they can also exist in a nonrotat- 
ing fluid ( 1 2 ~ 0 ) .  This class of waves is often referred to as "first-class" waves; 
"second-class" waves are defined below. 
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First-class surface waves include, at their high frequency (periods less than 
0.075 sec) and short wavelength (A < 17  mm) limit, the capillary waves due to the 
surface tension term (a)appearing in (2.4b) (see Kinsman [127, p. 1671). Such waves 
form the familiar wave pattern observed around a fishline in a quiet flow. Wind waves 
are found at longer periods (0.5-10 sec) and wavelengths (10 cm-100 m); a detailed 
account of their properties is found in Kinsman [I271 and in Phillips [240]. Recent field 
measurements of wind waves are discussed by Hasselmann et al. [I021 and Regier and 
Davis [252]. Tsunamis (waves produced by submarine earthquakes) have even longer 
periods (15-90 min) and wavelengths. The waves observed around the periphery of the 
Pacific Ocean following the 1964 Alaska earthquake may be seen in Spaeth and 
Berkman [283]. Finally, the longest-period first-class waves are the tides, produced by 
small local imbalances in the lunar and solar attraction. The tide may be represented in 
terms of free and forced long-period gravity waves (also called Poincare waves, after 
PoincarC [247]; see also Platzmann [242]). Tidal generation will be discussed in more 
detail in § 6. 

All the surface waves have, at  least in theory, possible internal counterparts of 
higher vertical mode numbers. That internal waves are less well documented is not 
surprising since they are more difficult to observe. Much progress has been made in 
recent years following the spectral model of Garrett and Munk [68], [69] and consider- 
able observational effort (see Briscoe [35], Thorpe [300], Wunsch [320], Miiller e t  al. 
[207] for recent reviews and discussions). 

Free first-class waves have super-inertial frequencies (w 2 2 R  sin 8) .  There is, 
however, one exception: the Kelvin wave, which propagates along a lateral boundary 
with amplitude decaying exponentially away from its support (LeBlond and Mysak 
[142, p. 21 11). In this special solution, the Coriolis force is at  all times balanced exactly 
by a pressure gradient (a surface slope for  the barotropic mode) along its crests: the 
wave propagates as if there were no rotation and is not limited to super-inertial 
frequencies. An important fraction of the surface tide along coastlines is made up of a 
Kelvin wave (see Munk et al. [211]). 

Second-class waves. Oceanic waves of sub-inertial frequency are also possible; 
although originally called "second-class waves" by Hough [112], they are also com- 
monly referred to as planetary waves (because of their long wavelengths) or as Rossby 
waves (after C. G. Rossby [264], who first clearly elucidated their nature). The second 
class waves are obtained formally by improving the local geometrical approximation of 
the Earth's surface beyond the f-plane introduced above. The local vertical component 
of the Earth's rotation vector (of magnitude R sin 8 ) is a function of latitude. Rossby 
[264] was the first to describe long-period oscillations on the /3-plane, a local planar 
approximation to the globe in which the dominant effect of the variation of R sin 8 with 
latitude is retained. The approximations involved in using the /3-plane are discussed by 
Veronis [309], [310], and Grimshaw [87]. From a physical point of view, second-class 
waves arise as a consequence of the conservation of angular momentum. In the absence 
of frictional torques, the integrated angular momentum (or potential uorticity) of a fluid 
layer of uniform density and variable thickness H is conserved along a path line: 

where 5 is the local vertical component of the flyid vorticity. This conservation law is a 
direct consequence of Ertel's vorticity theorem (see Krauss [133, p. 611 for a deriva- 
tion). The vortex stretching arising from gradients of the ratio 212 sin 8 / H  gives rise to 



296 PAUL H. LEBLOND AND LAWRENCE A. MYSAK 

restoring torques which bring displaced fluid columns back towards their equilibrium 
position. 

Second-class waves have sub-inertial frequencies (w <2Q sin 6). In a stratified 
ocean with a flat bottom, a vertical normal mode decomposition proceeds as on the 
f-plane. The vertical dependence of the vertical velocity is found as the solution of a 
problem of the form (2.3)-(2.4). The simplest horizontal dependence equation is that 
obtained for the north-south velocity component V (LeBlond and Mysak [142, 
p. 1211): 

where p = (1/R) (a/a8) (2R sin 8)  (with R the radius of the Earth), is the local 
derivative with respect to latitude of the vertical component of the Earth's rotation. In 
the classical p-plane introduced by Rossby, both sin 8 and p are held constant in (2.7); 
other p-plane approximations are appropriate near the equator (see Matsuno [179]) 
and the poles (see LeBlond [140]). For plane waves, (2.7) is a cubic in w with coefficients 
dependent on the properties of the medium (p, sin 8, hn) and the horizontal wavenum- 
ber components. This cubic has three real roots; two high-frequency roots (w >Q sin 6) 
correspond to the first-class modes discussed above; the low frequency root (w < 
2Q sin 8) is a second-class wave. The second-class wave may be examined directly by 
neglecting w2 with respect to 4Q2 sin2 6 in (2.7). 

The sub-inertial (second-class) plane wave solutions of (2.7) are strongly anisotro- 
pic: all phase propagation is towards the west. The group velocity is not so restricted, 
however, and the influence of low frequency events may be transmitted toward all parts 
of the ocean by planetary waves. The great importance of planetary waves in atmos- 
pheric dynamics has long been recognized (see Dickinson [56]), but their role in the 
ocean is still a subject of intense investigation (see Rhines [257], [258]). 

Topographic waves. The battery of first- and second-class vertical modes of an ocean 
of uniform depth make up the classical arsenal of theoretical research in time- 
dependent oceanic phenomena. These modes may be superimposed to describe free 
and forced waves in basins of uniform depth and various physical shapes. Numerous 
examples may be found in the literature (see Lamb [135, pp. 320 ff.], Veronis and 
Stommel [313], Platzmann [242], Rao [249], Longuet-Higgins [156], Pnueli and 
Pekeris [246]). 

Many areas of the ocean floor can, however, by no stretch of the imagination be 
approximated as flat, and it has long been recognized that bathymetric variations must 
have an important effect on the properties of oceanic wave motions. The most 
straightforward bathymetric influence is that exerted by bottom slopes on second class 
waves, where, as mentioned above, H variations are equivalent to the inverse of sin 8 
variations of 2R sin 8 with latitude (see Veronis [311]). The restriction to small bottom 
slopes ensures that no significant coupling between the vertical (w) and horizontal (u) 
components of velocity takes place through the bottom boundary condition w =u .V H  
and that the separability of horizontal and vertical dependences of the motion remains 
possible. 

The first truly topographic wave was discovered by Stokes [288]; the Stokes edge 
wave is a modified surface gravity wave (i.e. a first class wave) trapped along a coast by a 
uniformly sloping bottom. This edge-wave propagates along a coast with amplitude 
decaying away from it and can exist in many horizontal modes (n =0, 1, 2, . . .) 
corresponding to as many nodal lines of surface displacement running parallel to the 



OCEAN WAVES 297 

coast. Long considered a mere theoretical curiosity, the importance of edge waves in 
nearshore dynamics has gradually been recognized: Munk et al. [210] have noted that 
edge waves may be excited by tsunamis; Bowen and Inman [25], [26], Guza and Davis 
[90], and Guza and Inman [91] have shown how edge waves may be excited by surf and 
how they may determine the occurrence of beach cusps and rip-currents. The influence 
of the Earth's rotation (see Reid [253], Kajiura [I211 and Mysak [215]), density 
stratification (see Greenspan [86]) and of the form of the bottom profile (see Ball [9], 
Odulo [229] and Huthnance [117]) on the properties of edge waves have also been 
examined. We note that the vertical and horizontal dependences of the wave motion 
cannot in general be separated in edge waves or other topographic waves, and that the 
following description applies only to an unstratified fluid, in which only the barotropic 
mode is possible. 

The simplest account of the edge wave is in terms of the refraction of pure surface 
gravity waves by the sloping bottom. As the speed of surface waves increases with water 
depth, rays travelling towards deep water are refracted back onshore where they are 
reflected back offshore to be refracted anew. This interpretation suggests that processes 
which may be represented in terms of refraction or reflection of short waves in r e g i o ~  
of extrema of wave properties may account for other geometrical modifications of the 
basic flat-bottom first class waves. Trapping of waves by ridges has been studied by 
Buchwald [38], and the trapping of waves around islands and seamounts has been 
discussed by Longuet-Higgins [157], [160], Summerfield [293] and, more specifically in 
terms of ray theory, by Shen et al. [274]. 

Geometrical trapping of second class waves by regions of strong bathymetric 
gradients is also possible (see Smith [278] and Rhines [254], [255]). The continental 
shelf waves discussed by Robinson [260] and Mysak [213] and observed along many 
coasts (see references earlier) are of such a nature. Similarly, second class waves 
travelling along a steep escarpment from which their amplitude decays on both sides are 
akin to continental shelf waves, the only difference being that the depth of the ocean 
remains nonzero on both sides of the escarpment instead of vanishing along a coast 
which parallels it. Such waves have rather inappropriately been called "double-Kelvin" 
waves (see Rhines [254], Longuet-Higgins [158], [159], Saint-Guily [266]), in analogy 
to the first class Kelvin waves, which decay on one side of a boundary. All these trapped 
first and second class waves may exist in a series of horizontal modes which describe 
their structure in the "potential well" formed by the bathymetric slope. 

A rather special form of topographic trapping occurs in the "bottom-trapped' wave 
discovered by Rhines [256], which depends on the Coriolis force, a bottom slope and a 
density stratification. This wave may be considered as a short wavelength (and low 
frequency) limit of the barotropic second class wave on a uniformly sloping bottom (see 
also Needler and LeBlond [224]), for which the vertical structure gradually increases 
from a horizontal velocity profile uniform with depth at  long wavelengths to an 
exponential decay from the bottom up for short wavelengths. Thompson and Luyten 
[296] have seen some evidence of this type of wave in long time series of current 
measurements on the New England continental slope. 

Equatorial trapping. Second class waves are subject to refraction through varia- 
tions of the ratio sin 8/H. Even in an ocean of uniform depth, one would thus expect 
wave trapping about the equator (where the parameter ,f3 entering (2.7) is a maximum). 
This possibility was first explored by Stern [285], Bretherton [30], Matsuno [I791 and 
Blandford [22]. It is now well established that the equatorial region behaves like a wave 
guide along which Kelvin and planetary waves can propagate quickly across the ocean. 
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The structure of these waves across the equator is given in terms of parabolic cylinder 
functions, decaying at high latitudes. The consequences of equatorial propagation have 
been discussed by Lighthill [I481 and Anderson and Rowlands [2], [3] in connection 
with the seasonally varying Somali Current, and by McCreary [I821 and Hurlburt et  al. 
[I161 with respect to the episodic occurrence of El  Nifio on the Peruvian coast. 

The  combined case of topographic and equatorial trapping has recently been 
treated by Mysak [217], [330] and Geisler and Mysak [72]. In these papers the 
properties of zonally propagating, long-period barotropic waves trapped over a number 
of topographic profiles were studied. In general it was found that the speeds of 
propagation were very dependent on whether the topographic variations straddled the 
equator or were entirely contained in one hemisphere. 

The classification of ocean waves into linear vertical modes and topographic modes 
provides a useful general framework for thinking about the time-dependent variations 
of the ocean. However it does not explain the amounts in which the various modes 
contribute to the power spectrum (see § 5) of oceanic motions. A gastronomic analogy 
would identify the various modes as the ingredients of the oceanic dish; the recipe for 
mixing them up in the right proportions to reproduce the radiation field of the sea would 
be provided by appropriate energy sources for each mode and by interaction rules for 
the coupling between modes. The specification of this recipe, or at least of what is 
known of it at this time, is the subject of most of the following sections of this review. 

3. Nonlinear effects. Anyone who has stood on the beach observing the crashing 
surf must be aware that linear theory cannot describe all aspects of ocean waves. 
Nonlinear effects arise in fluid motions from the advective accelerations present in the 
momentum and mass conservation equations; in addition, nonlinear terms occur in the 
boundary conditions at a free-moving surface. Nonlinearity modifies the properties of 
individual linear modes; it also leads to coupling between these modes. Because the best 
known large-amplitude phenomena occur in surface gravity waves, where they manifest 
themselves as solitary waves, surf and hydraulic jumps, our discussion will begin with 
this type of wave. 

Surface waves. Surface gravity waves (the barotropic mode) may be characterized 
in terms of the three length scales a ,  H ,  A, which are respectively the amplitude of the 
surface displacement, the depth of the fluid and the wavelength (A = 2.irlk). For gravity 
waves, as for other types of waves, a simple measure of the importance of nonlinearity is 
the ratio of particle velocity to phase speed (essentially the ratio of nonlinear accelera- 
tion terms to the local time derivative). For deep-water waves (H/A >> 1) this ratio is of 
order a/A ; for shallow-water waves, of order a / H .  Thus, wind waves in deep water 
break (the ultimate consequence of nonlinearity) when their slope is large (a/A = f ) ;  
surf breaks on a shallow beach when its height becomes comparable to the water depth 
( a / H  = 0.4). 

A general classification of the importance of nonlinearity, valid for all water 
depths, may be presented in terms of the parameters E = a / H  and p = (H/A)2, which 
are respectively measures of the importance of amplitude and phase dispersion (see 
LeBlond and Mysak [142, p. 941). Amplitude dispersion accelerates the larger waves 
and leads to shock formation; phase dispersion spreads out disturbances with the larger 
waves leading the shorter ones. The ratio of these two effects (&IF) has been called the 
Ursell number. 

For small Ursell number (E << p = 0(1) ) ,  E is the only small parameter of the 
problem. Expansions of surface wave solutions in powers of E [or more conveniently, 
F&] were initially calculated by Stokes [289]; they have been carried out to fifth order 
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in E JL by Skjelbreia and Hendrickson [277]. The convergence of the series solutions 
was proven by Nekrasov [225], [226], Levi-Civita [I451 and Struik [292]. Nonlinearity 
sharpens the wave crests and flattens the troughs into a wave profile approaching a 
trochoidal shape (see Lamb [135, p. 4181). The travelling wave of maximum steepness 
was found by Stokes [290] to have a sharp crest of angle 120". For such a wave, the 
particle speed at the crest (u) is exactly equal to the phase speed (c): a steeper wave, 
with u >c would topple forward and break. The steepest standing wave crest has an 
angle of 90" (see Taylor [295] and Longuet-Higgins [153]; the acceleration at the crest 
is equal to that of gravity: steeper waves just fly apart. Longuet-Higgins [I611 has shown 
that, to a good degree of approximation, the form of the steepest travelling and standing 
waves is given, in scaled variables, by 

(3.1) Z = In sec x, 

where Z is the elevation above the trough (at which x = 0). Travelling waves occupy 
1x1 5 n-16; standing waves, 1x1 5 ~ 1 4 .Longuet-Higgins [I621 has also discovered that the 
wave of maximum energy has an amplitude somewhat smaller than the possible 
maximum, and pointed out the implications of this startling result on the initiation of 
wave breaking. 

The discovery, by Benjamin and Feir [18], that surface gravity waves (in the small 
Ursell number regime) are unstable, as illustrated in Fig. 2, came as a surprise to cohorts 
of wave dynamicists lulled into a confident mood by the convergence proofs of 
Levi-Civita and others (as referred to above). Convergence of a series solution does not 
of course imply the stability of this solution! Surface wave instability manifests itself for 
wavelengths less than 4.61 times the depth of the fluid, i.e. kH > 1.363 (see Feir [59], 
Lake et al. [134], and Lake and Yuen [333] for descriptions of the observational work, 
and Benjamin [17], Benney and Newel1 [331], Whi thm [332] and Lighthill [I471 for 
early theoretical treatments). The instability may be understood in terms of the 

, , , , I I I I I I I I , ih 1 1 p,: I I max pulse 
~ ~ T " " ' " "  r+rr,L- A l . . 3 + l n n  

F I G .  2 .  The disintegration of surface gravity wave pulses in deep water. The envelope of the wave pulse, as 
generated by the wavemaker, is shown in dotted lines on the right. The surface displacement, observed after the 
pulse has propagated 4 ft. and 28 ft. from the wavemaker, are shown on the left, as a function of time. Three 
cases are shown, with nearly equal pulse durations but increasing wave amplitudes (note the different amplitude 
scales). Adapted from Feir [59]. 
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nonlinear interaction of small sidebands with the primary wave and is a special case of 
the nonlinear wave-wave interactions discussed below. 

