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Abstract. The deep interior structure of the earth has been
extensively analyzed using a wide variety of seismic phases and
techniques during the last four years. Most studies have
emphasized quantitative three-dimensional mapping of the
lateral velocity heterogeneity of the mantle and core. These
aspherical velocity variations are believed to be direct manifes-
tations of thermal and compositional heterogeneity associated
with convective processes. A first generation of global models
for the lateral velocity variations in the deep earth has been
produced, providing tantalizing images of large scale structures
suggestive of a non-steady state thermal convection system.

The upper 400 km of the mantle has the strongest lateral
velocity variations, of up to 210% for shear velocity. Surface-
wave analyses that do not require a priori regionalizations have
demonstrated that there is a strong association between surface
tectonic provinces and the uppermost mantle velocity varia-
tions. Thus, the thermal and convective state of the upper 200
km of the mantle can be reliably interpreted in the context of
plate tectonics. The upper mantle models support the conten-
tion that continents have deep roots, with differences in velocity
structure from oceanic and active tectonic regions extending as
deep as 400 km. Very long-wavelength lateral velocity variations
of a few percent have been detected in the transition zone at
depths from 400 to 670 km, as well as throughout the lower
mantle. These deep-seated variations have little correspondence
to surface tectonics, and efforts to interpret their nature are just
beginning. The lowermost 200 km of the mantle (D” region) has
lateral velocity fluctuations comparable to those in the upper
mantle, and evidence has been presented for the presence of a
sizable velocity discontinuity at the top of the D” layer. A
combined thermal and compositional boundary layer, roughly
mirroring the lithosphere, is a likely explanation for this
anomalous zone. The core-mantle boundary appears to have
significant (10 km) long-wavelength topography, presumably
sustained by dynamic stresses from deep mantle convection.
The inner core may have strong lateral heterogeneity or axially
symmetric anisotropy, suggesting a complex thermal and
compositional state.

Significant progress has been made in characterizing the
frequency dependence of anelastic attenuation in the mantle in
the short-period body-wave band. Models for teleseismic P-
wave attenuation operators have converged, with t* values of
0.7-1.0 s appropriate at 1 Hz, and t* values of 0.4-0.6 s
appropriate at 4 Hz. Regional variations of attenuation are
slowly being mapped out as well.

MANTLE STRUCTURE
An unprecedented increase in our knowledge of mantle struc-
ture has been achieved in the last four years. A broad spectrum
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of seismological techniques, including body-waveform model-
ing, global travel-time inversion, surface-wave dispersion and
waveform inversion, and normal-mode splitting analysis, have
been brought to bear upon the problem of mapping the velocity
deviations from radially symmetric earth structure in the deep
interior. While this lateral velocity heterogeneity is relatively
small, typically being only a few percent variation about the
average earth model, its significance is profound. This is because
the velocity variations are signatures of thermal, compositional,
and crystal orientation differences, all of which are associated
with mantle dynamics. Accurate three-dimensional imaging of
the heterogeneity thereby provides the most direct means for
determining the configuration of mantle convection systems.
The seismological models also serve as critical constraints for
geodynamic and geochemical modeling of the earth, and are
resulting in increasing interdisciplinary interaction. Perhaps the
most important inference to be drawn from the first generation
of global models is that the rich complexity of the interior
indicates a non-steady system, for which simplistic notions of
steady-state flow may be inapplicable.

Surface-Wave Tomography

The accumulation of a substantial data base of long-period
digital recordings from Global Digital Seismic Network
(GDSN) and International Deployment of Accelerometers
(IDA) instruments has enabled, for the first time, systematic
analyses of surface-wave dispersion on a global scale. Addi-
tional large data bases of body-wave travel-times collected by
the ISC or from special readings of WWSSN recordings have
enabled corresponding global and continental scale body-wave
investigations. The process of inverting these large sets of path
anomalies for a heterogeneous model has been called seismic
tomography [Anderson and Dziewonski, 1984; Dziewonskiand
Anderson, 1984]. Several different procedures have been used to
analyze the surface-wave observations. One procedure involves
the standard analysis of isolated fundamental-mode wavetrains
to extract phase and group velocities, which are subsequently
inverted for upper mantle structure. Another procedure in-
volves direct waveform modeling of the entire seismic trace,
including overtones and amplitudes. The latter procedure
directly results in a velocity structure, but must be performed
iteratively, and has so far been implemented only with asympto-
tic approximations to the normal-mode theory of Woodhouse
and Girnius [1982] that make it almost equivalent to the step by
step dispersion analysis.

Nakanishi and Anderson [1982, 1983, 1984a,b] adopted the
approach of inverting the dispersion measurements for spheri-
cal harmonic expansions of Love-and Rayleigh-wave phase and
group velocity up to degree and order 6. By measuring both odd
and even orbit arrivals at single stations, the odd harmonics of
the expansion can be determined, albeit with greater uncertainty
than for the even harmonics, which are constrained by more
accurate great-circle measurements. The spherical harmonic
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expansions do not require an a priori tectonic regionalization.
Nataf et al. [1984, 1986] inverted the dispersion measurements
for transversely isotropic models that explicitly include shear-
wave and compressional-wave anisotropy. Other inversions of
the dispersion data were performed by Tanimoto [1985, 1986b]
and Tanimoto and Anderson [1984, 1985]. The analyses by
Tanimoto utilized Backus-Gilbert inverse theory to appraise the
issue of error and resolution of the phase velocity models and
associated shear velocity inversions. The error analysis illus-
trated the significance of the antipodal peak in the resolution
kernel, which, in combination with statistical errors, seriously
limits the resolvable anomalies. The resolution kernel for the
data sets of 400 (Love) and 600 (Rayleigh) phase velocity
measurements used in these studies is localized within an area of
2000 km radius. Limited azimuthal path coverage of most areas
of the earth prevents inversions for global azimuthal anisotropy
at present [Tanimoto and Anderson, 1985], and differences in
the depth resolution of the Love (SH) and Rayleigh (P, SV)
modes leaves open the question of how well transverse isotropy
below 200 km can be resolved with the current data [Tanimoto,
1986b].

Woodhouse and Dziewonski [1984] and Woodhouse [1984]
used a much larger data set of waveforms from 53 earthquakes
and 870 paths in a complete waveform inversion procedure. The
inversion resulted in a global shear-wave velocity model with a
spherical harmonic expansion up to degree and order 8, and a
cubic polynomial description with depth for the upper 670 km of
the mantle. Their analysis was restricted to signals with periods
longer than about 135 s, close to the 150 s cutoff of the
dispersion analyses.

The very long-wavelength features in the models obtained
from the dispersion and waveform procedures are remarkably
similar, suggesting that first-order characteristics of the actual
mantle structure have been resolved. All of the inversions have
demonstrated that the strongest heterogeneities are in the upper
250 km of the mantle, and these have a strong correlation with
surface tectonic features. Ocean ridges and west Pacific subduc-
tion zones are underlain by slow velocities, while all major
shields have fast velocity roots, some of which extend to at least
350 km depth. The South Atlantic has relatively high velocities
at shallow depths, and low velocities under the Red Sea and
Gulf of California persist to 400 km depth. Below 250 km many
portions of ridges are underlain by high velocity regions,
notably the South East Indian Ridge. Many of these features
would not have been anticipated in a priori regionalized models.
The anisotropic inversions of Nataf et al. [ 1986] suggest a belt of
SV>SH anisotropic velocities at depths of 200 to 400 km
following the circum-Pacific ridge and subduction systems,
suggesting vertical flow; however, similar features were not
resolved by Tanimoto [1986b]. The procedure used by Wood-
house and Dziewonski [1984] appears to resolve mantle struc-
ture at somewhat greater depths due to the inclusion of overtone
data, and their model shows a strongdegree-2 component in the
transition zone (400-670 km) with broad regions of high velocity
under South America and the South Atlantic and under the
western Pacific, and broad regions of low velocities under the
central and eastern Pacific and under the Middle East. The
velocity anomalies in these models are on the order of +8% at 50
km depth, £2.5% at 450 km, and +1% at 650 km.