Since its discovery in 1967, the Benjamin-Feir instability phenomenon has attrac- 
ted the attention of many applied mathematicians. For example, it was first pointed out 
by Benney and Roskes [334] that the above instability criterion (kH > 1.363) does not 
carry over to three-dimensional perturbations. Also, there were several attempts at 
obtaining a mathematical description of the long-time evolution of the modulation of a 
two-dimensional wave train using the method of multiple scales. Chu and Mei [335], 
[336] found a description in terms of a pair of coupled differential equations, whereas 
Hasimoto and Ono [337] showed that the slowly-varying envelope satisfied a nonlinear 
Schrodinger equation. An important step forward was taken by Davey and Stewartson 
[338], who derived two nonlinear partial differential equations that described the 
evolution of the modulation of a three-dimensional wave train. From these equations, 
new stability criteria were obtained. It turns out, however, that these equations can be 
derived as a limiting case of equation 1.19, p. 379, in Benney and Roskes 13341. Also, a 
simplified form of the Davey-Stewartson equations was used recently by Longuet- 
Higgins of gravity waves (see also Fox [62]). For discussions of shear flow effects and the 
valid form of the modulation equation when kH is near 1.363, see Johnson [340] and 
[341] respectively. Finally, for very recent theoretical work related to gravity wave 
instabilities and the modulation equations, see Longuet-Higgins [342], [343], Ankar 
and Freeman [344] and Stuart and DiPrima [345]. 

When the Ursell number is of order unity ( E  =p) ,  amplitude and phase dispersion 
have comparable influences on surface gravity wave behavior. The various formulations 
for long waves (p<< 1) of small, but finite, amplitude ( E  << 1) have been reviewed by 
Peregrine [233]. Of particular interest is the equation derived by Korteweg and de Vries 
[I301 (KdV equation) to describe unidirectional wave propagation. In terms of the 
displacement of the nondimensionalized free surface 77, this equation has the form 

The third term represents the influence of nonlinearity; the last, that of phase dis- 
persion. Equation (3.2) has solutions of permanent form, travelling at a constant speed, 
and expressed in terms of elliptic cosine functions. The long wave limit of these 
"cnoidal" waves is a wave consisting of a single positive hump; it is called a solitary wave 
and has the form 

&V,,
77 = 770 sech2[(k)(x -cr)] 

in which the (nondimensional) speed is given by 

This wave was first observed by Russell in 1844 [265] who called it the "great wave of 
translation". The largest solitary wave has a sharp crest of angle 120" and a height 
reaching 0.827 that of the undisturbed water depth (see Yamada [322], Lenau [144], 
and Longuet-Higgins and Fenton [163]). It has been found by Longuet-Higgins and 
Fenton [I631 that, as in Stokes' waves, the maximum energy corresponds to wave 
heights slightly smaller than the maximum value. It took more than fifty years after 
Russell's observations before Korteweg and de Vries, in 1895, arrived at a theoretical 
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explanation of the solitary wave, and yet another half century was ro pass before the 
KdV equation was to find application in other fields of physics and become the object of 
renewed interest. Applications to wave propagation in plasmas (see Gardner and 
Morikawa [64], Berezin and Karpman [20], Washimi and Taniuti [315]) and to the 
Fermi-Pasta-Ulam problem (see Zabusky [327], [328]) have been discovered, and the 
KdV equation has been extensively studied as a general prototype of nonlinear wave 
propagation. The development of research on the KdV equation and on the remarkable 
properties of its solutions have been reviewed in this journal by Miura [200] and in a 
short book by Karpman [123]. The insights provided by observations obtained from the 
relatively simple hydrodynamic context have proved extremely fruitful in other physical 
situations, and it is expected that continuing experiments on nonlinear surface gravity 
waves, such as those of Yuen and Lake [325] and Maxworthy [180], may continue to 
play a seminal role in advancing our understanding of nonlinear dispersive wave 
propagation. 

Along with the many attractive properties of the KdV equation, however, there are 
also a number of shortcomings, which have recently been reviewed by Benjamin et al. 
[329]. Among these are the difficulties in obtaining numerical solutions of (3.2) and the 
problems of establishing the existence and uniqueness of solutions corresponding to 
general classes of initial values. To circumvent these problems, Benjamin et al. [329] 
showed that a rational alternative to (3.2) is obtained by replacing the last term by -qxxr 
This modified KdV equation was termed "the regularized long wave equation". For the 
modified equation they were readily able to establish that a classical ("regular") 
solution exists and that the solutions are unique and depend continuously on the initial 
values. 

In the limit of large Ursell number ( E  >> k) ,  amplitude dispersion dominates: the 
formulation for surface gravity waves in this "hydraulic limit" is formally identical to 
that of sound waves (see Stoker [287, chap. 101) and all the methods developed in 
acoustics apply (e.g., see Whitham [3 171). Hydraulic shock waves, also called bores, are 
primarily of interest in channel or river flow. Tidal bores occur in many coastal streams 
in regions of high tidal amplitudes (see Tricker [306] for illustrations and Abbott [ I ]  and 
Whitham [317] for theoretical discussions). The other common instance of a bore is 
found in surf (see Biesel [21] and Ho et al. [109]). 

Internal waves. The internal modes of a stratified ocean are also modified by 
nonlinearity. As for surface waves, the relevance of nonlinearity may be examined in 
three ranges according to the relative importance of amplitude to phase dispersion. The 
phenomena encountered and the nonlinear distortions of the wave profiles are similar 
in most respects to those discussed above for surface waves. The distortion of wave 
profiles (as given by isopycnal displacements) for small Ursell numbers have been 
discussed by Thorpe [298], Long [149], Griscom [89] and Magaard [173]. Internal 
cnoidal and solitary waves in continuously and discontinuously stratified fluids have 
been studied by Long [150], [151], Davis and Acrivos [53], Benjamin [15], [16], 
Gargett [65] and Lee and Beardsley [143]. Of particular interest is the modified KdV 
equation discussed first by Benjamin [16] in connection with wave propagation at the 
interface between fluid layers of different densities, one layer being much thicker than 
the other. This equation for the interfacial displacement q has the form 

where r and s are parameters describing the density structure, E is defined as the 
ratio of wave displacement to layer thickness D and p = DlA. The operator 9 is 
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defined by 

1 m 

(3.6) %4)=- 2lT 1-,\ k l { l  4 eikxrdxf1 ePikxdx. 
-m 

Equation (3.5) also has solitary wave solutions (not of course of the form (3.3)) arising 
from a balance between amplitude and phase dispersion effects. Finally, in the hydraulic 
limit, internal bores also exist; their properties are reviewed by Yih [324]. 

Capillary waves. Capillary waves exhibit anomalous phase dispersion (short waves 
travel faster than long waves); their amplitude dispersion is also anomalous: large 
amplitude waves of permanent form thus have flat crests and sharp troughs: just the 
opposite of what is found for surface gravity waves. An exact solution for nonlinear 
capillary wave motion has been presented by Crapper [48]. 

Planetary waves. Planetary waves were first recognized in the ocean as meanders of 
strong western boundary currents (such as the Gulf Stream in the Atlantic and the 
Kuroshio off the coast of Japan) and their nonlinear properties were first studied in that 
context (see Moore, [204]). As was subsequently found by Larsen [I391 and Clarke 
[47], finite amplitude planetary waves of permanent form (such as cnoidal and solitary 
waves) can also exist. More recently, Maxworthy and Redekopp [I811 and Redekopp 
[251] have re-examined the properties of large amplitude planetary waves in shear 
currents and have shown that, under certain conditions, stationary eddies may form; 
they have suggested that such conditions might account for the presence of Jupiter's 
Great Red Spot. Other recent studies of large amplitude planetary waves superimposed 
on mean currents are those of Larichev and Reznik [137], [138]. 

Weak wave-wave interactions. The studies of nonlinear wave properties referred 
to above describe the features of single nonlinear waves; they do not explain the mutual 
interaction of the broad spectra of waves of various kinds which coexist on the sea 
surface and in its depths. Weak wave-wave interactions, occurring in time and space 
scales greatly exceeding those characterizing the interacting waves, are treated by 
perturbation techniques; strong interactions require techniques similar to those used in 
the study of turbulent flow. 

The theory of weak resonant wave-wave interactions, as presented in the works of 
Hasselmann [97], [98], [loo] (one of its principal expositors) is, at least in principle, 
quite simple. Consider the elementary case of two interacting "primary" waves of the 
form F U I  = E U I  e i(kl,x-wit) and similarly for FUZ, where E is an appropriate small 
parameter. These waves satisfy the linearized equation LO(&ui) =O(i = 1,2); for plane 
waves, this equation reduces to the dispersion relation D(oi ,  ki)  =0 (i = 1,2), where ki 
is a two-dimensional wavenumber vector. An interaction product between the two 
primary waves may be found to next order from 

where the operator L1 involves products of &ul and &u2 or their derivatives. The 
interaction product remains of o ( E ~ )  unless resonance occurs, i.e. unless D(w3, k3) =0 
where w3 =w1+w2, k3 =kl +k2 say (see also (3.8)). Resonant solutions will, after a 
sufficient time has elapsed, dominate the interaction product by growing to become 
comparable to the basic interacting waves &ul and &u2. One then speaks of a resonant 
triad of waves, exchanging energy between each other. 

The frequency w3 and the wavenumber k3 of the interaction product are deter- 
mined by the forcing term on the right hand side of (3.7); allowing for appropriate 
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choices of signs for mi, k,, one may relate the frequency and wavenumber of the 
interaction product and those of the basic waves through 

3 3 

(3.8) ,=1wi=o;  1 ki=O. 
1 / = 1  

For resonant interactions, D(w,, kj)= 0 for j = l , 2 , 3 .  Resonant interactions between 
four or more waves (three or more basic waves and their interaction product) are also 
possible and will be found for higher orders in s. The strength of the interaction is given 
by the magnitude of the forcing term in (3.7), called the coupling coefficient. Whether 
resonant interactions between a given number of waves are possible depends on the 
form of the dispersion relation. For nondispersive waves, resonant interactions 
are possible between any number of waves since o is a linear function of k. For 
dispersive waves, one must prove the existence of and construct interactions loci in 
the k-plane. 

The resonant interaction processes may be illustrated by a technique borrowed 
from the field of particle physics. Feynman diagrams (see Schweber [272]) represent the 
interaction as the convergence of n-arrows, representing the interacting waves, onto a 
vertex from which emerges the interaction product (examples are shown in Hasselmann 
[97], [98]). Resonant waves are analogous to real particles, forced waves (not obeying 
the dispersion relation) to virtual particles. One should finally note that interactions of 
waves with spatial modulations of the medium of propagation (usually characterized by 
a zero frequency but finite wavenumber) may also be handled through the wave-wave 
interaction framework. 

Resonant interactions between planetary waves occur at the second order (i.e. 
involve a triad of waves). Longuet-Higgins and Gill [I641 have examined this inter- 
action in detail; Newel1 [228] has shown that interactions between planetary waves are 
capable of generating steady zonal flows (see also Plumb [245]). Interactions between 
topographic planetary waves also occur at second order (Mysak [216]). Internal gravity 
wave triads also interact resonantly (see Thorpe [297] and Kenyon [126]); these 
interactions have been studied experimentally by Martin et al. [177], McEwan [I831 
and McEwan et al. [184]. Surface gravity waves on the other hand, interact only at the 
third order, as shown by Phillips [238]. Benney [19] and Bretherton [31] have examined 
in detail the energy transfer between resonant quartets of surface gravity waves. 
McGoldrick et al. [I871 have illustrated these resonances in the laboratory. Hassel- 
mann [99] has shown that the instability discovered by Benjamin and Feir [I81 and 
already referred to above, may be interpreted as an interaction between a basic wave of 
finite amplitude and two side bands (the basic wave occurs twice in the interactions, so 
that the interaction, although involving only three waves, is nevertheless at the third 
order). The relevance of wave-wave interactions on wind-wave generation and shape of 
the wind-wave spectrum will be discussed in § 6. 

Resonant interactions also occur between different wave modes. McGoldrick 
11851, [I861 and Simmons [276] have discussed the resonant coupling between capillary 
and gravity waves. The coupling between surface and internal gravity wave modes has 
been examined by Thorpe [297] and Brekhovskikh et al. [29]. The special case of a 
two-layer fluid has been discussed by Ball [8] and, in the laboratory, by Lewis et al. 
[146]. Interactions occurring in the nearshore area between incoming swell and edge 
waves have been related by Guza and Davis [90] and Guza and Inman [91] to the 
formation and spacing of rip currents. Finally, as an example of an interaction between 
ocean waves and other types of waves one might mention the generation mechanism 
proposed by Longuet-Higgins [I521 for microseisms, where two surface gravity waves 
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interact resonantly with an elastic wave at the surface of the Earth's crust (the 
generation theories for microseisms are reviewed by Hasselmann [96]). 

Ocean waves of various modes are found in continuous spectra rather than in single 
Fourier components. In a continuous spectrum, no resonant multiplet may be consi- 
dered isolated, since one or more of its components may be a member of one or more 
other resonant groups. In such a spectrum, resonant interactions tend to redistribute 
energy between all interacting multiplets. The evolution of wave spectra, subject to 
weak resonant wave-wave interactions, may be described through a "radiation 
balance" equation (see LeBlond and Mysak [142, p. 3241) analogous to  the Boltzmann 
transport equation of statistical thermodynamics (see Kittel, [128, p. 4061). The 
collision term analogous to that found in Boltzmann's equation includes contributions 
from all resonant couplings, as well as any external energy source and dissipation terms. 
Hasselmann [ loo]  and Willebrand [318] have applied the radiation balance method 
with considerable success to the study of surface gravity waves (for which the best data 
are available). Miiller and Olbers [206] have examined the radiation balance of the 
internal gravity wave spectrum. This topic will be discussed in more detail in 9 5. 

Strong interactions. Strong interactions between waves are those which take place 
in space or time scales comparable to the wavelength or period of the interacting waves. 
The large amplitude waves discussed at the beginning of this section may be thought of 
as a result of strong self-interaction in a single wave. In the language of weak wave-wave 
interaction theory, the coupling of finite amplitude waves may be regarded as a case 
where the parameter E introduced before (3.7) is of order unity. In that case, the forced 
wave solutions of (3.7) are just as large or larger than the resonant solutions and energy 
is exchanged not only between selected multiplets but between all waves of a continu- 
ous spectrum. This type of strong coupling is that found in turbulent interactions. 

Because of their symmetry, plane internal gravity waves and barotropic planetary 
waves are exact solutions of the nonlinear equations dictating their properties. Such 
plane wave solutions are thus not limited in their amplitude and may be large enough for 
strong coupling to play an important role in their interactions. For internal waves, a 
turbulent energy cascade, strongly affected by buoyancy effects, can arise through 
strong interactions. The "buoyancy subrange" of turbulence characterizing this type of 
interaction has been explored by Lumley [170]. 

The planetary wave synthesis of the Polygon and MODE data by McWilliams and 
Robinson [I911 and McWilliams and Flier1 [I901 have shown that the particle velocities 
observed exceed the propagation speeds of the best-fit planetary waves. Thus, the 
nonlinear advection terms must exceed the local accelerations in these waves, a sure 
indication of strong nonlinearity. The interactions of a field of large amplitude baro- 
tropic planetary waves shares the peculiar properties of two-dimensional turbulence, 
with an energy cascade towards large scale motions, as discussed at length by Rhines 
[257], [258] (see also 9 5 ) .  

4. Interactions of waves with the medium. In this section we review the ways in 
which ocean waves are modified due to their interaction with shear flows, variable 
bottom topography and other inhomogeneities of the medium. If the interactions occur 
over length and time scales that are large compared with the characteristic wavelength 
and wave period respectively and in the absence of dissipation, then they can be 
described as being "action-conserving" and the techniques of ray theory (geometric 
optics) can be used in their analysis (e.g. see Bretherton [33], Shen [273]). Examples of 
such weak interactions are the refraction of surface waves by a horizontally sheared 
current and the refraction of internal waves by a Brunt-Vaisala frequency that varies 



OCEAN WAVES 	 305 

slowly with depth. On the other hand, when the interactions occur over length and time 
scales that are comparable to those of the waves, they can be described as being strong; 
in such cases ray theory is not applicable. Typical examples of strong interactions are the 
scattering of long gravity waves by islands and seamounts, the absorption of internal 
waves by a vertically sheared current, and the amplification of planetary waves in the 
presence of large-scale flows with vertical and horizontal shear. 