The global models indicate, but have limited resolution of fine
features such as the evolution of velocity structure of oceanic
lithosphere with age. Greater resolution of oceanic structure,
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particularly for the Pacific Ocean, has been obtained in the
regionalized dispersion studies of Anderson and Regan [1983],
Regan and Anderson [1984], Chao et al. [ 1983], Dziewonskiand
Steim [1982], Knopoff [1982], Nishimura and Forsyth [1985,
1986], and Rosa and Aki[1986]. Detailed continental dispersion
analysis of the crust and upper mantle under Eurasia was
performed by Feng and Teng [1983]. Improving the spatial
resolution of both the global and smaller scale inversions
requires the use of shorter period data, but the great-circle path
assumption employed in the dispersion and waveform modeling
procedures has dubious validity for periods less than 150 s.
Several studies have addressed the great-circle assumption using
surface-wave raytracing [Lay and Kanamori, 1985; Schwartz
and Lay, 1985; Tajima and Garmany, 1986; Wong and Wood-
house, 1983], and by appraising the effects of heterogeneity on
moment tensor inversions [Nakanishi and Kanamori, 1982;
Tanimoto and Kanamori, 1986]. The recognition that strong
amplitude and phase effects due to departure from great-circle
paths can occur for periods as long as 300 s has led to efforts to
directly utilize the focussing and defocussing information in
inversions for the heterogeneous models [Wong and Wood-
house, 1986; Yomogida, 1985; Yomogida and Aki, 1985, 1986].
In a parallel development, Tanimoto [1984] obtained degree-2
Love-wave models using a Born approximation in a waveform
inversion procedure that explicitly utilized long-period ampli-
tude information.

Other surface-wave procedures for improving the resolution
of the upper mantle models have involved detailed analysis of
overtones, which sample the transition zone more completely
than the fundamental-modes. Lerner-Lam and Jordan [1983]
extracted the higher-mode information using branch cross-
correlation functions between single-mode branch synthetics
and the observed seismograms. This procedure was used to
develop upper mantle shear velocity structures across Eurasia
and the eastern Pacific. The resolution capability of this
procedure was analyzed by Gee and Jordan [1986], and an
extension to anisotropic inversion was considered by Lerner-
Lam [1986]. Okal and Jo [1983, 1985] have analyzed dispersion
characteristics of longer period spheroidal overtones. One of the
most promising procedures appears to be inclusion of body-
wave and early overtone signals in the global surface-wave
inversions, as shown by Woodhouse and Dziewonski [1986].
Further progress will be possible as instruments which remain
linear for the first surface-wave arrivals from large earthquakes
are deployed.

Free-Oscillations

The surface-wave investigations described above have proven
most fruitful in leading to models of upper mantle heterogeneity
because of asymptotic approximations for the traveling waves
which lead to straightforward data analysis and inversion.
Analysis of the splitting of normal-mode spectra due to
ellipticity, rotation and lateral heterogeneity is also beginning to
yield aspherical earth structure models, and formalisms are
being developed that should eventually lead to non-asymptotic
inversions.

Masters et al. [1982] inverted multiplet locations for the
degree-2 spherical harmonic component of the earth’s hetero-
geneity. Their preferred model localized the heterogeneity in the
transition zone, with shear velocity variations on the order of
1.7%. This interpretation was questioned by Kawakatsu [1983],
who showed that some regionalized models of shallow hetero-
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geneity have a correspondingly strong degree-2 component, but
the transition zone feature was also obtained in the surface-wave
inversion by Woodhouse and Dziewonski [1984]. Giardini et al.
[1986] have recently inverted split-mode data for mantle
heterogeneity models, finding that small perturbations about
the surface-wave derived models can explain the mode data that
are sensitive to the upper mantle.

Other free-oscillation research has concentrated on mode-
coupling considerations, which have proved more significant
than was previously recognized, and on procedures for calcu-
lating the normal-modes for an aspherical earth model. Tani-
moto and Bolt [1983] analyzed coupling of toroidal-modes, and
Masters et al. [1983] presented observations of coupling be-
tween spheroidal- and toroidal-modes at very low frequencies.
Theoretical treatments of the aspherical earth calculations have
been presented by Dahlen and Henson [1985]}, Morris and
Geller [1982], Park [1986], Park and Gilbert [1986], Tanimoto
[1984], and Tsuboi et al. [1985]. Davis [1985] has considered
variations in apparent attenuation resulting from lateral hetero-
geneity, and Davis and Henson [1986] addressed the validity of
the great-circle assumption for normal-mode measurements.

Efforts to refine radially symmetric mantle models and mode
measurement procedures have been presented by Davis [1986],
Henson [1982] and Masters and Gilbert [1985]. The effects of
anisotropy on the normal-modes has been considered by
Anderson and Dziewonski [1982] and Tanimoto [1986a]. The
development of normal-mode partial derivatives for general
anisotropy will be important for the next generation of upper
mantle surface-wave and normal-mode inversions for aniso-
tropic velocity structure.