Conservation of wave action density. A variational approach to the study of slowly 
varying wave trains in an inviscid fluid was introduced by Whitham [316] and further 
discussed by Bretherton and Garrett [34], Garrett [67], Bretherton [33] and Whitham 
[317]. In the papers by Bretherton and Garrett, attention is focused on small-
amplitude, nearly plane waves of the fQrm 

a (x, t ) exp [ie(x, t)]. 

For this wave form, the local wavenumber vector k(x, t) and local frequency w (x, t) are 
defined (relative to an inertial frame) by 

k = - 	a0 w=- - ae 
ax' a t '  

from which the conservation of wave crests follows: 

(4.lb)  

The underlying dynamics imply a local dispersion relation of the form 

(4.2) 	 w 2Cl[k(x, t); x, t]. 

The wave rays are the curves obtained by integrating the equations 

where c, = dw/dk is the group velocity, obtained from (4.2). For a fluid moving with 
slowly varying velocity U(x, t), it was shown by Bretherton and Garrett [34] that the 
fundamental quantity conserved along the rays is the wave-action density A, defined as 

where Eois the wave energy density (averaged over a period) measured in the moving 
system and wo= w -k  . U is the intrinsic (also sometimes called Doppler-shifted) 
frequency, the wave frequency observed in the moving system. The conservation of A 
along rays takes the simple form 

As can be seen from (4.5), wave action is a more fundamental quantity than energy 
for wave propagation since the former is conserved along rays on both moving and 
stationary systems. Indeed, by straightforward differentiation it follows from (4.4) that 
the following energy balance equation holds (LeBlond and Mysak [142, p. 331): 

where Tlj aUl/dxj represents the rate of energy exchange per unit volume along a ray in 
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the moving system. T,, is a symmetric, second-order interaction stress tensor. The third 
term in (4.6) can be interpreted as the rate of working of the interaction stress against 
the spatial rate of strain of the mean flow. In the earlier studies of the interaction 
between surface waves and currents, (4.6) was used in the analysis rather than (4.5) and 
Ti,was identified as the radiation stress tensor (the momentum flux of the waves) by 
Longuet-Higgins and Stewart [165], [166], [167]. 

The basic ray theory equations (4.2), (4.3) and (4.5) have been used extensively in 
recent years to study the refraction of surface waves by slowly varying currents lying 
above a gently sloping sea bed. Work on this combined problem has been reviewed 
recently by Jonsson [I 191; a number of elementary examples involving either current 
refraction or topographic refraction separately may be found in LeBlond and Mysak 
[142, chap. 61. Ray theory can also be used to describe the interaction between two 
waves provided the period and wavelength of one of the waves greatly exceeds those of 
the other, so that the shorter, higher frequency wave may be regarded as propagating in 
a current which is slowly varying in space and time (Gargett and Hughes [66]). 

The ray theory briefly described above for small-amplitude, nearly plane waves in 
an inviscid fluid has many obvious limitations. For example, as surface waves are 
refracted in shallow coastal zones, wave breaking (due to increasing amplitudes) and 
dissipation (due to bottom friction) occur, both of which invalidate the assumptions of 
ray theory. To handle finite-amplitude and dissipative effects, other techniques have to 
be used, such as perturbation expansions (Jonsson [ I  191) and numerical integrations 
(Peregrine and Thomas [234]). Also, ray theory breaks down at a caustic, defined as an 
envelope of rays along which total internal reflection takes place. As a wave approaches 
a caustic, the wavelength increases and becomes comparable to the length scale of the 
variations in the medium. At the caustic itself there is an abrupt transition from 
oscillatory to decaying behavior and special matching techniques have to be employed 
(Ludwig [169]). For details of the solution near a caustic for different ocean wave 
refraction problems, we refer the reader to McKee [189], Hughes [I151 and Smith 
[280]. 

Another limitation of the classical theory is that it only treats the case of single 
Fourier components, i.e., line spectra. As mentioned in connection with wave-wave 
interactions, in the ocean one is generally interested in the evolution of continuous wave 
spectra as they are modified by refraction and other interaction processes. For simpli- 
city, consider a time-independent medium, for which w is invariant along a ray; then it is 
possible to introduce a slowly varying wavenumber energy spectrum S(k; x, t) 
(analogous to the energy density Eo for a single Fourier component-a more precise 
definition is given in 5 5). The action density spectrum (analogous to A )  is then defined 
as 

where wo is the intrinsic frequency of a wave as observed in a fluid moving with velocity 
U(x). The amount of wave action contained in a small element 6k of wavenumber space 
is n6k and therefore in place of (4.5) we have 

Upon simplifying (4.8), it follows that (LeBlond and Mysak [142, p. 3231) 
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which shows that the action density spectrum remains constant along rays. Equation 
(4.9) is the most simple form of the "radiation balance" equation referred to at the end 
of § 3; its more general form is discussed in § 5. 

Finally, we note that ray theory does not describe the reflection, diffraction and 
scattering of waves by moderate or abrupt changes in the medium, However, it should 
be noted that an extension of ray theory to a geometrical theory of diffraction has been 
developed (Keller [125], Christiansen [45], [46]). 

Wave diffraction and scattering. Waves are diffracted and/or scattered when they 
encounter obstacles whose boundaries have radii of curvature comparable to or less 
than the incident wavelength. Although the two words are often used interchangeably, 
strictly speaking, diffraction occurs when waves encounter a sharp edge or corner, and 
scattering, when they encounter blunt shaped obstacles or irregular boundaries. Here 
we shall give a brief survey of a few selected ocean wave diffraction and scattering 
problems that for the most part have been solved by standard techniques as found, for 
example, in Jones [I181 and Roseau [263]. 

The classical Sommerfeld diffraction problem of long surface waves incident upon 
a vertical semi-infinite barrier was first treated by Crease [50]. Because of the presence 
of rotation, it was found that in addition to the usual reflected and cylindrically scattered 
waves, the diffracted field included a Kelvin wave propagating parallel to the barrier in 
the shadow zone. The diffraction of planetary waves by a semi-infinite barrier and by a 
gap in an infinite barrier have been treated by Mysak and LeBlond [222] and by McKee 
[188]. Because of the anisotropy of planetary waves, it was found that extra care had to 
be given to the radiation condition, namely that the diffracted field must consist of 
waves whose energy propagates away from the scattering region. 

A problem of considerable interest in the theory of tsunamis is the scattering of 
long gravity waves by islands and seamounts. Such problems have recently been 
thoroughly discussed by Jonsson et al. [120]. The scattering of planetary waves by 
islands and seamounts has been treated by Rhines [255]. 

In recent years considerable attention has been devoted to studying the effects of 
coastal variations on the propagating of the barotropic tide, as modelled by Kelvin 
waves and surface gravity waves of tidal periods. The types of coastal variations 
considered generally fall into two categories: (1) sharp bends; and (2) small irreg- 
ularities on an otherwise rectilinear boundary. Most of the studies dealing with 
coastlines of the first category have focussed on the diffraction of a Kelvin wave by a 
corner (e.g. see Buchwald [39] and LeBlond and Mysak [142, chap. 41 for other 
references). Pinsent [241] on the other hand, was the first to study the scattering of long 
waves and the attenuation of Kelvin waves by a coastline of the second category. 
However, his solutions, being based on the Born approximation, break down when the 
coastal irregularities extend over an extensive coastline. In such a case, it is convenient 
to treat the coastal irregularities as a stationary random function of position along the 
coast and then use a modified form of the theory of wave propagation in an infinite 
random medium (Howe and Mysak [113], Mysak and Tang [223], Mysak and Howe 
[2211). 

Finally, we mention that there have been a number of recent studies dealing with 
the propagation of various types of ocean waves in media with random variations, such 
as temperature fine structure, bottom topographic irregularities and current fluctua- 
tions. In these studies it has been generally found that energy is continuously scattered 
from the coherent wave field into the incoherent (or random) wave field, with the energy 
transfer being in the direction of the group velocity. For a recent survey of wave 
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propagation in random media, with applications to surface, internal, inertial, edge and 
planetary waves, we refer the reader to the recent survey by Mysak [218]. A brief 
discussion of the mathematical problems involved in this topic is given in 9 5. 

Critical layer absorption. Internal gravity waves in a nonrotating stratified fluid can 
be severely attenuated in the presence of a vertically sheared flow U ( z )as they 
propagate across that layer (or level) z = z ,  at which the intrinsic or Doppler-shifted 
frequency vanishes. At such a layer, the vertical component of the group velocity also 
vanishes and there is a substantial transfer of momentum to the mean flow. The 
behavior of an internal wave near a critical layer itself was determined by Booker and 
Bretherton [24] by the method of Frobenius. 

These and other earlier studies were motivated by a desire to understand the 
behavior of internal waves propagating into the upper atmosphere in the presence of 
the mean wind shear. There still is considerable interest in various aspects of critical 
layers for internal waves (e.g., dissipative effects (Hazel [103], Breeding [27]), 
nonlinear effects (Maslowe [178]) and rotational effects (Grimshaw [88]), and in their 
relevance in atmospheric dynamics (Geller et al. [73])). However, the importance of 
critical layer absorption for internal waves in the ocean has only recently been examined 
(e.g., see Bell [14] and Thorpe [300]). 

Critical layers can also exist for planetary waves in the presence of a large-scale, 
laterally sheared flow. They were first discussed in the atmospheric context by Dickin- 
son [54], [55] and only recently discussed in the oceanic context (Geisler and Dickinson 
[71], Mofjeld and Rattray [201], Yamagata [323]). In Geisler and Dickinson [71], the 
absorption of a planetary wave by a north-south geostrophic current V ( x ) was 
considered and the results applied to the problem of planetary wave reflection at 
western boundary currents. A nonlinear theory of critical layer absorption of planetary 
waves has recently been presented by Redekopp [251]. 

Stability of parallel flows. The topic of stability of parallel flows has had a long 
history in fluid mechanics. The fundamental problem is to determine whether a given 
shear flow is stable to travelling wave perturbations. In the oceanic context there has 
been considerable interest in the stability of two different classes of flows: (1) relatively 
small-scale, vertically sheared flows in a nonrotating stratified fluid; and (2) large-scale 
flows with horizontal and/or vertical shear on the P-plane. In case (I), the wave 
perturbations are modified internal waves which grow exponentially with time if the 
flow is unstable, leading to overturning'and hence vertical mixing over scales of meters 
to tens of meters. In case (2), the wave perturbations are modified planetary waves; for 
unstable flows, the waves develop into large eddy-like motions with horizontal scales of 
tens to hundreds of kilometers. 

The study of the stability of stratified shear flows has been largely motivated by a 
desire to understand the initiating mechanisms for the production of small-scale 
turbulence in the ocean. If a mean flow with vertical shear is unstable with respect to 
internal wave perturbations, then the latter may grow, by extracting kinetic energy from 
the mean flow, into finite-amplitude billows which in turn break and produce vertical 
mixing (turbulence) on a scale that completely dominates molecular diffusion (Turner 
[307]). Clearly, a full understanding of the stability of a prescribed shear flow ultimately 
depends on the numerical integration of a nonlinear system. Nevertheless, it is very 
useful to be able to predict the onset of shear flow instabilities based on linear analysis. 
The starting point in such linear studies is the Taylor-Goldstein equation (LeBlond and 
Mysak [142, p. 3981) for the vertical dependence of a vertical velocity having a 
horizontal wave-like dependence of the form e'k'x-cr'  with k >0. This equation is a 
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second order differential equation whose coefficients involve the mean stratification 
and current, and the eigenvalue c. One of the most celebrated theorems that follows 
from this equation (under appropriate boundary conditions) is Miles' [I961 sufficiency 
condition for stability: "If the Richardson number Ri 2 a (where Ri =N ~ /U: ), then the 
flow U ( z )is stable (i.e., c is real)." Unlike many shear flow stability criteria, this result 
has a very simple physical interpretation. Since the Richardson number represents the 
ratio of buoyancy to inertia, Miles' theorem effectively states that if the stabilizing 
influence of stratification dominates the destabilizing influence of the nonlinear terms, 
then the flow is stable. The simplicity of Miles' sufficiency condition for stability also 
makes it easy to check in the laboratory (Thorpe [299]). 

The application of stratified flow instability (also sometimes dubbed Kelvin- 
Helmholtz instability) has had a long history in geophysical fluid dynamics. In addition 
to its possible role in the production of small-scale turbulence, it has been proposed as a 
mechanism for the generation of surface waves, especially at an air-oil interface (Miles 
[194]). Also, clear air turbulence in the atmosphere is now commonly believed to be 
generated by Kelvin-Helmholtz instabilities, especially at its nonlinear stages (Atlas et 
al. [ 5 ] ) .Recently observed large billows in the thermocline and in Loch Ness have also 
been interpreted as Kelvin-Helmholtz instabilities (Thorpe et al. [301]). 

Studies of the stability of large-scale flows that are maintained geostrophically (i.e., 
the Coriolis force is balanced by the pressure gradient in the horizontal momentum 
equations) generally fall into one of two categories: (1)barotropic instability and (2) 
baroclinic instability. In case (I), the mean current has lateral shear only and the 
unstable wave perturbations grow at the expense of the kinetic energy of the mean flow. 
In case (2), the mean flow has vertical shear only and the unstable waves grow at the 
expense of the available potential energy due to the sloping isopycnals that arise in 
conjunction with a geostrophic, vertically sheared flow (the so-called thermal wind 
relation-see LeBlond and Mysak [142, p. 4171). The unstable waves in both cases 
generally have wavelengths of order 100 km; consequently, it is conceivable that these 
waves may be an initiating mechanism for meso-scale eddies that occur in different parts 
of the ocean (see Rhines [258] for a summary of such eddy observations). These eddies 
have been observed, for example, in the vicinity of intense boundary currents such as 
the Gulf Stream and also in the Polygon and MODE regions of the North Atlantic (see 
LeBlond and Mysak [142, p. 4481 for a summary of these observations). In the same 
way that small-scale, vertically oriented eddies arising from shear flow instabilities can 
transport heat, salt and energy in the vertical direction, these meso-scale eddies can 
transport such quantities over large horizontal distances in the ocean. It thus seems 
possible that they may play a central role in the mean circulation of the Qcean, as similar 
eddies do in the atmosphere. 

A lucid account of the theory of barotropic and baroclinic instability has been given 
by Pedlosky [231]. For large-scale flows with both lateral and vertical shear, the 
governing linearized eigenvalue equation corresponding to the Taylor-Goldstein 
equation for small-scale stratified shear flows is a nonseparable partial differential 
equation. Further, the eigenvalue c (the horizontal wave phase speed) occurs both.in 
the equation and in the bottom boundary condition. The problem of solving this 
equation either exactly or approximately by analytic techniques remains a challenge to 
this day. Likewise, because this is a partial differential equation, the stability criteria for 
flows with both lateral and vertical shear are generally rather complicated (e.g., see 
Pedlosky [230], LeBlond and Mysak [142, chap. 71). However, if one considers flows 
with either lateral shear or vertical shear only (cases (1) and (2) above), then the 
governing partial differential equation reduces to an ordinary differential equation and 
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the problem of determining the eigenvalues and corresponding eigenfunctions for a 
given flow profile becomes relatively straightforward. Nevertheless, the combined 
problem of both lateral and vertical shear is important in many applications. At present 
there are essentially two simple ways of handling this situation: (1) To  discretize the 
vertical structure into two (Pedlosky [230]) or three (Davey [52], Wright [319]) layers, 
in each of which the mean velocity is independent of depth; this leads to a system of 
ordinary differential equations. (2) To introduce only weak lateral shear together with a 
strong vertical shear and hence use multiple scale techniques to  obtain an approximate 
analytic solution (Stone [291], Gent [74], [75]). 

5. Statistical and probabilistic aspects. In the last two sections, we referred to the 
concept of a power spectrum and briefly introduced the topic of wave propagation in 
random media. During the last three decades, these as well as other statistical and 
probabilistic topics have played an increasingly important role in the study of ocean 
waves. These topics will now be discussed along with a number of applications to 
different aspects of ocean wave theory. 