Body-Waves

A variety of body-wave phases have been analyzed to
determine both radial and lateral velocity structure in the upper
mantle. WWSSN recordings of long-period transverse com-
ponent S and SS phases have been particularly fruitful. A series
of waveform modeling studies of these phases by Given [1983],
Grand and Helmberger [1984a,b, 1985], Graves et al. [1985],
Helmberger et al. [1985a,b], and Rial et al. [1984] has led to
detailed shear velocity models for tectonic regions, shield
regions, young and old oceanic provinces, and the transitional
zones connecting tectonic provinces. These studies have not
only refined our knowledge of the size of upper mantle
discontinuities and of the velocity gradients between them but
have also established that continental roots persist to 400 km
depth and that 10% lateral variations in shear velocity exist near
200 km depth. Travel-time anomalies for the SS reverberations
have been used to develop continental scale images of the upper
mantle heterogeneity beneath North America [Grand, 1986a,b]
the Atlantic [Kuo et al., 1986], and the Indian Ocean[Stark and
Forsyth, 1983], with a resolution that is not viable with the
global surface-wave inversions. Corresponding PP-wave analy-
sis has just begun [Lefevre and Helmberger, 1984].

Analysis of short-period P-waves recorded by the large
Southern California array has resulted in models of the lateral
heterogeneity under California, as well as radial P-wave models
for the upper mantle structure of a tectonically active region.
Humphreys et al. [1984] used tomographic inversion to refine
the image of a high velocity anomaly in the upper 300 km
beneath the Transverse Ranges. Walck [1984, 1985] and Walck
and Clayton [1984] analyzed a dense array of data from the
upper mantle triplication range to develop radial P-wave
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velocity models, placing tight constraints on the upper mantle
velocity gradients and size of the discontinuities at 400 and 650
km depth. These models, together with the S-wave structures
from the SS analyses have been used to bound petrological
models for the upper mantle by Anderson and Bass [1984], Bass
and Anderson [1984], and Jeanloz and Thompson [1983].
Underside reflections of P’dP’ have also been analyzed to
appraise the sharpness of the discontinuities [Lees et al. 1983;
Murtha and Tanimoto, 1982], as have long period ScS-type
reverberations [Revenaugh and Jordan, 1985].

An increasing number of studies are attempting to extract
upper mantle structure from SV component recordings, which
have always been more difficult to interpret than the SH signals.
Baag and Langston [1985a,b,1986], Baumgardt and Alexander
[1984], Langston and Baag [1985], and Zandt and Randall
[1985] have performed modeling calculations for Sp and SPL
phases that are particularly sensitive to uppermost mantle
structure. Propagation of S-waves in heterogeneous media has
been considered by Cormier [1984, 1986], who appraised the
effects on the S-wave polarization. Observations of S-wave
splitting attributed to anisotropy were presented by Ando et al.
[1984].

Body-wave travel-time and amplitude station anomalies have
been used to investigate upper mantle heterogeneity ona variety
of scales. Taylor [1983], Lynnes and Lay [1984], and Priestley
and Chavez [1985] have considered the travel-time and focus-
sing effects of upper mantle heterogeneity beneath the Nevada
Test Site, which appears to be related to deep roots of the
caldera system in the region. Michaelson and Weaver [1986]
analyzed upper mantle structure under the Pacific Northwest
using travel-time delays. Variations of P-wave amplitudes and
travel-times across the North American continent have been
considered by Butler [1983, 1984a,b, 1985] and Lay and
Helmberger [1983a], while global P-wave [Dziewonski and
Anderson, 1983] and S-wave [Souriau and Woodhouse, 1985]
travel-time anomalies have been presented and related to
temperature and compositional variations.

Slab Structure

Subducted oceanic lithosphere constitutes the strongest local-
ized velocity heterogeneity in the upper mantle. Numerous
seismicity and body-wave travel-time studies have addressed
subducting slab geometry and velocity structure. Complexity of
the stress state in subducted slabs has been revealed by studies of
the multiple Benioff zones found in some slabs [Kawakatsu,
1985, 1986a,b; Kawakatsu and Seno, 1983; Cahill and Isacks,
1986; Taber and Hudnut, 1984], as well as by studies of focal
mechanisms and seismicity levels [Giardini and Woodhouse,
1984; Vassiliou, 1984; Vassiliou et al., 1984). The configuration
of various subducted slabs, as indicated by seismicity and
velocity heterogeneity, has been analyzed by Boyd et al. [1984],
Chiu et al. [1985], Cockerham [1984], Grange et al. [1984],
Hauksson [1985], Roecker [1985], and Rohay [1982]. Several
studies have addressed the effects of slab heterogeneities on
propagating waves as well [ Bolt and Drake, 1986; Langston and
Arnold, 1982].