The spectrum (also called a "power spectrum" or "energy spectrum") has its origin 
in the theory of random noise (Rice [259]). Let f (t) be a real stationary random function 
of t with zero ensemble mean. Then the frequency spectrum S(w) of f(t) is defined as 

1
S(w)= lim -(fT(w)I2, 

T+=C2n-T 

where fT(w) is the truncated Fourier transform of f(t): 

Since fT represents a Fourier coefficient off at frequency o ,  S(w), being proportional to 
the square of this coefficient, represents the "power" or "energy" per unit frequency 
interval. In analogous ways, wavenumber and wavenumber-frequency spectra can be 
defined for real zero-mean stationary random functions f(x) and f(x, t) respectively. 

The auto-covariance function for a zero-mean real stationary random function f(t) 
is defined as 

where ( .) denotes the ensemble average. The quantity T(0) is called the variance off. A 
powerful result, on which the Blackman-TukCy method for computing spectra is based, 
is the Wiener-Khinchin theorem: "For any ergodic stationary zero-mean real random 
function f(t), the spectrum S(w) is the Fourier transform of T(t)". That is, 

These results can be readily generalized to handle the case of the zero-mean stationary 
random functions f(x) and f(x, t). 

In practice the spectra and auto-covariance functions of observed current, 
temperature and amplitude fluctuations associated with different ocean wave types 
usually change slowly with space and time, since these fluctuations are only approxi- 
mately stationary (e.g., see Fig. 4 in § 6).The natural way to study the evolution of such 
spectra is through the "radiation balance" equation, which was briefly referred to in 
$ 5  3 and 4. For wave propagation in a time-independent medium, in which case the 
wave frequency w is invariant along a ray, the radiation balance equation is most 
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conveniently written in terms of the (wavenumber) action density spectrum n (k; x, t )= 
S(k; x, t)/wo (see (4.7)), where the wavenumber spectrum S(k; x, t) is obtained from the 
wavenumber-frequency spectrum S(k, w; x, t) by integrating the latter over w. The 
equation for n is 

where dldt  =d,+c,  .V denotes differentiation along a ray and C represents the 
"source" of wave action; the latter includes terms representing forcing effects, dis- 
sipation and interaction processes (such as the wave-wave and wave-current inter- 
actions discussed above). When there are no source terms, (5.5) reduces to (4.9) and the 
radiation balance equation describes only refractive processes. On the other hand, if 
neither refraction nor nonlinear interactions occur, then (5.5) represents a balance 
between a prescribed input or forcing spectrum S,(k, w), the response spectrum S,(k, w) 
and dissipation. This balance results in an equation of the form 

(5.6) S,(k, w)= IH(k, w)I2~,(k, w), 

where H(k, w), the transfer function, characterizes the underlying wave dynamics. 
Equations of the form (5.6) (with the inclusion of one spatial variable to describe the 
relevant horizontal or vertical modes in the problem) have been used by Mysak [214], 
Kase and Tang [124], Wunsch and Gill [321], and Goodman and Levine [83] to study 
respectively the generation of continental shelf waves, internal waves, equatorially 
trapped waves and internal Kelvin waves by broad-banded atmospheric disturbances. 

To date the most extensive application of the radiation balance equation (also 
called a transport or kinetic equation) has been in the study of surface gravity waves, for 
which the most data are available. For this reason, we defer the discussion of this topic 
until § 6, where a treatment of the generation and interaction of surface gravity waves is 
given. The energy or radiation balance of the internal wave field in the deep ocean, 
characterized by the Garrett and Munk [68] spectrum, has been examined recently by 
Miiller and Olbers [206]. Although their paper starts out with a lengthy list of all the 
possible source terms that can be included in C, in the final analysis they provide 
estimates of only the following energy transfers: (1) an input into the internal wave field 
at low wavenumbers from a mean shear flow, (2) the dissipation at high wavenumbers 
due to wave breaking, and (3) the transfer of energy at intermediate wavenumbers to 
high and low wavenumbers due to resonant interactions. In their study, the question 
remains however as to how energy is initially fed into the wave field in the intermediate 
wavenumber range. Kase and Tang [I241 have suggested that energy may be fed into 
internal waves at these scales by a randomly varying isotropic wind stress applied at the 
sea surface. Other internal wave studies, which have dealt with simplified forms of (5.5), 
include the generation of internal waves by flows over irregular bottom topography 
(Bell [14]) and the scattering of internal wave energy by randomly varying micro- 
structure (Mysak and Howe [220]). 

The radiation balance equation (5.5) is generally limited to describing "slow" 
energy transfers within the wave spectrum and hence cannot be used to describe strong 
wave-wave interactions which take place over time scales comparable to the wave 
period. As mentioned in 5 3, strong interactions are believed to take place between 
planetary waves in the ocean. However a description of these interactions in a baroclinic 
ocean with topography is not yet available, although significant advances have been 
made by Rhines [257], Holloway and Hendershott [ I  111 and Holloway [ I  101 for the 
case of barotropic planetary waves. Using a mixture of analytical, numerical and 
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qualitative results, Rhines [257] showed that on a constant depth P-plane, the energy 
cascade of two-dimensional eddies towards large scales ceases at a critical wavenumber 
k p = ( / 3 / 2 ~ ) " ~ ,where U = r.m.s. particle speed. At larger wavelengths, the energy 
cascade is by means of weak resonant planetary wave interactions. However, as a result 
of the anisotropic dispersion relation for planetary waves, the final tendency is for a 
zonal (east-west) motion. In the work of Holloway and Hendershott [ I 1  11, a unified 
analytical treatment of the above turbulent and wave-wave interactions is given. In this 
paper, the "test field model" of statistical turbulence theory (Kraichnan [132]) is 
extended to the case of two-dimensional flow on the /3-plane. From an analysis of an 
evolution equation for the amplitude of a Fourier component of the vorticity, they were 
able to recover Rhines' results in the limit of short and long wavelengths. In the work of 
Holloway [110], a general formalism of wave interactions is proposed which contains 
weak wave-wave interactions when the waves are of infinitesimal amplitude, but which 
also accounts for strong wave interactions by means of a resonance broadening or 
"propagator renormalization" approach. In the limit of arbitrarily strong planetary 
waves, the formalism recovers a theory of two-dimensional turbulence. 

In the study of wave propagation in random media, which was briefly discussed in 
§ 4, one is mainly interested in finding the mean solution of a stochastic partial 
differential equation, i s . ,  an equation with randomly varying coefficients whose 
statistics are known. These random coefficients are a model of the inhomogeneities in 
the wave bearing medium. It is assumed that these inhomogeneities are not affected by 
the propagation of the waves themselves. The mathematical problem of solving 
stochastic partial differential equations is far from trivial. However, if the inhomo- 
geneities are weak, which is often the case in oceanic wave applications, then various 
perturbation methods can be used (e.g., see Chow [44], Mysak [218]). Alternatively, if 
the fluctuations are relatively large, a numerical simulation of the random medium can 
be used (Bell [13]). 

To conclude this section, we note that statistical and probabilistic concepts play an 
important role in our description and understanding of wave propagation in the real 
ocean. This has been especially true for the case of surface gravity waves, which have 
been studied intensively by both theoreticians and experimentalists. A large part of the 
next section will be devoted to this topic. 

6. The generation of ocean waves. The sources of momentum and energy needed 
to generate the observed oceanic radiation field are to be sought inside the ocean as well 
as on its boundaries. Within the ocean waters, waves may extract energy from the mean 
flow or from the potential energy of the stratification through some of the instability 
mechanisms discussed in § 5. Wave-wave interactions or topographic coupling may also 
feed energy from one kind of wave to another, or transfer energy from one mode to 
another (as in the generation of internal tides through interaction of the barotropic tide 
with topography). These internal processes are difficult to observe and their presence is 
inferred from theoretical considerations rather than from direct observation. 

Wave generation at oceanic boundaries is much better documented. There are 
many ways in which energy may be transferred through oceanic boundaries in a 
time-dependent or spatially modulated form which leads to wave generation. Direct 
bodily injection of fluid carrying with it kinetic and/or potential energy, for example, 
results from pulsated sources of momentum (such as a variable river flow) or buoyancy 
(heat and/or salt). Surface wave generation by a varying current issuing from a narrow 
channel, as treated by Voit [314] and Buchwald [40], is an example of a variable 
momentum source. The problem of internal wave generation by buoyancy fluctuations, 
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treated by Magaard [174], provides an instance of a varying potential energy 
source. 

The tides. Energy may also be added to the ocean waters by the action of two kinds 
of forces: body forces and surface stresses. Body forces, such as gravity or the Coriolis 
force act throughout the body of the fluid. The Coriolis force always acts at right angles 
to the flow and can do no work. The only body force generating oceanic waves is that of 
gravity, and more specifically, the small imbalance of the combined solar and lunar 
gravity fields which exist at the surface of the Earth is commonly called the tidal force. It 
is the component of this force parallel to the Earth's surface which produces the tides. 
Reviews of the theory and results on tides have been presented by Hendershott [106], 
[I071 and Hendershott and Munk [log]. 

The tidal force is known quite accurately in terms of the orbital parameters of the 
Sun and the Moon; it may be decomposed into a number of "tidal constituents" which 
make up a line spectrum of forcing terms. As was already recognized by Laplace [136], 
tidal constituents occur in three groups of frequencies: semi-diurnal tides, diurnal tides 
and longer period tides. A lengthy compilation of about 300 constituents was presented 
by Doodson [57]; shorter lists of the principal tides are found in many oceanography 
texts (for example, see Neumann and Pierson [227]). 

The problem of tidal generation then consists of reconciling the observed dis- 
tribution of tidal amplitudes and phases with the known forcing spectrum. The ocean 
responds to the tidal impulses in a forced motion which may be represented (at least in a 
linear description) as a superposition of the free modes of oscillation of the ocean 
basins. Tidal oscillations on a global scale are best described in spherical coordinates 
and obey the shallow water equations known as Laplace's Tidal Equations (LTE) (see 
Miles' [I981 for a recent discussion). Free solutions of the LTE for the Atlantic and the 
combined Atlantic and Indian Oceans have been presented by Platzmann [243], [244]. 
Forced solutions of the LTE for the whole ocean or for partial oceanic basins have been 
calculated by a number of authors for some of the dominant tidal constituents (see 
Hendershott [I071 for a review of the subject). A comparison of the free and forced 
solutions shows that some oceanic basins (the Atlantic for example) have free periods of 
oscillation which are near some of the forcing frequencies and are near resonance. The 
agreement between the numerical solutions of the LTE and the observed tides is on the 
whole satisfactory (considering what little data are available on deep ocean tides) but 
limited by the spatial resolution of the grid of integration. Higher resolution models 
have been constructed for various coastal areas; these local models are usually driven by 
the adjacent oceanic tides rather than by direct astronomical forcing (for example, see 
Crean [49], Godin [81] and Heaps [104]). 

The question of local tidal prediction, at a given harbor or similar point of interest, 
is a much simpler matter. The predictions of the local sea level variations and currents at 
tidal frequencies does not require any understanding of the spatial structure or 
propagation characteristics of the tidal response. Assuming a line spectrum of forcing 
frequencies, the local response may be resolved into contributions from each of the 
forcing constituents by "harmonic" analysis (see Godin [82]) or by the response method 
of Munk and Cartwright [208]. Predictions of the tide then follows by extrapolation of 
the fitted time series into the future. 

Long waves. Surface stresses include normal (basically, the pressure) and tangen- 
tial stresses (due to friction). Although pressure forces due to bottom displacements 
may cause tsunamis, these spectacular waves are too rare to contribute significantly to 
the average oceanic wave field (see Murty [212] for a review of tsunamis). The dominant 
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FIG.3. Autospectra of A )  wind speed and B )  air pressure, at Ocean Weather Station P in the northeast 
Pacific. The vertical error bars represent approximately 95%-confidence intervals about the mean of each 
spectral estimate. From Fissel et al. [61]. 

source of pressure fluctuations and tangential stresses on the oceanic boundaries is of 
course the atmosphere. 

Typical mid-latitude spectra of atmospheric pressure and wind speed (from Fissel 
et al. [61]) are shown in Fig. 3. Sharp peaks occur at the annual frequency and broad 
maxima at time scales of about 3.1 and 15 days for wind and pressure fluctuations 
respectively, reflecting the passage of synoptic disturbances of horizontal scales of the 
order of hundreds of kilometers. Since the atmospheric forcing is predominantly at 
subinertial frequencies, the oceanic response would be expected to consist of second 
class waves, described in terms of the vertical normal modes discussed above. Veronis 
and Stommel [313] studied the response of mid- and high-latitude ocean regions to 
atmospheric input and found that, because the internal modes propagate so slowly, the 
baroclinic adjustment to changes in wind conditions would take place over time scales 
of the order of decades. In the equatorial regions, on the other hand, planetary waves 
propagate much more rapidly and the response time is measured in weeks (see Lighthill 
[148], Fieux and Stommel[60]). A different approach has been used by Philander [235], 
in a recent review of the response of bounded basins, wherein the oceanic motion is 
represented in terms of vertically propagating modes satisfying lateral conditions. 

Wind waves. It is well known that an apparently steady wind can generate short 
period "wind-waves". These waves are of great practical interest because of their 
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relevance to navigation and to coastal processes and have been studied more intensively 
than any other kind of oceanic waves. The data on wind-waves are indeed good enough 
to allow quantitative comparisons with the extensive body of theory which has been 
elaborated to explain their observed properties. Detailed accounts of wind-waves are 
found in Kinsman [I271 and Phillips [240]; a more recent review of progress in the field 
is given by Barnett and Kenyon [ l l ] .  

Wind-wave spectra in a well developed sea are typically strongly peaked (at a 
frequency om, say). The evolution of spectra with fetch X (the distance over which the 
wind blows) is shown in Fig. 4 (taken from Hasselmann et al. [102]). Figure 4 illustrates 
the gradual decrease of omwith fetch, corresponding to the peak of the spectrum 
occurring at gradually longer wavelengths; it also shows the initial overshoot of energy 
levels at short fetches to values which exceed those existing at the same frequencies at 
longer fetches. Observations, such as those of Hasselmann et al. [102], indicate that 
w , o ~ ~ - " ~ ,while the energy of the spectrum increases as X .  The rapid decay of 
spectral energies at frequencies o >om(see curve 11 in Fig. 4) often follows a o-5 
power law, as expected in a sea where the wave amplitude is dominated by wavebreak- 
ing (see Phillips [237]). A more complete review of wind-wave properties is to be found 
in LeBlond and Mysak [142, pp. 482 ff]. 

FIG. 4 .  The evolution of wind-wave spectra with fetch, from the JONSWAP observations. The fetch 
increases with the number labeling the spectral peak. From Hasselmann et al. [102]. 

The process of wind-wave generation is intimately associated with the charac- 
teristics of the air flow over the moving, undulating ocean surface. The air flow over the 
ocean is turbulent and the presence of the turbulence determines the shape of the 
vertical profile of the wind over the sea (see Lumley and Panofsky [I711 on the 
atmospheric boundary layer). It is thus only an apparently steady wind which raises 
surface waves: the short time- and space-scale unsteadiness, in the form of turbulence, . 
plays both a direct and an indirect role (through its effect on the mean wind profile) in 
wave generation. 
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Two basic mechanisms have been advanced to explain wind-wave generation. 
Phillips [236] suggested that turbulent pressure variations, advected by the mean flow, 
could generate waves on an initially calm ocean by keeping in phase with surface 
displacements, i.e., through travelling resonant forcing. The bimodal angular dis- 
tribution of wave energy, with a peak on each side of the direction of the wind speed, 
expected from this resonance mechanism, has been observed by Gilchrist [78] under 
short fetch conditions. The linear rate of energy increase predicted by the Phillips' 
theory (see also Stewart and Manton [286] for refinements) is adequate only to explain 
the initial appearance and growth of wind-waves; real waves soon grow at a much faster 
rate! 

The generation mechanism suggested by Miles [I921 assumes that small waves 
already present at the sea surface would induce perturbations in the mean atmospheric 
shear flow which could modify the surface air pressure in such a way as to transfer 
energy to the waves and amplify them. Miles' shear flow instability mechanism yields an 
exponential rate of growth of wave energy; it was combined (Miles [195]) with Phillips' 
resonance mechanism to account for the initial appearance and subsequent growth of 
wind waves through the action of pressure forces at the sea surface. 