The most significant advances in our knowledge of slab
structure concern the depth of penetration and sharpness of the
velocity gradients of the slab. Creager [1984] and Creager and
Jordan [1984, 1986a] analyzed travel-time residual patterns
from intermediate and deep focus earthquakes in western
Pacific subduction zones, finding systematic patterns that can
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be well explained by thermal models of subducting slabs that
penetrate into the lower mantle to depths of at least 1000 km,
well below the depth of the deepest earthquakes [Stark and
Frohlich, 1985]. Similar analyses of travel-time residual pat-
terns for events in Tonga [Fischer et al., 1986] and the Aleutians
[Spencer and Engdahl, 1983; Boyd and Creager, 1986] also
indicate aseismic extensions of the slab velocity anomaly below
the maximum depth of seismicity. Other investigations of the
sharpness of the velocity gradients in the slab [Stefani et al.,
1982]; the velocity structure in the mantle surrounding the slab
[Suyehiro and Sacks, 1985]; and anisotropy of the slab itself
[Anderson, 1986], have not refuted the lower mantle slab
penetration hypothesis. Silver and Chan [1986] and Beck and
Lay [1986] have analyzed waveform complexity in broadband S
waves that appears to arise from interaction of the waves with
strong velocity heterogeneity in the lower mantle. Azimuthal
patterns and travel-time correlations in these data are consistent
with multipathing in a lower mantle slab extension. Although
further work on the slab penetration hypothesis is clearly
needed, it presently appears that a strong case has been made for
mass flux across the 650 km discontinuity, which has profound
consequences on the issue of whole mantle versus layered
convection.

LOWER MANTLE STRUCTURE

In addition to the slab structures that appear to extend into
the lower mantle, velocity heterogeneity at a variety of scales has
been detected below the 670-km discontinuity. Surface-wave
analysis cannot be used to determine the structure in the lower
mantle, but body-wave travel-times reveal both small and large
scale variations. Localized velocity heterogeneities with scale
lengths of about 1000 km and 2% velocity heterogeneity were
detected beneath the Caribbean and South America by Lay
[1983], using S and ScS travel times from WWSSN recordings.
A high velocity anomaly beneath the Caribbean at depths of 800
to 1900 km was found to extend northward, with a systematic
offset to the east with increasing depth, in the tomographic
inversion by Grand [1986a]. A similar, elongate high velocity
ridge beneath Alaska is apparent in the recent inversions of
Woodhouse and Dziewonski [1986], which incorporated body-
wave data in the global inversion. The geodynamic significance
of these structures is not yet established.

Several studies have used the vast travel-time data base
accumulated by the ISC to investigate lower mantle structure.
Lee and Johnson [1984a,b] established extremal bounds on
radial velocity models for the lower mantle using Tau-p
measurements from the ISC travel times. Dziewonski [1984]
used a time-term approach to analyze about 500,000 travel-time
residuals from 5000 earthquakes in deriving an aspherical P
velocity model for the lower mantle. The model was represented
by spherical harmonics up to degree 6 and radial order number
4. The earthquakes were relocated in each iteration for the
structure, and weighting schemes were used to suppress the
aliasing due to non-uniform coverage of the interior. The model
has strong velocity perturbations of 1-1.5% just below the 670-
km discontinuity and just above the core-mantle boundary. Ata
depth of 2000 km the perturbations in velocity are about 3 to 4
times smaller than at the two boundaries. Qualitatively similar
results were obtained in the ISC travel-time inversions of
Clayton and Comer [1983] and Comer and Clayton [1986], who
used a tomographic procedure with blocks rather than an
analytic representation. This procedure provides higher spatial

Structure of the Earth: Mantle and Core

resolution, and can easily be extended to include travel-times
from phases other than P [Zhou and Clayton, 1985]. The low
order variations of the two approaches are quite similar, and
have been shown to successfully predict long-wavelength com-
ponents of the geoid under the assumption of a dynamic, viscous
earth by Hager et al. [1985], who applied the theory of Hager
[1984] and Richards and Hager [1984]. The large-scale velocity
variations apparent in these models do not have any simple
relation to surface tectonics, and appear to have much greater
complexity than anticipated for a simple, steady-state convec-
tion system. Two possible interpretations are that there are
significant compositional heterogeneities entrained in the flow
[Davies, 1984], or alternatively, the flow is not steady-state at
all.