In spite of a number of refinements (Miles [193], [194], [197]), the rate of energy 
input predicted by the above mechanisms remained insufficient by about an order of 
magnitude to explain the rate of growth of the spectral peak, measured by Snyder and 
Cox [282] and Barnett and Wilkinson [12]. Direct numerical computations of the wind 
field over a wavy sea, by Gent and Taylor [76], [77], and hence of the work done in the 
sea surface by pressure as well as tangential stresses, also cannot reconcile the computed 
energy input with the observed growth. 

A number of nonlinear wave-wave interaction mechanisms (see for example, 
Hasselmann [ lo l l ,  Garrett and Smith [70]) have been invoked to feed energy from the 

Net Transfer E'=X;,,+Z~,+X;~ ' &&-
FIG.  5 .  Schematic energy balance for a wind-wave spectrum S ( w ) .  I : ,represents direct energy input from 

the wind, I&,energy removed by dissipation, and EL,the result of the nonlinear wave-wave interaction 
mechanisms. From Hasselmann et al. [102]. 
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high frequency ( u - ~ )part of the spectrum to the peak in order to explain its rapid rate of 
growth. Calculations of the effect of nonlinear interactions on the evolution of the 
JONSWAP spectra (measured by Hasselmann et al. [102]), as evaluated from the 
source terms in the radiation balance equation (5.5), shows that energy may actually be 
fed into the spectral peak by wave-wave interactions (see Fig. 5). Theoretical cal- 
culations (see Fox [62]) also lead to this somewhat surprising conclusion. This is not the 
end of the story, however, and other effects, such as that of the three-dimensional 
structure of the wind field (as suggested by Dorman and Mollo-Christensen [58]), or the 
enhanced momentum transfer rates associated with flow separation over breaking 
waves (as noted by Banner and Melville [lo]), may also play a significant role in 
wind-wave generation. 

The dissipation of wind-waves is dominated by wave breaking which, as mentioned 
above, plays a significant role in the high frequency region of the wind-wave spectrum. 
Once waves travel beyond their domain of generation, they become "swell" and 
attenuate only very slowly, as shown by Snodgrass et al. [281]. The ultimate demise of 
swell comes in a catastrophic climax in the onshore surf zone, a process which is difficult 
to study and is still poorly understood. 

7. Unresolved problems. Ongoing problems concerning ocean waves fall into two 
broad, overlapping categories: (1) those problems relating to the properties of a 
particular type of wave: its generation, propagation, nonlinear distortion and eventual 
dissipation; (2) broader problems concerning the general oceanic radiation field, 
involving interactions between many types of waves and their environment. The first 
type of problems are mainly deterministic in nature; problems of the second type are 
involved with a statistical specification of the wave climate of the ocean and are 
dominantly stochastic. 

Examples of the first type of problem abound in the theory of surface gravity 
waves. A number of questions concerning the nature of nonlinear surface waves, as 
embodied in the properties of the KdV equation, have been mentioned in Miura's 
recent review [200]. The phenomenon of wave breaking is also very poorly understood; 
although an interesting model has been presented by Longuet-Higgins and Turner 
[I681 and numerical simulations have been attempted (see Harlow et al. [95] and 
Harlow and Shannon [94]), the role of breaking on wave generation and the dynamics 
of real surf still present challenging problems. Another interesting problem, involving 
wave-current interactions is that of the occurrence of the "giant waves" mentioned by 
Mallory [I751 and studied by Smith [279]. These waves have caused damage to very 
large ships off the southeast coast of South Africa and are obviously of great concern to 
navigation. 

The topic of tidal dissipation may also be considered as a problem of the first type. 
The total rate of energy dissipation in the Earth-Moon system is known from 
astronomical data (see Munk and MacDonald [209], Rochester [262]). The bulk of this 
energy loss is thought to occur in the ocean (Hendershott [105]), but present estimates, 
such as that of Miller [199], seem insufficient to account for the observed dissipation 
rate. A different approach to the problem, which calculates the retarding tidal torques 
iirectly rather than estimating the dissipation, has been. pioneered by Brosche and 
Siindermann [37]; this approach looks promising and will hopefully be pursued further. 

Much still has to be learned about the properties of various classes of long-period 
~ceanicwaves. The possible origin of meso-scale oceanic eddies as planetary waves 
hawing energy from the mean oceanic circulation through some instability mechanism 
has received considerable attention (see, for example, Robinson and McWilliams 
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[261]), but the situation is far from well resolved. A large multinational experimental 
programme, POLYMODE [308], is now underway to provide more extensive data on 
oceanic eddy dynamics. Equatorially trapped waves have been found to exert 
considerable influence on subtropical processes and to provide a rapid access path for 
information to cross the oceans (see McCreary [I821 and Hurlburt et al. [116]). The 
study of these waves and their modifications due to topography (e.g. see Mysak [217], 
[330] and Geisler and Mysak [72]) are likely to continue to be pursued actively. 
Similarly, coastally trapped waves are related to upwelling phenomena and to varia- 
tions in sea level (Gill and Clarke [79]) and are under intensive study. 

The second type of problem is part of the specification of the ocean climate. A 
sensor immersed at some point in the ocean measures fluctuations in currents and other 
water properties which stretch over a broad spectrum of periods (from seconds to 
months!). Most of the observed variability may be attributed to waves of some kind or 
other (on this matter, see Monin et al. [202]). The wave field observed at a fixed point 
consists of a superposition of waves which have reached it from wide areas of the ocean. 
Some of the time variations, such as the tides, are of a deterministic nature and are 
readily predicted. On the other hand, a large part of the variability is of a stochastic 
nature. Thus, much of the wave field consists of waves generated by atmospheric 
sources, propagating at different speeds according to their type and modal structure, 
and subject to mutual interactions and to refraction and energy exchanges with 
currents. The full specification of the time variability at a point is then practically 
impossible and one must be happy with a statistical representation of the wave field. The 
simple spectral power models obtained for surface waves (in a fully developed sea) by 
Phillips [237], for internal waves by Garrett and Munk [68], [69], and for planetary 
waves (viewed as two-dimensional turbulence) by Rhines [257] are examples of this 
kind of statistical description. A number of empirical relations between wind speed and 
fetch and the properties of wind-waves provide some statistical information on the 
energy level of surface agitation, but no such relations are available for other kinds of 
waves. This kind of information is sorely needed in many practical problems and one 
would hope to see it emerge from a proper synthesis of the observations in the near 
future. 

REFERENCES 

[I] M. R. ABBOT, 	 A theory of the propagatron of bores in channels and rivers, Proc. Cambridge Philos. 
SOC., 52 (1956), pp. 344-362. 

[2] D. L. T. ANDERSON AND P. B. ROWLANDS, The role of inertia-gravity and planetary waves in the 
response of the tropical ocean to the incidence of an equatorial Kelvin wave on a meridional boundary, 
J .  Mar. Res., 34 (1976), pp. 295-312. 

[31 -, The Somali current responses of the southwest monsoon: the relative importance of local and 
remote forcing, Ibid., 34 (1976), pp. 395-417. 

[4] 	J. R. APEL, H. M. BYRNE, J. R. PRONI AND R. L. CHARNELL,Observations of oceanic internal and 
surface waves from the Earth Resources Technology Satellite, J .  Geophys. Res., 80 (1975), pp. 
865-881. 

[5] D. ATLAS, J. I. METCALF,J. H. RICHTER ANDE. E. GOSSARD,The Birth of C A T a n d  microscale 
turbulence, J .  Atmos. Sci., 27 (1970), pp. 903-913. 

[6] P. G. BAINES, The generanon of internal tides by flat-bump topography, Deep-Sea Res., 20 (1973), pp. 
179-205. 

[71 -, The generation of internal tides over steep continental slopes, Philos. Trans. Roy. Soc. London, 
Ser. A, 277 (1974), pp. 27-58. 

[8] F. K. BALL, Energy transfer between external and internal waves, J .  Fluid Mech., 19 (1964), pp. 
465-480. 


[91 -, Edge waves in an ocean of finite depth, Deep-sea Res., 14 (1967), pp. 79-88. 




319 OCEAN WAVES 

[lo] M. L. BANNERAND W. K. MELVILLE, O n  the separation of airflow over water waves, J .  Fluid Mech., 
77 (1976), pp. 825-842. 

[ l l ]  T. P. BARNETT AND K. E. KENYON, Recent advances in the study of wind-waves, Rep. Prog. Phys., 
38 (1975), pp. 667-729. 

[12] T. P. BARNETT AND J. C. WILKERSON, On the generation of ocean wind waves as inferred from 
airborne radar measurements of fetch-limited spectra, J. Mar. Res., 25 (1967), pp. 292-328. 

[13] T. H. BELL, JR., A numerical study of internal wave propagation through ocean fine structure, Deut. 
Hydrogr. Z., 27 (1974), pp. 193-202. 

[I41 -, Topographically generated internal waves in the open ocean, J. Geophys. Res., 80 (1975), pp. 
320-327. 

[15] T. B. BENJAMIN, Internal waves offinite amplitude and permanent form, J .  Fluid Mech., 25 (1966), pp. 
241-270. * 

[I61 -, Internal waves of permanent form in fluids of great depth, Ibid., 29 (1967), pp. 559-592. 
~ 7 1-,Instability of periodic wave trains in nonlinear dispersive systems, Proc. Roy. Soc. London, Ser. 

A, 299 (1967), pp. 59-75. 
[18] T. B. BEMJAMIN AND J. E. FEIR, The disintegration of wave trains on deep water. Part I. Theory, J .  

Fluid Mech., 27 (1967), pp. 417-430. 
[19] D. J. BENNEY,Nonlinear gravity wave interactions, Ibid., 14 (1962), pp. 577-584. 
[20] Y. A. BEREZIN AND V. I. KARPMAN, Nonlinear evolution of disturbances in plasma and other 

dispersive media, Soviet Physics JETP, 24 (1967), pp. 1049-1056. 
[21] F. BIESEL, Study of wave propagation in water of gradually varying depth, Gravity Waves, U.S. 

National Bureau of Standards, Circular 521, 1951, pp. 243-253. 
[22] R. BLANDFORD, Mixed gravity-Rossby waves in the ocean, Deep-Sea Res., 13 (1966), pp. 941-961. 
[23] J. BONA AND R.  SMITH, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. 

Roy. Soc. London, Ser. A, 278 (1975), pp. 555-601. 
[24] J. R. BOOKER AND F. P. BRETHERTON,The critical layer for internal gravity waves in a shearpow, J. 

Fluid Mech., 27 (1967), pp. 513-539. 
[25] A. T. BOWENAND D. L. INMAN,Rip currents. 2. Laboratory and field observations, J. Geophys. Res., 

74 (1969), pp. 5479-5490. 
[261 -,Edge waves and crescentic bars, Ibid., 76 (1971). pp. 8662-8671. 
[27] R. J.  BREEDING, A nonlinear investigation of critical levels for internal atmospheric gravity waves, J. 

Fluid Mech., 50 (1971), pp. 545-563. 
[28] L. M. BREKHOVSKIKH, K. N. FEDOROV, L. M. FOMIN, M. N. KOSHLYAKOV AND A. D. 

YAMPOLSKY,Large-scale multi-buoy experiment in the tropical Atlantic, Deep-Sea Res., 18 
(1971), pp. 1189-1206. 

[29] 	L. M. BREKHOVSKIKH, V. V. GONCHAROV,V. M. KURTEPOV AND K. A. NAUGOL'NYKH, 
Resonant excitation of internal waves by nonlinear interaction of surface waves, Izv. Akad. Nauk. 
U.S.S.R. Fiz. Atmos. Okean., 8 (1972). pp. 192-203. 

[30] F. P. BRETHERTON, LOW frequency oscillations trapped near the equator, Tellus, 16 (1964), pp. 
181-185. 

[311 -,Resonant interactions between waves, J. Fluid Mech., 20 (1964), pp. 457-480. 
(321 -,The propagation of groups of internal gravity waves in a mean pow, Quart. J. Roy. Met. Soc., 92 

(1966), pp. 466-480. 
[331 -, The general linearised theory of wave propagation, Mathematical Problems in the Geophysical 

Sciences, W. H. Reid, ed., Amer. Math. Soc., vol. 13, Providence, RI, 1971, pp. 61-102. 
[34] F. P. BRETHERTON AND C. J. R. GARRETT, Wavetrains in inhomogeneous moving media, Proc. Roy. 

Soc. Ser. A, 302 (1968). pp. 529-554. 
[35] M. G. BRISCOE, Internal waves in the ocean, Rev. Geophys. Space Phys., 13 (1975). pp. 591-598. 
[36] D. A. BROOKS AND C. N. K. MOOERS, Wind-forced continental shelf waves in the Florida current, J. 

Geophys. Res., 82 (1977), pp. 2569-2576. 
[37] P. BROSCHE AND J. SK~NDERMANN,Die Gezeiten des Meeres und die Rotation der Erde, Pure. Appl. 

Geophys., 86 (1971), pp. 95-117. 
[38] V. T. BUCHWALD,Long waves on oceanic ridges, Proc. Roy. Soc. London, Ser. A, 308 (1968), pp. 

343-354. 
[391 -, The diffraction of Kelvin waves at a corner, J. Fluid Mech., 31 (1968), pp. 193-205. 
[401 -, The diffraction of tides by a narrow channel, Ibid., 46 (1971), pp. 501-511. 
[41] H. CABANNES, Theoretical Magneto-Fluid Dynamics, Academic Press, New York, 1970. 
[42] D. E. CARTWRIGHT, Extraordinary tidal currents near St. Kilda, Nature, 223 (1969), pp. 928-932. 
[43] J. W. CARUTHERS, Fundamentals of Marine Acoustics, Elsevier, Amsterdam, 1977. 
[44] P. L. CHOW,Perturbation methods in stochastic wave propagation, this Review, 17 (1975), pp. 57-81. 



320 PAUL H. LEBLOND A N D  LAWRENCE A .  MYSAK 

[45] P. L. CHRISTIANSEN, Comparative Studies of Diffraction Processes, Polyteknish Forlag, Lyngby, 
Denmark, 1975. 

[461 -,Diffraction of gravity waves by ray methods, Lecture Notes in Physics, 64 (1977), pp. 28-38, 
Australian Academy of Science, Canberra, Australia and Springer-Verlag, Berlin. 

[47] R. A. CLARKE, Solitary and cnoidal planetary waves, Geophys. Fluid Dyn., 2 (1971), pp. 343-354. 
[48] G. D. CRAPPER, A n  exact solution for progressive capillary waves of  arbitrary amplitude, J .  Fluid 

Mech., 2 (1957), pp. 532-540. 
1491 P. B. CREAN, Numerical model studies of  the tides between Vancouver Island and the mainland coast, J .  

Fish. Res. Board Canada, 33 (1976). pp. 2340-2344. 
[50] J. CREASE, Long waves on a rotating earth in the presence of a semi-infinite barrier, J .  Fluid Mech., 1 

(1956), pp. 86-96. 
[51] G. T. CSANADY,Topographic waves in Lake Ontario, J .  Phys. Oceanogr., 6 (1976), pp. 93-103. 
[52] M. 	K. DAVEY,Baroclinic instability in a fluid with three layers, J .  Atmos. Sci., 34 (1977), pp. 

1224-1234. 
[53] R. E. DAVIS AND A. ACRIVOS, Solitary internal waves in deep water, J.  Fluid Mech., 29 (1967). pp. 

593-607. 
[54] R. E. DICKINSON,Planetary waves propagating vertically through weak westerly wind wave guides, J .  

Atmos. Res., 25 (1968), pp. 984-1002. 
[551 -,Development of  a Rossby wave critical level, J .  Atmos. Sci., 27 (1970), pp. 627-633. 
[561 -,Rossby -waves-longperiod oscillations in oceans and atmospheres, Ann. Rev. Fluid Mech., 10 

(1978), pp. 159-195. 
[57] A. T. DOODSON,The harmonic development o f  the tide-generating potential, Proc. Roy. Soc. Lond. 

Ser. A, 100 (1921), pp. 305-329. 
[58] C. DORMAN AND E. MOLLO-CHRISTENSEN,Reynolds stress and buoyancy fluctuations caused by 

moving gust patterns over the sea surface (Cat's paws), Conf. on the Interaction of the Sea and the 
Atmosphere, Fort Lauderdale, 197 1. 

[59] J. E. FEIR,Some results from wave pulse experiments, Proc. Roy. Soc. London Ser. A, 299 (1967), pp. 
54-58. 

[60] M. FIEUX AND H. STOMMEL, Onset of the Southwest Monsoon over the Arabian Sea from marine 
reports of surface winds, Monthly Weather Rev., 105 (1977), pp. 231-236. 

[61] D. FISSEL, S. POND AND M. MIYAKE, Spectra of surface atmospheric quantities at Ocean Weathership 
P, Atmosphere, 14 (1976). pp. 77-97. 

[62] M. J. H. Fox ,  On the nonlinear transfer of  energy in the peak of a gravity -wave spectrum, Proc. Roy. Soc. 
London Ser. A, 349 (1976), pp. 467-483. 

[63] H. J. FREELAND, P. B. RHINES AND T.ROSSBY,Statisticalobservations of  the trajectoriesof neutrally 
buoyantfloats in the North Atlantic, J .  Mar. Res., 33 (1975), pp. 383-404. 

[64] C. S. GARDNER AND G. K. MORIKAWA,Similarity in the asymptotic behavior of collision-free 
hydromagnetic waves and water waves, New York University, Courant Institute of Mathematical 
Sciences, Res. Rep. NYO-9082, New York, 1960. 

[65] A. E. GARGETT,Generation o f  internal waves in the Strait of  Georgia, British Columbia, Deep-Sea 
Res., 23 (1976), pp. 17-32. 

[66] A. E. GARGETTAND B. A. HUGHES, O n  the interaction of  surface and internal waves, J .  Fluid Mech., 
52 (1972). pp. 179-191. 

[67] 	C. J. R. GARRETT, On the interaction between internal gravity waves and a shearflow, Ibid., 34 (1968), 
pp. 711-720. 

[68] C. J. R. GARRETT AND W. M. MUNK, Space-time scales of  internal waves, Geophys. Fluid Dyn., 3 
(1972), pp. 225-264. 

[691 -, Space-time scales of internal waves: a progress report, J .  Geophys. Res., 80 (1975), pp. 
291-297. (Also Corrections, Ibid., p. 3924.) 

[70] C. J. R. GARRETT AND J. SMITH,O n  the interaction between long and short surface waves, J .  Phys. 
Oceanogr., 6 (1976), pp. 925-930. 

[71] J. E. GEISLERAND R. E. DICKINSON,Critical level absorption of  barotropic Rossby waves in a 
north-south flow, J .  Geophys. Res., 80 (1975), pp. 3805-3811. 

[72] J. 	E. GEISLERAND L. A. MYSAK, Trapped coastal waves on an equatorial beta plane, J .  Phys. 
Oceanogr., 8 (1978), pp. 665-675.. 

[73] M. A. GELLER, H. TANAKA AND D. C. FRITTS, Production of turbulence in the vicinity of critical 
levels for internal gravity waves, J .  Atmos. Sci., 32 (1975), pp. 2125-2135. 

[74] P. R. GENT, Baroclinic instability of a slowly varying zonal flow, Ibid., 31 (1974), pp. 1983-1994. 
[751 -,Baroclinic instability of  a slowly varying zonal flow, Part 2, Ibid., 32 (1975), pp. 2094-2102. 



OCEAN WAVES 	 321 

[76] 	P. R. GENT AND P. A. TAYLOR, A numerical model of the airflow above water waves, J .  Fluid Mech., 
77 (1976), pp. 105-128. 

1771 	-,A note on "separation" over short wind waves, Boundary-Layer Meteorol., 11 (1977). pp. 
65-89. 

[78] 	A. W. R. GILCHRIST, The directional spectrum of ocean waves: an experimental investigation of certain 
predictions of the Miles-Phillips theory of wave generation, J .  Fluid Mech., 25 (1966), pp. 795-816. 

[79] 	A. E. GILL AND A. J. CLARKE,Wind-induced upwelling, coastal currents and sea-level changes, 
Deep-Sea Res., 21 (1974), pp. 325-345. 

[80] A. E. GILL,J. S. A. GREEN A N D  A. J. SIMONS,Energy partition in the large-scale ocean circu/ation 
and the production of mid-ocean eddies, Deep-Sea Res., 21 (1974), pp. 499-528. 

[81] G. GODIN, The MZ tide in the Labrador Sea, Davis Strait and Baf in  Bay, Ibid., 12 (1965), pp. 
469-477. 


[821 -, The Analysis of Tides, University of Toronto Press, 1972. 

[83] 	L. GOODMAN AND E. R. LEVINE, Generation of oceanic internal waves by advecting atmospheric 

fields, J .  Geophys. Res., 82 (1977). pp. 1711-1717. 
[84] W. J.  GOULD, W. J. SCHMITZAND C. WUNSCH, Preliminary field results for a mid-ocean dynamics 

experiment, (MODE-0) ,  Deep-Sea Res., 21 (1974). pp. 911-932. 
[85] H. P. GREENSPAN, The Theory of Rotating Fluids, Cambridge University Press, London, 1968. 

1861 -,A note on edge waves in a stratijedpuid, Studies in Appl. Math., 49 (1970), pp. 381-388. 

[87] R. GRIMSHAW, A note on the p-plane approximation, Tellus, 27 (1975), pp. 351-357. 
[881 -,Internal gravity waves: critical layer absorption in a rotatingfluid, J .  Fluid Mech., 70 (1975), pp. 

287-304. 
[89] 	C. A. GRISCOM, Application of a perturbation technique to the nonlinear equations o f  internal wave 

motion. J .  Geophys. Res., 72 (1967), pp. 5599-5611. 
[90] 	R. T. GUZA AND R. E. DAVIS,Excitation ofedge waves by wavesincidenton a beach, Ibid., 79 (1974), 

pp. 1285-1291. 
[91] R. T. GUZA AND D. L. INMAN, Edge waves and beach cusps, Ibid., 80 (1975), pp. 2997-3012. 
[92] 	B. V. HAMON,Thespectrumsofmean sea levelat Sydney, Coff's Harbour, and Lord Howe Island, Ibid., 

67 (1962), pp. 5147-5155. 
1931 	-,Correction to "The spectrums of mean sea level at Sydney, Coff's Harbour, and Lord Howe 

Island", Ibid., 68 (1963), p. 4635. 
[94] F. H. HARLOW AND J. P. SHANNON, Distortion of a splashing liquid drop, Science, 157 (1967), pp. 

547-550. 
[95] 	F. M. HARLOW, J. P. SHANNON AND J. E. WELCH, Liquid waves by computer, Science, 149 (1965), 

pp. 1092-1093. 
[96] K.  HASSELMANN,A statistical analysis of the generation of microseism, Rev. Geophys., 1 (1963), pp. 

177-210. 
1971 -,Feynman diagram and interaction rules of wave-wave scattering processes, Ibid., 4 (1966). pp. 

1-32. 
1981-, Nonlinear interactions treated by the methods of theoretical physics (with application to the 

generation of waves by wind), Proc. Roy. Soc. London Ser. A, 299 (1967), pp. 77-100. 
1991 -,A criterion for nonlinear wave stability, J .  Fluid Mech., 30 (1967), pp. 737-739. 

[ loo] -, Weak-interaction theory of ocean waves, Basic Devel. Fluid Mech., 2 (1968), pp. 117-182. 
[ l o l l  -, On the mass and momentum transfer between short gravity waves and larger-scale motions, J .  

Fluid Mech., 50 (1971), pp. 189-205. 
[I021 K. HASSELMANN, T. P. BARNETT, E. BOUWS, H. CARLSON, D. E. CARTWRIGHT, K. ENKE,J.A. 

EWING, H. GLENAPP, D. E. HASSELMANN, A. MEERBURG, P. KRUSEMAN, P. MULLER, D. J. 
OLBERS,K. RICHTER, W. SELL AND H. WALDEN, Measurements of wind-wave growth and swell 
decay during the joint North Sea wave project (JONSWAP),  Deut. Hydrogr. Z., Suppl. A. Nr. 12, 
1973. 

[I031 P. HAZEL, The effect o f  viscosity and heat conduction on internal gravity waves a ta  critical level, J .  Fluid 
Mech., 30 (1967), pp. 775-783. 

[I041 N. S. HEAPS, A two-dimensional numericalsea model, Proc. Roy. Soc. London Ser. A, 265 (1969). pp. 
93-137. 

[I051 M. C. HENDERSHOTT, The effects of solid-earth deformation on global ocean tides, Geophys. J .  Roy. 
Astron. Soc., 29 (1972), pp. 389-403. 

[lo61 -,Ocean tides, EOS, Trans. Amer. Geophys. Union, 54 (1973), pp. 76-86. 
[lo71 -,Numerical models of ocean tides, The Sea, vol. 6, E. D. Goldberg, I. N. McCave, J. J. O'Brien 

and J. H. Steele, eds., Wiley-Interscience, New York, 1977, pp. 47-95. 



322 PAUL H. LEBLOND AND LAWRENCE A.  MYSAK 

[I081 M. C. HENDERSHOTT AND W. H. MUNK, Tides, Ann. Rev. Fluid Mech., 2 (1970), pp. 205-224. 
[log] D. V. Ho ,  R. E. MEYER AND M. C. SHEN, Long surf, J. Mar. Res., 21 (1963), pp. 219-232. 
[I101 G. HOLLOWAY, On spectral evolution of strongly interacting waves, Geophys. Astrophys. Fluid Dyn., 

(1978), to appear. 
[ I1  11 G. HOLLOWAY AND M. C. HENDERSHOTT, Stochastic closure for nonlinear Rossby waves, J. Fluid 

Mech., 82 (1977), pp. 747-765. 
[I121 S. S. HOUGH, O n  the application of harmonic analysis to the dynamical theory of tides. Part I. On 

Laplace's "oscillationsof thefirstspecies", andon thedynamicsofocean currents, Philos. Trans. Roy. 
Soc. London Ser. A, 189 (1897), pp. 201-257. 

[I131 M. S. HOWE AND L. A. MYSAK, Scattering of Poincarh waves by an irregularcoastline, J. Fluid Mech., 
57 (1973), pp. 11 1-128. 

[I141 B. A. HUGHES, Effect of rotation on internal gravity waves, Nature, 201 (1964), pp. 798-801. 
11151 -, O n  the interaction of surface and internal gravity waves: uniformly valid solution by extended 

stationary phase, J. Fluid Mech., 74 (1976), pp. 667-683. 
[ I  161 H. E. HURLBURT, J. C. KINDLE AND J. J. O'BRIEN, A numericalsimulation of the onsetofE1 Niio,  J. 

Phys. Oceanogr., 6 (1967), pp. 621-631. 
[I171 J. M. HUTHNANCE, O n  trapped waves overa continentalshelf, J. Fluid Mech., 69 (1975), pp. 689-704. 
[I  181 D. S. JONES, The Theory of Electromagnetism, Pergamon, Oxford, 1964. 
[ I  191 I. G. JONSSON, The dynamics of waves on currents over a weakly varying bed, Lecture Notes in Physics, 

64 (1977), pp. 133-144, Australian Academy of Science, Camberra, Australia; and Springer- 
Verlag, Berlin. 

[I201 I. G. JONSSON, 0 .  SKOVGAARD AND 0.BRINK-KJAER,Diffraction and refraction calculations for 
waves incident on an island, J. Mar. Res., 34 (1976). pp. 469-496. 

[I211 K. KAJIURA, Effect of Coriolis force on edge waves, 2. Specific examples of free and forced waves. Ibid., 
16 (1958). pp. 145-157. 

[I221 V. M. KAMENKOVICH, Principles of Ocean Dynamics, Gidromet, Leningrad, 1973. (In Russian.) 
[I231 V. I. KARPMAN, Nonlinear Waves in Dispersive Media, Nauka, Moscow, 1973. (In Russian.) 
[I241 R. H. KASE AND C. L. TANG, A dynamical model for the energy spectra and coherence of internal 

waves, J. Fish. Res. Board Canada, 33 (1976), pp. 2323-2328. 
[I251 J. B. KELLER, Geometrical theory of diffraction, J. Opt. Soc. Amer., 52 (1962), pp. 116-130. 
[I261 K. KENYON, Wave-wave interactions of surface and internal waves, J. Mar. Res., 26 (1968), pp. 

208-23 1. 
[I271 B. KINSMAN, Wind Waves, Prentice-Hall, Englewood Cliffs, NJ, 1965. 
[I281 C. KITTEL, Thermal Physics, John Wiley, New York, 1969. 
[I291 A. A. KORDZADZE, On the uniqueness of solution of a certain problem in ocean dynamics, Dokl. Akad. 

Nauk, S.S.S.R., 219 (1974), pp. 8.56-859. (In Russian.) 
[I301 D. J. KORTEWEG AND G. DE VRIES, On the change of form of long waves advancing in a rectangular 

canal, and of a new type of long stationary wave, Phil. Mag. Ser. 5, 39 (1895), pp. 422-443. 
[I311 M. N. KOSHLYAKOV AND Y. M. GRACHEV, Meso-scale currents a t a  hydrophysical polygon in the 

tropical Atlantic, Deep-Sea Res., 20 (1973), pp. 507-526. 
[I321 R. H. KRAICHNAN, Inertialrange transfer in two- and three-dimensional turbulence, J. Fluid Mech., 47 

(1971), pp. 525-535. 
[I331 W. KRAUSS, Methods and Results of Theoretical Oceanography. I. Dynamics o f  the Homogeneous and 

the Quasi-homogeneous Ocean. Gebriider Borntraeger, Berlin, 1973. 
[I341 B. M. LAKE, H. C. YUEN, H. RUNGALDIER AND W. E. FERGUSON, Nonlinear deep water waves: 

Theory and experimentII. Evolution of a continuous wave train, J. Fluid Mech., 83 (1977), pp. 49-74. 
[I351 H. LAMB, Hydrodynamics, 6th ed., Dover, New York, 1945. 
[I361 P. S. LAPLACE, Traith de mhchanique ce'leste, Crapelet, Paris, 1799. 
[I371 V. D. LARICHEV AND G. M. REZNIK, Nonlinear Rossby waves on a large-scale current, Okeanolo-

giya, 16 (1976), pp. 200-206. 
[I381 -,Highly nonlinear Rossby waves, Ibid., 16  (1976), pp. 381-388. 
[I391 L. H. LARSEN, Comments on "Solitary waves in the Westerlies", J. Atmos. Sci., 22 (1965), pp. 

222-224. 
[I401 P. H. LEBLOND, Planetary waves in a symmetrical polar basin, Tellus, 16 (1964), pp. 503-512. 
[I411 P. H. LEBLONDAND L. A. MYSAK,Trapped coastal waves and their role in shelf dynamics, The Sea, 

vol. 6, E. D. Goldberg, I. N. McCave, J. J .  O'Brien and J. H. Steele, eds., Wiley-Interscience, New 
York, 1977, pp. 459-495. 

[I421 -, Waves in the Ocean, Elsevier, Amsterdam, 1978. 
[I431 C. Y. LEE AND R. C. BEARDSLEY, The generation of long nonlinear internal waves in a weakly 

stratified shearflow, J. Geophys. Res., 79 (1974), pp. 453-462. 



[I441 C. W. LENAU,The solitary wave of maximum amplitude, J .  Fluid Mech., 26 (1966), pp. 309-320. 
[I451 T. LEVI-CIVITA,Dktermination rigoureuse des ondes permanentes d'ampleur finie, Math. Ann., 93 

(1925), pp. 264-314. 
[I461 J. E. LEWIS,B.M. LAKE AND D. R. S. KO, O n  the interaction of internal waves and surface gravity 

waves, J .  Fluid Mech., 63 (1974). pp. 773-800. 
[I471 M. J. LIGHTHILL,Some special cases treated by the Whitham Theory, Proc. Roy. Soc. London Ser. A, 

299 (1967), pp. 28-53. 
[I481 -,Dynamic response o f  the Indian ocean to the onset of the southwest monsoon, Philos. Trans. Roy. 