Structure near the Core- Mantle Boundary

While the global tomographic inversions can resolve the
presence of large-scale heterogeneity near the base of the
mantle, other procedures are required to model the detailed
structure. Accurate velocity models are needed in order to assess
recent thermal calculations that predict a major, unstable
thermal boundary layer at the base of the mantle that servesasa
source of thermal plumes [Boss and Sacks, 1985; Loper, 1984;
Loper and Stacey, 1983; Stacey and Loper, 1983]. Short-period
P-waves near the onset of the core shadow zone indicate
substantial lateral variation in average radial structure of the
lowermost 200 km of the mantle (D” region) [ Ruff and Lettvin,
1986]. Model experiments have been conducted by Menke
[1986a,b] to assess the behavior of short period PcP phases.
PKP phases have also been analyzed, and appear to require
short scale length heterogeneities in D” [Snoke and Sacks,
1986]. Strong heterogeneity in the S-wave velocities of D” are
indicated by the diffracted S-wave study of Bolt and Niazi
[1984] and the ScS travel time study of Lavely et al. [1986].

A series of modeling studies of long period SH and SV signals
traversing D” by Lay [1985, 1986a,b], Lay and Helmberger
[1983b,c,d], Lay and Young [1986], Young and Lay [1986a],
and Zhang and Lay [1984] indicate the presence of waveform
complexities that can be well-modeled by shear velocity models
with a 2.75% shear discontinuity about 280 km above the core-
mantle boundary. A reflection from this velocity increase is
apparent in transverse component seismogram profiles at
distances greater than 70°, with data sampling four different
regions of D” having consistent waveform characteristics.
Waveform modeling of long-period ScSH and ScSV indicates
the presence of either fine structure just above the core or
possibly anisotropy in D” [Lay and Helmberger, 1983d; Cor-
mier, 1985). At this time the seismic models for D” are not
consistent enough to resolve the nature of the thermal boundary
layer, as is discussed in the review by Young and Lay [1986b],
and it appears that the presence of both a thermal and a
chemical boundary layer at the base of the mantle is the best way
to explain the radial and lateral structure of the region [Jordan
and Creager, 1986].

CORE STRUCTURE

The radial and lateral velocity structure of the core has
received increasing attention, particularly with the availability
of models of the mantle heterogeneity that allow the shallow
travel-time effects to be removed from data that sample the core.
Large ISC travel-time data sets have been used to determine
extremal bounds on the radial velocity models for the core
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[Johnson and Lee, 1985; Stark et al., 1986]. Detailed analysis of
SKS travel-times at distances less than 95° provide control on
the velocity gradient in the outermost core [Murtha, 1984; Lay
and Helmberger, 1983d], which appears not to have an anoma-
lously steep value. Waveform modeling studies of broadband
PKIKP phases indicate a simple inner core-outer core discon-
tinuity [Choy and Cormier, 1983; Cormier and Choy, 1986],
consistent with the radial travel time inversions.

However, the first generation of three-dimensional core
models indicate greater complexity of core structure. Jordan
and Creager[1986]and Morelli et al. [1986] have used large data
sets of PKP and PKIKP travel times from the ISC bulletins to
image the low-order heterogeneity of the core. Both studies
indicate long-wavelength heterogeneity that appears to reside in
both the inner core and near the core-mantle boundary.
Topography on the core-mantle boundary of +8 km or so with
very long wavelengths can account for much of the anomaly in
PKP times. Some of the heterogeneity may actually be in the
outer core, but dynamic considerations prevent any density
heterogeneity from persisting in this region. Anomalously large
splitting of normal-modes sensitive to the core structure also
indicates very long-wavelength aspherical structure. Ritzwoller
et al. [1986] concluded that an axisymmetric structural anomaly
in the outer core is required to explain these observations.
Giardini et al. [1986] developed an inversion procedure utilizing
the anomalously split modes and derived core structures with 8
km undulations of the core-mantle boundary, 25 km undula-
tions of the inner core-outer core boundary, and several percent
velocity variations within the inner core, dominated by zonal
harmonics. Morelli et al. [1986] and Woodhouse et al. [1986]
have proposed an alternate model in which the inner core has a
strong axially symmetric anisotropy, which produces systematic
PKIKP anomalies and anomalous mode splitting. The com-
plexity of the inner core appears compatible with the models for
this boundary proposed by Loper and Fearn [1983] based on
geodynamic and geochemical arguments.