Soc. London Ser. A, 265 (1969), pp. 45-92. 
[I491 R. R. LONG, Some aspects o f  the flow of stratified fluids. I. A theoretical investigation, Tellus, 5 (1953), 

pp. 42-57. 
[I501 -, Solitary waves in one- and two-fluid systems, Ibid., 8 (1956), pp. 460-471. 
[I511 -,On the Boussinesqapproximation and its role in the theory of internal waves, Ibid., 17 (1965). pp. 

46-52. 
[I521 M. S. LONGUET-HIGGINS, A theory of the origin of microseisms, Philos. Trans. Roy. Soc. London Ser. 

A, 243 (1950), pp. 1-35. 
[I531 -, The generation of capillary waves by steep gravity waves, J .  Fluid Mech., 16 (1963), pp. 

138-159. 
[I541 -,Planetary waves on a rotating sphere, Proc. Roy. Soc. London Ser. A, 279 (1964), pp. 446-

473. 
[I551 -,Planetary waves on a rotating sphere. II, Ibid., 284 (1965), pp. 40-68. 
[I561 -,Planetary waves on a sphere bounded by meridians of longitude, Philos. Trans. R. Soc. London 

Ser. A, 260 (1966), pp. 317-350. 
[I571 -, On the trapping of wave energy round islands, J. Fluid Mech., 29 (1967), pp. 781-821. 
[I581 -,O n  the trapping of waves along a discontinuity of depth in a rotating ocean, Ibid., 31 (1968). pp. 

417-434. 
11591 -,Double Kelvin waves with continuous depth profiles, Ibid., 34 (1968), pp. 49-80. 
[I601 -, On the trapping of long-period waves round islands, Ibid., 37 (1969), pp. 773-784. 
[I611 -,On the form of the highestprogressive and standing waves in deep water, Proc. Roy. Soc. London 

Ser. A, 331 (1973), pp. 445-456. 
[I621 -, Integral properties of periodic gravity waves of finite amplitude, Ibid., 342 (1975), pp. 

157-174. 
[I631 M. S. LONGUET-HIGGINS AND J. D. FENTON, On the mass, momentum, energy and circulation of a 

solitary wave, Ibid., 340 (1974), pp. 471-493. 
[I641 M. S. LONGUET-HIGGINS AND A. E. GILL,Resonant interactions between planetary waves, Ibid., 299 

(1967), pp. 120-140. 
[I651 M S. LONGUET-HIGGINS AND R. W. STEWART,Changes in the form of  short gravity waves on long 

waves and tidal currents, J .  Fluid Mech., 8 (1960), pp. 565-583. 
[I661 -,Radiation stress and mass transport in gravity waves, with application to "surf-beats", Ibid., 13 

(1962), pp. 481-504. 
[I671 -,Radiation stresses in water waves; a physical discussion, with applications, Deep-sea Res., 11 

(1964). pp. 529-562. 
[I681 M. S. LONGUET-HIGGINS AND J. S. TURNER, A n  "entrainingplume" modelof a spilling breaker, J .  

Fluid Mech., 63 (1974), pp. 1-20. 
[I691 D. LUDWIG, Uniform asymptotic expansions of a caustic, Comm. Pure A p p l .  Math., 19 (1966). pp. 

215-250. 
[I701 J. L. LUMLEY, The spectrum of nearly inertial turbulence in a stably stratified fluid, J .  Atrnos. Sci., 21 

(1964), pp. 99-102. 
[I711 J. L. LUMLEY AND H. A. PANOFSKY,The Structure of Atmospheric Turbulence, Wiley-Interscience, 

New York, 1964. 
[I721 L. MAGAARD, Zur Berechnung interner Wellen in Meeresrauman mit nichtebenen Biiden bei einer 

speziallen Dichteverteilung, Kieler Meeresforsch., 18 (1962), pp. 161-183. 
[I731 -,Zur Theorie zweidimensionalernichlinearerinterner Wellen in stetiggeschichteten Medien, Ibid., 

21 (1965), pp. 22-32. 
[I741 -, On the generation of internal gravity waves by a fluctuating buoyancy flux at the sea surface, 

Geophys. Fluid Dyn., 5 (1973), pp. 101-111. 
[I751 J. K. MALLORY, Abnormal waves on the southeast coast o f  South Africa, Internat. Hydrog. Rev., 51 

(1974), pp. 99-129. 
[I761 G. I. MARCHUK,About formulation ofthe problems of the dynamics of the ocean, Novosibirsk, Amer. 

Soc. Civil Engrg. New York (1972), pp. 69-85. 



324 PAUL H. LEBLOND AND LAWRENCE A.  MYSAK 

[I771 S. MARTIN, W. SIMMONS AND C. WUNSCH, The excitation of resonant triads by single internal waves, 
J. Fluid Mech., 53 (1972), pp. 17-44. 

[I781 S. A. MASLOWE,The generation of clear air turbulence by nonlinear waves, Studies in Appl. Math., 51 
(1972), pp. 1-16. 

[I791 T. MATSUNO, Quasi-geostrophic motions in the equatorial area, J. Meteor. Soc. Japan, 44 (1966), pp. 
25-42. 

[I801 T. MAXWORTHY, Experiments on collisions between solitary waves, J. Fluid Mech., 76 (1976), pp. 
177-186. 

[I811 T. MAXWORTHY AND L. G. REDEKOPP, A solitary wave theory of the Great Red Spot and other 
observed features of the Jovian atmosphere, Icarus, 29 (1976), pp. 261-271. 

[I821 J. MCCREARY, Eastern tropical response to changing winds: with application to El Niio,  J. Phys. 
Oceanogr., 6 (1976), pp. 632-645. 

[I831 A. D. MCEWAN,Interactions between internal gravity waves and their traumatic effect on a continuous 
stratification, Boundary-Layer Meteorol., 5 (1973), pp. 159-175. 

[I841 A. D. MCEWAN,D. W. MANDER AND R. K. SMITH, Forced resonant second-order interaction 
between damped internal waves, J. Fluid Mech., 55 (1972), pp. 589-608. 

[I851 L. F. MCGOLDRICK, Resonant interactions among capillary-gravity waves, Ibid., 21 (1965), pp. 
305-33 1. 

[I861 -,A n  experimenton second-ordercapillary gravity resonant wave interactions, Ibid., 40 (1970), pp. 
251-271. 

[I871 L. F. MCGOLDRICK, 0 .  M. PHILLIPS, N. E. HUANG AND T. M. HODGSON, Measurements o f  
third-order resonant wave interactions, Ibid., 25 (1966), pp. 437-456. 

[I881 W. D. MCKEE, Scattering of Rossby waves by partial barriers, Geophys. Fluid Dyn., 4 (1972), pp. 
83-89. 

[I891 -, Waves on a shearing current: a uniformly valid asymptotic solution, Proc. Cambridge Philos. 
SOC.,75 (1974), pp. 295-301. 

[I901 J. C. MCWILLIAMS AND G. R. FLIERL, Optimal, quasi-geotrophic wave analyses of MODE array, 
Deep-Sea Res., 23 (1976), pp. 285-300. 

[I911 J. C. MCWILLIAMS AND A. R. ROBINSON, A wave analysis of the polygon array in the tropical 
Atlantic, Ibid., 21 (1974), pp. 359-368. 

[I921 J. W. MILES, On the generation of surface waves by shearpows, J. Fluid Mech., 3 (1957), pp. 185-204. 
[I931 -, On the generation o f  surface waves by shearflows, Part 2, Ibid., 6 (1959). pp. 568-582. 
[I941 -,On the generation of surface waves by shearpows, Part 3,Kelvin-Helmholtz instability, Ibid., 6 

(1959), pp. 583-598. 
[I951 -,On the generation o f  surface waves by turbulent shearpows, Ibid., 7 (1960). pp. 469-478. 
[I961 -, On the stability of heterogeneous shearf?ows, Ibid., 10 (1961), pp. 496-508. 
[I971 -, On the generation of surface waves by shearpows, Part 4, Ibid., 13 (1962), pp. 433-448. 
[I981 -, On Laplace's tidal equations, Ibid., 66 (1974), pp. 241-260. 
[I991 G. R. MILLER, The flux of energy out of the deepoceans, J. Geophys. Res., 71 (1966), pp. 2485-2489. 
[200] 	R. M. MIURA, The Korteweg-de Vries equation: A survey of results, this Review, 18 (1976). pp. 

412-459. 
[201] H. 0 .  MOFJELD AND M. RATTRAY, JR., Barotropic Rossby waves in a zonal current: effects of lateral 

viscosity, J. Phys. Oceanogr., 5 (1975). pp. 421-429. 
[202] 	A. S. MONIN, V. M. KAMENKOVICH AND V. G. KORT, Variability of the Oceans, John Wiley, New 

York, 1977. 
[203] 	C. N. K. MOOERS AND R. L. SMITH, Continentalshelf wavesoff Oregon, J. Geophys. Res., 73 (1968), 

pp. 549-557. 
[204] D. W. MOORE, Rossby waves in ocean circulation, Deep-Sea Res., 10 (1963), pp. 735-747. 
[205] 	D. E. MOWBRAY AND B.S. H.RARITY,A theoretical and experimental investigation of the phase 

configuration of internal waves of small amplitude in a density stratified fluid, J. Fluid Mech., 28 
(1967), pp. 1-16. 

[206] 	P. MULLER AND D. J. OLBERS, On the dynamicsof internal waves in the deepocean, J. Geophys. Res., 
80 (1975), pp. 3848-3860. 

[207] 	P. MULLER, D. J. OLBERS AND J. WILLEBRAND, The IWEX spectrum, Ibid., 83 (1978), pp. 
479-500. 

[208] W. H. MUNK AND D. E. CARTWRIGHT, Tidal spectroscopy and prediction, Philos. Trans. Roy. 
Soc.London Ser. A, 259 (1966). pp. 533-581. 

[209] 	W. H. MUNK AND G. MACDONALD, The Rotation of the Earth, Cambridge University Press, 
London, 1960. 

[210] 	W. H.MUNK,F. E. SNODGRASS AND G. CARRIER, Edgewaves on the continentalshelf, Science, 123 
(1956), pp. 127-132. 



325 OCEAN WAVES 

[211] W. H. MUNK, F. E.SNODGRASS AND M. WIMBUSH, Tides off-shore: Transition from California 
coastal to deep-sea waters, Geophys. Fluid Dyn., 1 (1970), pp. 161-235. 

[212] 	T. MURTY, Seismic Sea Waves: Tsunamis, Fish Res. Board, Canada, Bull. No. 198, Ottawa, 
1977. 

[213] L. A. MYSAK, O n  the theory of continental shelf waves, J. Mar. Res., 25 (1967), pp. 205-227. 
[214] -, On the very low frequency spectrum of the sea level on a continental shelf, J. Geophys. Res., 7 2  

(1967). pp. 3043-3047. 
[215] 	-, Edgewaves on a gently sloping continental shelf of finite width, J .  Mar. Res., 26 (1968), pp. 

24-33. 
[216] 	-, Resonant interactions between topographic planetary waves in a continuously stratified fluid, J. 

Fluid Mech., 84 (1978), pp. 769-793. 
[217] -, Long-period equatorial topographic waves, J. Phys. Oceanogr., 8 (1978), pp. 302-314. 
[218] -, Wave propagation in random media, with oceanic applications, Rev. Geophys. Space Phys., 16 

(1978), pp. 231-261. 
[219] 	L. A. MYSAK AND B. V. HAMON, LOW-frequencysea level behaviour and continental shelf waves o f f  

North Carolina, J. Geophys. Res., 74 (1969). pp. 1397-1405. 
[220] 	L. A. MYSAK AND M. S. HOWE, A kinetic theory for internal waves in a randomly stratifiedfluid, Dyn. 

Atmos. Ocean, 1 (1976). pp. 3-31. 
[221] 	-, Scattering of Poincart! waves by an irregular coastline. Part 2. Multiple scattering, J. Fluid Mech., 

86 (1978), pp. 337-363. 
[222] 	L. A. MYSAK AND P. H. LEBLOND, The scattering of Rossby waves by a semi-infinite barrier, J. Phys. 

Oceanogr., 2 (1972), pp. 108-114. 
[223] 	L. A. MYSAK AND C. L. TANG,Kelvin wave propagation along an irregular coastline, J .  Fluid Mech., 

64 (1974), pp. 241-261. 
[224] 	G. T. NEEDLER AND P. H. LEBLOND, On the influence of the horizontal component of the Earth's 

rotation on longperiod waves, Geophys. Fluid Dyn., 5 (1973). pp. 23-46. 
[2251 A. I. NEKRASOV, Waves of steady-state form, Part I, Izv. Ivanovo-Voznesenskogo politekhn. Inst., 

no. 3 (1921), pp. 52-65. 
[226] 	-, Nonlinear integral equations, Part 11,Izv. Ivanovo-Voznesenskogo politekhn. Inst., no. 6 

(1922), pp. 3-19. 
[227] 	G. NEUMANN AND W. J. PIERSON,Principles ofPhysica1 Oceanography, Prentice-Hall, Englewood 

Cliffs, NJ, 1966. 
[228] A. C. NEWELL, Rossby wave packed interactions, J .  Fluid Mech., 35 (1969), pp. 255-271. 
[229] 	A. B. ODULO, Long-wave propagation in an infinite ocean of variable depth, Okeanologiya, 15 (1975), 

pp. 531-533. 
[230] J. PEDLOSKY, The stability of currents in the atmosphere and the ocean : Part I, J. Atmos. Sci., 21 (1964), 

pp. 201-219. 
[231] -, Geophysicalfluid dynamics, Mathematical Problems in the Geophysical Sciences, W. H. Reid, 

ed., American Math. Soc., vol. 13, Providence, RI, 1971, pp. 1-60. 
[232] -, The amplitude of baroclinic wave triads and mesoscale motion in the ocean, J. Phys. Oceanogr., 

5 (1975), pp. 608-614. 
[233] 	D. H. PEREGRINE, Equations for water waves and the approximations behind them, Waves on 

Beaches and Resulting Sediment Transport, R. E. Meyer, ed., Academic Press, New York, pp. 
95-121. 

[234] 	D. H. PEREGRINEAND G. P. THOMAS, Finite-amplitude waves on nonuniform currents, Lecture 
Notes in Physics, 64 (1977), pp. 145-153, Australian Academy of Science, Canberra, Australia, and 
Springer-Verlag, Berlin. 

[235] S. G. H. PHILANDER, Forced oceanic waves, Rev. Geophys. Space Phys., 16 (1978), pp. 15-46. 
[236] 0 .  M. PHILLIPS, On the generation of waves by turbulent wind, J. Fluid Mech., 2 (1957), pp. 417-445. 
[237] -, The equilibrium range in the spectrum of wind-generated ocean waves, Ibid., 4 (1958), pp. 

426-434. 
[238] 	-, On the dynamics of unsteady gravity waves of finite amplitude, 1. The elementary interactions, 

Ibid., 9 (1960), pp. 193-217. 
[239] -, Energy transfer in rotating fluids by reflections of internal waves, Phys. Fluids, 6 (1963). pp. 

513-520. 
[240] -, The Dynamics of the Upper Ocean, Cambridge University Press, London, 1966. 
[241] 	H. G. PINSENT, Kelvin wave attenuation along nearly straight boundaries, J. Fluid Mech., 53 (1972), 

pp. 273-286. 
[242] 	G. W. PLATZMANN,Ocean tides and related waves, Mathematical Problems in-the Geophysical 

Sciences, W. H. Reid, ed., American Mathematical Society, vol. 14, Providence, RI, 1971, pp. 
239-291. 



326 PAUL H. LEBLOND AND LAWRENCE A. MYSAK 

[243] -,Two-dimensional free oscillations in natural basins, J. Phys. Oceanogr., 2 (1972), pp. 117-128. 
[244] -,Normal modes of the Atlantic and Indian Oceans, Ibid., 5 (1975), pp. 201-221. 
[245] R. A. PLUMB, Stability of small amplitude Rossby waves in a channel, J. Fluid Mech., 80 (1977), pp. 

705-720. 
[246] 	A. PNUELI AND C. L. PEKERIS, Free tidal oscillations in pat basinsof the form of rectangles and sectors 

of circles, Philos. Trans. Roy. Soc. London Ser. A, 263 (1968), pp. 149-171. 
[247] H. POINCARE, Le~ons  de micanique celeste, Gauthier-Villars, Paris, 1910. 
[248] S. J. PRINSENBERG AND M. RATTRAY, JR., Effects of  continental slope and variable Brunt-Vaisala 

frequency on the coastal generation of internal tides. Deep-Sea Res., 22 (1975), pp. 251-263. 
[249] 	D. B. RAO, Free gravitational oscillations in rotating rectangular basins, J. Fluid Mech., 25 (1966), pp. 

523-555. 
[250] 	M. RATTRAY, JR., J. G. DWORSKI AND P. E.  KOVALA, Generation of long internal waves at the 

continental slope, Deep-Sea Res., 16 (Supplement) (1969), pp. 179-195. 
[251] L. G. REDEKOPP, On the theory of solitary Rossby waves, J. Fluid Mech., 82 (1977), pp. 725-746. 
[252] 	L. A. REGIER AND R. E. DAVIS,Observations of the power and directional spectrum of ocean surface 

waves, J. Mar. Res., 35 (1977), pp. 433-451. 
[253] 	R. 0.REID,Effect of Coriolis force on edge waves. I. Investigation o f  the normal modes, J. Mar. Res., 16 

(1958), pp. 109-144. 
[254] 	P. B. RHINES, Slow oscillations in an ocean of variable depth, Part I. Abrupt topography, J. Fluid Mech., 

37 (1969). pp. 161-189. 
[255] -, Slow oscillations in the ocean of varying depth. Part2. Islands and seamounts, Ibid., 37 (1969), 

pp. 191-205. 
[256] 	-,Edge-, bottom-, and Rossby waves in a rotatingstratifiedpuid, Geophys. Fluid Dyn., 1 (1970), 

pp. 191-205. 
[257] -, Waves and turbulence on a beta-plane, J. Fluid Mech., 69 (1975), pp. 417-443. 
[258] -, The dynamics of unsteady currents, The Sea, vol. 6, E.  D. Goldberg, I. N. McCave, J. J. O'Brien 

and J. H.  Steele, eds., Wiley-Interscience, New York, 1977, pp. 180-318. 
[259] R. 0.RICE,Mathematical analysis of random noise, Bell System Tech. J., 24 (1945), pp. 46-156. 
[260] 	A. R. ROBINSON, Continental shelf waves and the response of sea level to weather systems, J. Geophys. 

Res., 69 (1964), pp. 367-368. 
[261] 	A. R. ROBINSON AND J. C. MCWILLIAMS, The baroclinic instability of the open ocean, J. Phys. 

Oceanogr., 4 (1974), pp. 281-294. 
[262] M. G. ROCHESTER, The Earth's Rotation, EOS, Trans. Amer. Geophys. Union, 54 (1973), pp. 

769-780. 
[263] M. ROSEAU, Asymptotic Wave Theory, North-Holland, Amsterdam, 1976. 
[264] 	C. G. ROSSBY AND COLLABORATORS, Relation between variations in the intensity of the zonal 

circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. 
Res., 2 (1939), pp. 28-55. 

[265] 	J. S. RUSSELL, Report on Waves, Rep. 14th Meeting of the British Association for the Advancement of 
Science, John Murray, London, 1844, pp. 31 1-390 + 11 plates. 

[266] 	B. SAINT-GUILY, Sur la propagation d'ondes de seconde classe le long d'un talus continental, C.R. 
Acad. Sci. Paris Ser. B, 282 (1976), pp. 141-144. 

[267] B.SAINT-GUILYAND C. ROUAULT,Sur la prisence d'ondes de seconde classe dans le golfe du Lion. 
C.R. Acad. Sci. Paris Ser. D, 272 (1971), pp. 2661-2663. 

[268] 	G. SAMUELS AND P. H. LEBLOND, The energy of near-surface internal waves in the Strait of Georgia, 
Atmosphere, 15 (1977), pp. 151-159. 

[269] H. SANDSTROM, The importance of  topography in generation and propagation of internal waves, Ph.D. 
Thesis, Univ. California, San Diego, 1966. 

[270] 	-,Effect o f  topography on propagation of waves in stratifiedpuids, Deep-sea Res., 16 (1969), pp. 
405-410. 

[271] 	F. SCHOTT AND W. DOING, Continental shelf waves in the Florida Straits, J. Phys. Oceanogr., 6 
(1976), pp. 451-460. 

[272] S. S. SCHWEBER, A n  Introduction to Relativistic Quantum Field Theory, Harper and Row, New York, 
1961. 

[273] M. C. SHEN, Ray method for surface wavesonPuid of variable depth, this Review, 17 (1975), pp. 38-56. 
[274] 	M. C. SHEN, R. E. MEYER AND J. B. KELLER, Spectra of water waves in channels and around islands, 

Phys. Fluids, 11 (1968), pp. 2289-2304. 
12751 M. SHINBROT, The initial valve problem for surface waves under gravity, I :  The simplest case, Indiana 

Univ. Math. J., 25 (1976), pp. 281-300. 
[276] W. F. SIMMONS, A variational method for weak resonant wave interactions, Proc. Roy. Soc. London 

Ser. A, 309 (1969), pp. 551-575. 



327 OCEAN WAVES 

[277] L. SKJELBREIA AND J. A. HENDRICKSON, Fifth order gravity wave theory, Proc. 7th Conf. on Coastal 
Eng., Berkeley, CA, 1 (1961), p. 184. 

[278] R. SMITH, The ray paths of topographic Rossby waves, Deep-Sea Res., 18 (1971), pp. 477-483. 
[279] -, Giant waves, J .  Fluid Mech., 77 (1976), pp. 417-431. 
[280] -, Triple roots and cusped caustics for surface gravity waves, Lecture Notes in Physics, 64 (1977), 

pp. 154-164, Australian Academy of Science, Canberra, Australia, and Springer-Verlag, Berlin. 
[281] F. E. SNODGRASS, G. W. GROVES, K.F. HASSELMANN, G. R. MILLER, W. H. MUNK AND W. M. 

POWERS,Propagation of ocean swell across the Pacific, Philos. Trans. Roy. Soc. London Ser. A, 259 
(1966),pp. 431-497. 

[282] R. L. SNYDER AND C. S. COX, A field study of the generation of ocean waves, J. Mar. Res., 24 (1966), 
pp. 141-178. 

[283] M. G. SPAETH AND S. C. BERKMAN, The tsunami of March 28,1964, as recorded at tidestations, U.S. 
Coast Geodet. Surv., Tech. Bull., 23, 1967. 

[284] V. P. STARR, Physics of Negative Viscosity Phenomena, McGraw-Hill, New York, 1968. 
[285] M. E. STERN, Trapping of low-frequency oscillations in an equatorial "boundary-layer", Tellus, 15 

(1963),pp. 246-250. 
[286] R. W. STEWART AND M. J. MANTON,Generation of waves by advected pressure fluctuations, 

Geophys. Fluid Dyn., 2 (1971),pp. 263-272. 
[287] J. J. STOKER, Water Waves, Wiley-Interscience, New York, 1957. 
[288] G. G.  STOKES, Reporton recentresearches in hydrodynamics, Rep. 16th Meeting Brit. Assoc. Adv. Sci., 

John Murray, London, 1846, pp. 1-20. 
I2891 -, O n  the theory of oscillatory waves, Trans. Cambridge Philos. Soc., 8 (1847), pp. 441-455. 
[290] -, Mathematical and Physical Papers, vol. 1, Cambridge University Press, London, 1880. 
[291] P. H. STONE, The meridional structure of baroclinic waves, J .  Atmos. Sci., 26 (1969), pp. 376-389. 
[292] D. J .  STRUIK, Ditermination rigoureuse des ondes irrotationelles piriodiques dans un canal a 

profondeurfinie, Math. Ann., 95 (1926), pp. 595-634. 
[293] W. C. SUMMERFIELD, On the trapping of wave energy by bottom topography, Horace Lamb Centre 

Oceanogr. Res., Flinders University, South Aust., Res. Paper No. 30, 1969. 
[294] G. I. TAYLOR, Oscillations of the atmosphere, Proc. Roy. SOC. London Ser. A, 156 (1936), pp. 

318-326. 
[295] -, A n  experimental study of standing waves, Ibid., 218 (1953), pp. 44-59. 
[296] R. 0 .  R. Y. THOMPSON AND J. R. LUYTEN, Evidence for bottom-trapped topographic Rossby waves 

from single moorings, Deep-Sea Res., 23 (1976), pp. 629-635. 
[297] S. A. THORPE, On wave interactions in a stratified fluid, J .  Fluid Mech., 24 (1966), pp. 737-751. 
[298] -, O n  the shape ofprogressive internal waves, Philos. Trans. Roy. Soc. London Ser. A, 263 (1968), 

pp. 563-614. 
[299] -, Turbulence in stably stratified fluids: A Review o f  laboratory experiments, Boundary-Layer 

Meteorol., 5 (1973), pp. 95-119. 
[300] -, The excitation, dissipation, and interaction of internal waves in the deepocean, J. Geophys. Res., 

80 (1975), pp. 328-338. 
[301] S. A. THORPE, A. J. HALL, C. TAYLOR AND J. ALLEN, Billows in Loch Ness, Deep-Sea Res., 24 

(1977),pp. 371-379. 
[302] I. TOLSTOY, The theory of waves in stratified fluids including the effects of gravity and rotation, Rev. 

Mod. Phys., 35 (1963), pp. 207-230. 
[303] B. A. TON, Nonlinear evolution equations of Sobolev-Galpern type, Math. Z.,  15 1 (1976), pp. 219-233. 
[304] -, Initial boundary-value problems for the Korteweg-de Vries equation, J .  Differential Equations, 

25 (1977), pp. 288-309. 
[305] -, Initial-value problems for the Boussinesq equations of water waves, J. Nonlinear Anal. (1978), 

to appear. 
[306] R. A. R. TRICKER, Bore, Breakers, Waves and Wakes, American Elsevier, New York, 1965. 
[307]J. S. TURNER, Buoyancy Effects in Fluids, Cambridge University Press, London, 1973. 
[308] U.S. POLYMODE ORGANIZING COMMITTEE,U.S.Polymode program and plan, Office of Naval 

Research, Washington, DC, 1976. 
[309] G. VERONIS, O n  the approximations in transforming the equations of motion from a spherical surface to 

a P-plane, I. Barotropic systems. J .  Mar. Res., 21 (1963), pp. 110-124. 
[310] -, O n  the approximations in transforming the equations of motion from a spherical surface to a 

P-plane, Ibid., 21 (1963), pp. 199-204. 
[311] -, Rossby waves with bottom topography, Ibid., 24 (1966), pp. 338-349. 
[312] -, The analogy between rotating andstratifiedfluids, Ann. Rev. Fluid Mech., 2 (1970), pp. 37-66. 

[313] G. VERONISAND H. STOMMEL,The action of variable wind stress on a stratified ocean, J. Mar. Res., 
15 (1956), pp. 43-75. 



328 PAUL H. LEBLOND AND LAWRENCE A. MYSAK 

[314] S. S. VOIT, Propagation of tidal waves from a channel into an open basin, Izv. Akad. Nauk S.S.S.R., Ser. 
Geofiz, A (19'58),pp. 486-496. 

[315] H. WASHIMI AND T. TANIUTI, Propagation of ion-acoustic solitary waves of small amplitude, Phys. 
Rev. Lett., 17 (1966), pp. 996-998. 

[316] G. B. WHITHAM, A general approach to linear and nonlinear waves usinga Lagrangian, J.  Fluid Mech., 
22 (1965), pp. 273-283. 

[317] -,Linear and Nonlinear Waves, John Wiley, New York, 1974. 
[318] J. WILLEBRAND, Energy transport in a nonlinear and inhomogeneous random wave gravity field, 1. 

Fluid Mech., 70  (1975), pp. 113-126. 
[319] D. G. WRIGHT, On the stability of a fluid with specialized density stratification. Part I, Baroclinic 

instability and constant bottom slope, J. Phys. Oceanogr., 9 (1979), to appear. 
[320] C. WUNSCH, Deep ocean internal waves: what do we really know? J. Geophys. Res., 80 (1975), pp. 

339-343. 
[321] C .WUNSCHAND A. E.  GILL, Observations of equatorially trapped waves in Pacific sea level variations, 

Deep-Sea Res., 23 (1976), pp. 371-390. 
[322] H. YAMADA, Highest waves of permanent type on the surface of deep water, Rep. Res. Inst. Appl. 

Mech., Kyushu Univ., 5 (1957), pp. 37-57. 
[323] T. YAMAGATA, On trajectories of Rossby waves-packets released in a lateral mean flow, J. Oceanogr. 

Soc. Japan, 32 (1976), pp'. 162-168. 
[324] C. S. YIH, Dynamics of Nonhomogeneous Fluids, MacMillan, New York, 1965. 
[325] H. C. YUEN AND B. M. LAKE, Nonlinear deep water waves: theory and experiment, Phys. Fluids, 18 

(1975),pp. 956-960. 
[326] -, Nonlinear deep water waves: a physical testing ground for solitons and recurrence, The 

Significance of Nonlinearity in the Natural Sciences, B. Kursungoli, A. Perlmutter and L. F. Scott, 
eds., Plenum, New York, 1977, pp. 67-96. 

[327] N. J. ZABUSKY, Phenomena associated with the oscillations of a nonlinear string model. The problem of  
Fermi, Pasta, and Ulam, Proc. Conf. on Mathematical Models in the Physical Sciences, S. Drobot, 
ed., Prentice-Hall, Englewood Cliffs, NJ, 1963, pp. 99-133. 

[328] -,Nonlinear lattice dynamics and energy sharing, J. Phys. Soc. Japan, 26 (1969), pp. 196-202. 
[329] T. B. BENJAMIN, J. L. BONA AND J. J. MAHONY, Model equations for long waves in nonlinear 

dispersive systems, Philos. Trans. Roy. Soc. Lond. Ser. A, 272 (1972), pp. 47-78. 
[330] L. A. MYSAK, Equatorial shelf waves on an exponential shelf profile, J. Phys. Oceanogr., 8 (1978), pp. 

458-467. 
[331] D. J. BENNEY AND A. C. NEWELL, The propagation of nonlinear wave envelopes, J. Math. and Phys., 

46 (1967), pp. 133-139. 
[332] G. B. WHITHAM, Nonlinear dispersion of water waves, J. Fluid Mech., 27 (1967), pp. 339-412. 
(3331 B. M. LAKE AND H. C. YUEN, A note on some nonlinear water-wave experiments and the comparison 

of data with theory, J. Fluid Mech., 83 (1977), pp. 75-81. 
[334] D. J. BENNEY AND G. J. ROSKES, Waveinstabilities,Studiesin Appl. Math., 48 (1969), pp. 377-385. 
[335] V. H. CHU AND C. C.  MEI, O n  slowly-varying Stokes waves, J. Fluid Mech., 41 (1970), pp. 873-887. 
[336] -,The non-linearevolution of Stokes waves in deep water, J. Fluid Mech., 47 (1971), pp. 337-35 1. 
[337] H.  HASIMOTOAND H. ONO, Nonlinear modulation of gravity waves, J. Phys. Soc. Japan, 33 (1972), 

pp. 805-81 1. 
[338] A. DAVEY AND K. STEWARTSON, O n  three-dimensional packets of surface waves, Proc. Roy. Soc. 

London Ser. A, 338 (1974), pp. 101-110. 
[339] M. S .  LONGUET-HIGGINS,O n  the nonlinear transfer of energy in the peak of a gravity-wave 

spectrum: a simplified model, Ibid., 347 (1976), pp. 311-328. 
[340] R. S. JOHNSON, On the modulation of water waves on shearflows, Ibid., 347 (1976), pp. 537-546. 
[341] -, On the modulation of water waves in the neighbourhood o f  kh  = 1.363, Ibid., 357 (1977), pp. 

131-141. 
[342] M. S. LONGUET-HIGGINS, The instabilities of gravity waves of  finite amplitude in deep water. I. 

Superharmonics, Ibid., 360 (1978), pp. 471-488. 
[343] -,The instabilities of gravity waves of finite amplitude in deep water. 11. Sub'harmonics,Ibid., 360 

(1978),pp. 489-505. 
[344] D. ANKER AND N. C. FREEMAN,O n  the soliton solutions of  the Davey-Stewartson equation for long 

waves, Ibid., 360 (1978), pp. 529-540. 
[345] J. T. STUART AND R. C. DIPRIMA,The Eckhaus and Benjamin-Feir resonance mechanisms, Ibid., 

362 (1978), pp. 27-41. 