ANELASTIC PROPERTIES OF THE DEEP EARTH

With the exceptions of the normal-mode attenuation study by
Masters and Gilbert [1983], the overtone attenuation study of
Okal [1986] and the surface-wave attenuation study of Patton
and Taylor [1984], most seismological research on attenuation
in the last four years has involved the body-wave frequency
band. Progress in this area has been substantial, largely due to
the absorption band model concepts that were developed
several years ago [see review by Cormier, 1982]. The frequency
dependence of short-period P-wave attenuation and its regional
variations have been studied using spectral shape measurements
by Bache [1985], Bache et al. [1985, 1986], Der and Lees [1985],
Der et al. [1982a,b, 1985, 1986] and Shore [1984]. Broadband P
and S data have been analyzed to infer regional variations
across North America by Taylor et al. [1986]. These studies have
clearly demonstrated the decrease in attenuation for frequencies
greater than 1 Hz. Additional studies have reliably established
the absolute attenuation levels by comparing near-field source
models with teleseismic observations [Burdick et al., 1984;
Burger et al., 1986], or by source cancelation experiments using
phases such as ScS-ScP [Burdick, 1985], sS-sP [Burdick and
Grand, 1984] and multiple ScS phases [Lay and Wallace, 1983].
Consistent frequency dependent models for short-period P-
waves have resulted from the different studies, with t* values of
0.7 to 1.0 s for 1 Hz signals and 0.4 to 0.6 s for 4 Hz signals.
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Deep mantle attenuation studies using PcP phases [Bolt and
Canas, 1985] and ScS phases [Choy and Cormier, 1986] do not
appear to support early models with a very low Q zone at the
base of the mantle, although the recent model of Shore [1984]
has such a feature in it. The effects of diffraction and the
increased velocity heterogeneity in D” need to be accounted for
when producing Q models for the lowermost mantle. The
apparent attenuation effects of scattering have received some
attention [Menke, 1983; Richards and Menke, 1983], though it
has proven difficult to separate intrinsic attenuation from
scattering losses in actual data.

CONCLUSIONS

The large number of deep earth structure studies reviewed
above reflects a recent emphasis on quantitative mapping of the
three-dimensional velocity structure of the earth’s interior. This
has long been a principal goal of seismology, but it is only
recently that high quality seismic data bases have been available
for global analysis. The excitement generated by the first three-
dimensional models of the aspherical heterogeneity has breeched
disciplinary boundaries and has given strong impetus to the
recent efforts to upgrade the global network of seismometers
[IRIS, 1984]. The rapid progress in imaging the interior using
both digital and WWSSN data is a testimonial to the benefits to
be reaped from high quality global network data.

It appears that the earth is heterogeneous at all depths and at
all scales; thus it will be a difficult task to accurately determine
the detailed structure of the interior. Error and resolution
analysis will be increasingly important for appraising the results
of large inversion procedures, which are often subject to subtle
biases and instabilities. An open mind with regard to the nature
of the earth’s structure, particularly regarding general aniso-
tropy, boundary layer structure, and whole mantle convection is
important in these modeling efforts. The development of
aspherical earth models has been paralleled by development of
techniques for modeling wave propagation in heterogeneous
media, and inverse procedures will have to be developed to
exploit these.

Studies of the core-mantle boundary and core structure have
begun to reveal unexpected complexity that has important
geodynamic and geochemical consequences. It will be particu-
larly important to integrate body-wave and free-oscillation data
bases to better constrain the heterogeneity of this region.
Establishing the role of the core-mantle boundary as either a
thermal or a chemical boundary layer is particularly important
for the geothermal models of the interior.

The question of lower mantle slab penetration has not been
completely resolved, and quantitative three-dimensional wave-
field modeling is needed to further test the travel-time models.
Additional studies of the 670-km discontinuity, especially in the
vicinity of subducted slabs are needed to establish the nature of
this major boundary. Similarly, additional studies of the nature
of upper mantle transitions between shield and tectonic pro-
vinces are needed to better resolve whether thermal, chemical,
or anisotropic variations are responsible for the strong con-
trasts.
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